

History of Data Visualization

Michael Friendly
Psych 6135

https://friendly.github.io/6135

Outline

- Overview:
 - Roles of graphics in scientific discovery
 - Visualizing history: The Milestones Project
- Milestones tour of the history of data vis
 - Pre-history of visualization
 - The first statistical graph
 - The Big Bang: William Playfair
 - Influence of data, technology & visual thinking
- Other topics (later):
 - Moral statistics: the birth of social science
 - Graphs in the public interest: Nightingale, Farr and Snow
 - The Golden Age of statistical graphics

Orienting

History in context

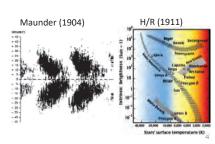
questions

What motivated graphical inventions?

What was the communication goal?

How does it relate to other developments?

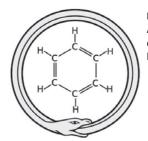
What were the pre-cursors?


How has this idea been used or reinvented today?

Orienting Q: Visualization-based discoveries ??

- When have graphics led to discoveries that might not have been achieved otherwise?
 - Snow (1854): cholera as a water-borne disease
 - Galton (1883): anti-cyclonic weather patterns
 - E.W. Maunder (1904): 11-year sunspot cycle
 - Hertzsprung/Russell (1911): spectral classes of stars

Snow (1854)



Orienting Q: Visualization-based discoveries ??

- In the history of graphs, what features, and data led to such discoveries?
 - What were they thinking??
 - What visual ideas/representations were available?
 - What was needed to see/understand something new?
- As we go forward, are there any lessons?
 - What are the Big Questions for today?
 - How can data visualization help?

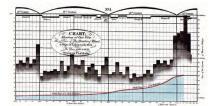


Visual thinking & scientific discovery

Dreams and snakes August Kekulé (1862) discovers the structure of benzene in a dream

> Tree of evolution Darwin (1859) imagines generations of species - "I think"

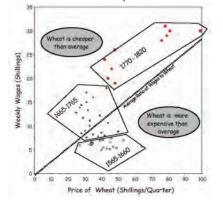
Solitaire and the periodic table


Mendeleev (1869) organized chemical elements after a mental image of cards on a table.

See: https://medium.com/@michael.friendly/visualthinking-graphic-discoveries-128468677592

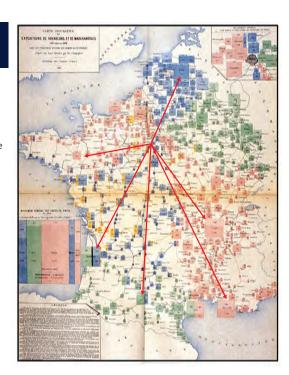
How to study #dataviz history?

Re-Visioning: Understand historical graphs by re-creating from a modern perspective


Playfair: Price of wheat & wages

What was he thinking? What was the audience? Could we do it better/differently today?

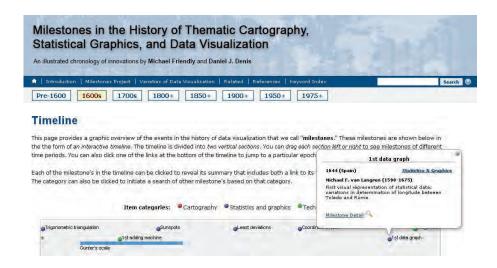
Annotated scatterplot



Why study history of #datavis?

Those who don't know history are doomed to plagiarize it.

Recursive mosaic: Distribution of passengers and goods from the Paris railways to the rest of France [Album, 1884, pl. 11]



Quest for the Albums

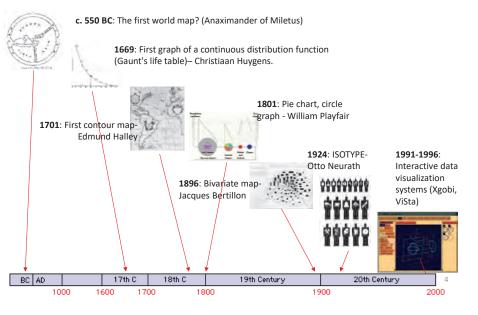
- British library, BNF, Library of Congress: just a few copies
- Richard Langdon, U of T Fisher Rare Book Library: check out this bookshop, 3 rue des Beaux Arts, Paris
 - A complete set: all albums 1879 1899!
- Les Chevaliers
 - Collective purchase, owned by all, each held "in trust" by one member
 - "chevaliers": Foster a spirit of collegial study of history of data visualization & thematic cartography
 - Conference sessions: RC33 (Cologne, 2000), GFKL (Dortmund, 2004), JSM (Toronto, 2004), ...
 - Regular "Chevalier Lunch"

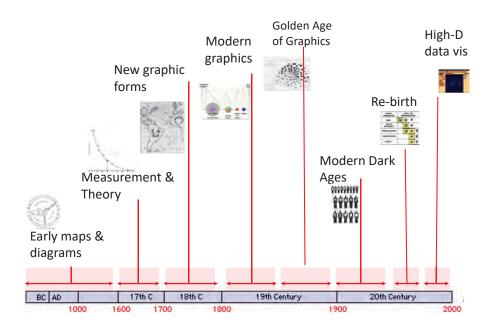
11

The Milestones Project

The web site: http://datavis.ca/milestones has an interactive timeline, allowing different kinds of search

Les Chevaliers des Albums





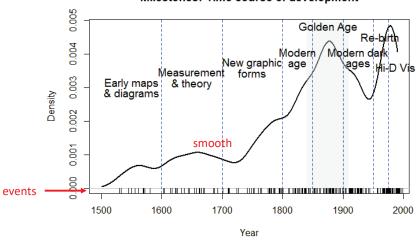
Milestones: Content Overview

Every picture has a story – Rod Stewart

Milestones Tour: Epochs

Prehistory of visualization

Lascaux Cave, ~ 15000 BCE, the "Sistine Chapel of pre-historic art"



Lascaux II, Main chamber

Statistical historiography

Historical information, suitably organized can be treated as data, and analyzed. This plot shows a smoothed frequency distribution of 248 milestones items over time, in relation to the named time periods.

Milestones: Time course of development

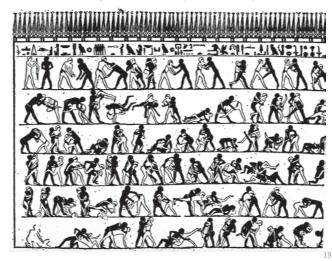
Lascaux: What were they thinking?

Lascaux II, Chamber of the Bulls

- Visual features:
 - show perspective, a sense of motion, rich use of color & texture
- What was the purpose?
 - Hunting success? NO (they hunted reindeer)
 - mostly symbolic visual language, story of communal myths
- How to understand them?
 - A cognitive revolution: evidence for the modern human mind in Cro Magnon man
 - inner vision, visual thinking, mental imagery— a gleam in the mind's eye
- Other cave art [20000BC 10000BC]: Altamira (Spain); Chauvet (France), Cueva de las Manos (Argentina), ...

1

Prehistory: Diagrams, graphic stories


Early Egyptian animated graphic diagram

Wrestling scene on east wall, tomb of Baqt at Beni Hasan (ca. 2000 BCE).

A visual explanation of a wrestling match

Anticipates modern graphic novels

Why? Perhaps Baqt's last lesson as a wrestler in his youth and later as a coach

1350: Bar graphs of theoretical functions Nicole Oresme, France

Idea to visualize phenomena (speed of moving objects, expansion of heated rods) by 2 dimensions (latitude & longitude)

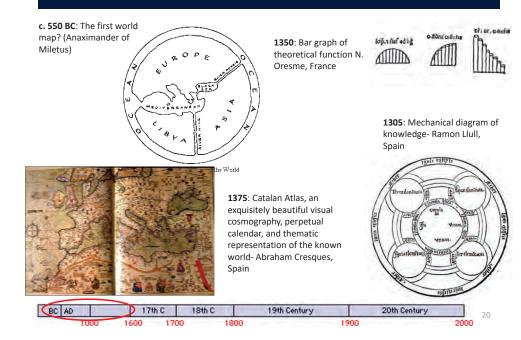
His diagrams considered the different forms these could take.

→ Proto bar chart

If Oresme had data, we might have had bar charts 350 years before Playfair

On the Latitude of Forms

bifform'e vniformiter verantio reddit vnifor teifor, t fall ad hig mere pilromiter offormet. Clinatin vni form f control at ha q int excellus graduug eig vnihaup frut cude, poprtige at an is propride eight and in the proprio eight are die eight and victim eight vnihaum eight and in the proprio eight at the interest time intilla polific attend vnihamiten in lannadine tall to fill the proprio eight attend vnihamiten in lannadine tall to fill the proprio eight vnihamiter offormiter bifformite fill a quiter excellus graduin quae volumine eight and proprio eight vnihamiten eight price attend vnihamiten eight proprio eight vnihamiten eight vnihamiten



Equif (coa pe in qua ut fupradicta intelligation ad fenius per figuras geome tricae oftenduntur. Et ut omnem (peciem lantudia

eurrat apparentier i stitudies ad figuras geo metes a opticant. That po situdit peria ca pitula que a proposition e propositio e

BC AD 17th C 18th C 19th Century 20th Century 2 1000 1600 1700 1800 1900 2000

Pre 17th C.: Early maps & diagrams

1375: Catalan Atlas, an exquisitely beautiful visual cosmography, perpetual calendar, and thematic representation of the known world- Abraham Cresques, Majorca, Spain [BNF: ESP 30]

18th C

2000

20th Century

19th Century

1600-1699: Measurement and Theory

- The 17th century saw growth in theory and the dawn of attempts at visualization.
- Featured in this were:
 - rise of analytic geometry: (x, y) coordinates (Descartes, 1637),
 - theories of errors of measurement: astronomical observations (perfected by Laplace, ~ 1774)
 - the birth of probability theory-- games of chance, annuities (Fermat, DeMoivre, ... ~ 1650),
 - automatic graphic recording (Scheiner, 1626)
 - the first graphical representations of statistical data (van Langren, 1644)

Sunspots: Galileo

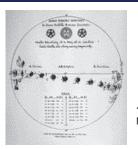
1608: telescope (Hans Lippershey, NL)

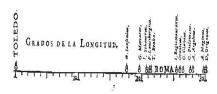
1610: Galileo (*Sidereus Nuncius*)

1611: Galileo records **movement** of sunspots over time (*Three letters on sunspots*, 1613)

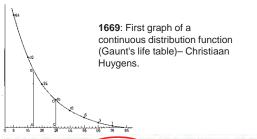
Visual ideas:

- Animated graphic
- "Small multiples"
- •Allows comparison
- •Self-explaining diagram


A+ for info design!

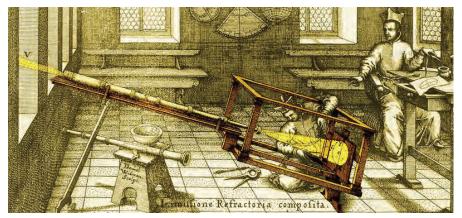

The idea of diagrams for visualizing phenomena had arrived.

1600-1699: Measurement and Theory


1626: Visual representations used to chart the changes in sunspots over time-Christopher Scheiner

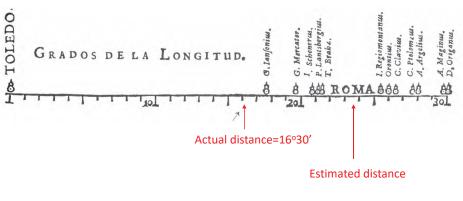

BC AD

1644: First visual representation of statistical data-M.F. van Langren, Spain


1693: First use of areas of rectangles to display probabilities of independent binary events-Edmund Hallev. England

h C	18th C	19th Century	20th Century
1700	1800	1900	2000

Scheiner: systematic recording


1626: Christoph Scheiner invents helioscope & camera obscura to record sunspots (*Rosa Ursina sive Sol*, 1626-1630)

Why the 1st statistical graph got it right

1644: First visual representation of statistical data: determination of longitude between Toledo and Rome- Michael Florent van Langren, Spain

BC AD		17th C	18th C	19th Century	20th Century	
10	000 16	00 170	0 18	00 19	900 2	2000

 ... he could have sorted by name, to show authority.

	Name	Longitude	Year	Where	ı
	Argelius, A.	28.0	1541		
	Brahe, T.	21.5	1578	Denmark	
	Clavius, C.	26.5	1567	Germany	
	lanfonius, G.	17.7	1501		
	Lantsbergius, P.	21.1	1530		
	Maginus, A.	29.8	1582	Italy	
	Mercator, G.	19.6	1567	Flanders	
	Organus, D.	30.1	1601		
	Ortonius	26.0	1542	France	
	Ptolomeus, C.	27.7	150	Alexandria	
	Regiomontanus, I.	25.4	1471	Germany	
,	Schonerus, I.	20.8	1536	Germany	

Sorted by Longitude

Sorted by Authority

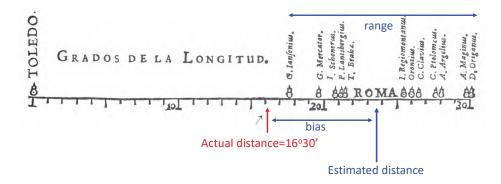
• ... he could have sorted by *longitude* to show the *range*.

	Longituae	Name	year	vvnere
4	17.7	G. lanfonius	1501	
П	19.6	G. Mercator	1567	Flanders
П	20.8	I. Schonerus	1536	Germany
П	21.1	P. Lantsbergius	1530	
П	21.5	T. Brahe	1578	Denmark
П	25.4	I. Regiomontanus	1471	Germany
П	26.0	Orontius	1542	France
П	26.5	C. Clavius	1567	Germany
П	27.7	C. Ptolomeus	150	Egypt
П	28.0	A. Argelius	1541	
	29.8	A. Maginus	1582	Italy

D. Organus

What else could he have done?

- What would occur to men of his time to convey a message to the king?
- ... he could used a table have sorted by year to establish priority (or show change).


Sorted by Priority

	Year	Name	Longitude	Where
ī	150	Ptolomeus, C.	27.7	Egypt
	1471	Regiomontanus,	25.4	Germany
	1501	lanfonius, G.	17.7	
	1530	Lantsbergius, P.	21.1	
	1536	Schonerus, I.	20.8	Germany
	1541	Argelius, A.	28.0	
	1542	Ortonius	26.0	France
	1567	Mercator, G.	19.6	Flanders
	1567	Clavius, C.	26.5	Germany
	1578	Brahe, T.	21.5	Denmark
	1582	Maginus, A.	29.8	Italy
4	1601	Organus, D.	30.1	

30

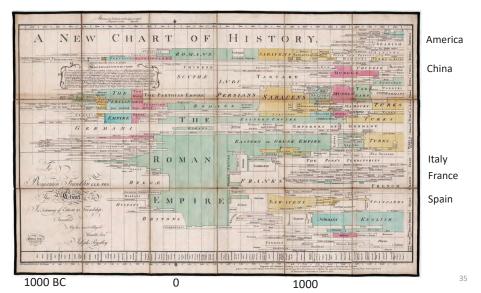
Only a graph shows...

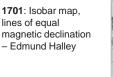
- central location
- bias
- name labels— avoiding overplotting
- wide variability
- clustering, detached observations

See: Friendly, M., & Kwan, E. (2003). Effect Ordering for Data Displays. Computational Statistics and Data Analysis, 43(4), 509—539; Friendly etal (2010),The First (Known) Statistical Graph: Michael Florent van Langren and the ``Secret'' of Longitude The American Statistician, 64, 185-191

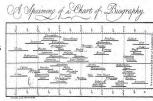
1700-1799: New graphic forms

- The 18th century witnessed the germination of the seeds of visualization & visual thinking, planted earlier.
- Map-makers began to try to show more than just geographical position-- the beginnings of thematic mapping of physical quantities
 - topographical maps
 - iso- contour maps
- New graphic forms were invented:
 - bar chart,
 - line chart,
 - timelines


The Big Bang (Playfair)

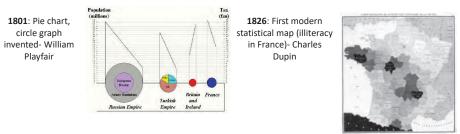


1769: Visualization of the history of civilizations & empires over ~3000 years -- Joseph Priestley

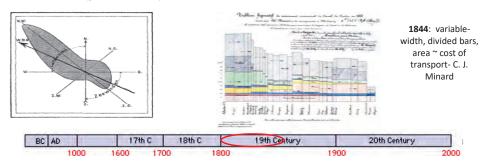


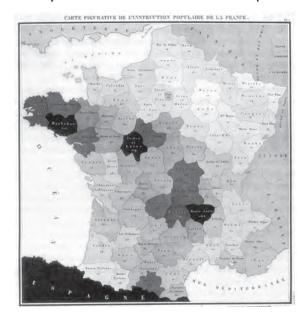
1700-1799: New graphic forms

1786: Bar chart, line graphs of economic data-William Playfair



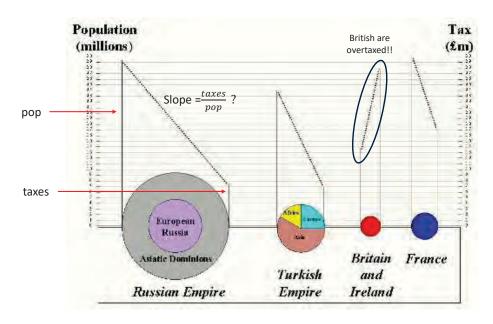
1800-1849: Beginning of modern **data** graphics

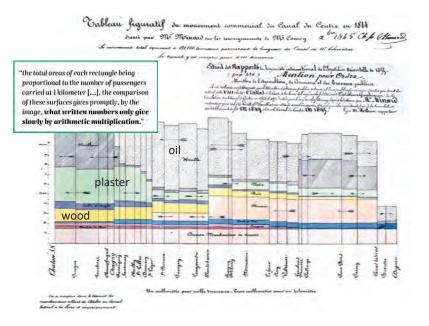

- The first half of the 19th century witnessed an explosive growth in statistical graphics and thematic mapping
 - Polar coordinates, log axes
 - Shaded (choropleth) maps of social data (literacy, crime)
- The birth of data: widespread national collection of data on social and medical issues
 - France: data on crime, literacy, prostitution, ... collected centrally
 - England: Births, deaths, disease mortality collected by Registrar General (William Farr)
 - US: Census Bureau tracks population by race, ethnicity; resources, trade, ...


1800-1849: Beginning of modern data graphics

1843: Wind-rose (polar coordinates)- L. Lalanne

1826: The 1st choropleth map, showing the distribution of literacy in France – Baron Charles Dupin

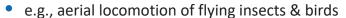



Social variables became:

- visual
- subject to scientific discussion

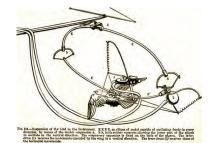
1801: Pie chart, circle graph invented- William Playfair (But with a graphic sin & fallacy – What are they?)

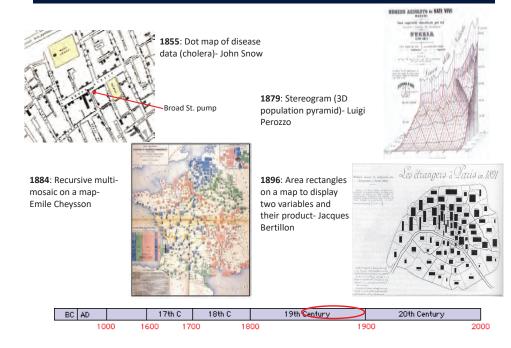
1844: *Tableau-graphique*: variable-width, divided bars, area ~ cost of transport- Charles Joseph Minard


1850-1900: Golden Age

- By the last half of the 19th century the conditions for rapid growth of visualization had been established:
 - widespread data collection for planning, commerce, social theory
 - the beginnings of statistical theory and visual thinking
 - a wide range of graphic forms, reasonably well understood
 - technology:
 - lithography and color printing
 - automatic recording devices
 - calculation: machines & graphical calculators
- The result was a perfect storm-- among the most exquisite graphics ever produced.

E.-J. Marey: La Méthode Graphique


- First textbook of graphics
- How to make human and animal motion subject to precise scientific study?


- What is the frequency of wings of different species?
- What are the mechanisms of wings to produce lift and forward motion?

A harness, designed to register the trajectory, force and speed of a bird's wing in flight

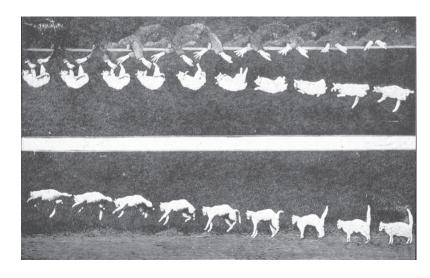
Marey (1870) Animal Mechanism

1850-1900: Golden Age

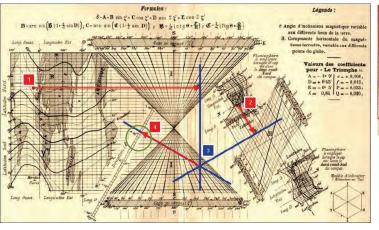
E.-J. Marey: Chronophotography

Rather than separate frames, Marey's "fusil photographique" allowed one to see motion continuously in a single static image.

This provides a visual analysis of a sprint:

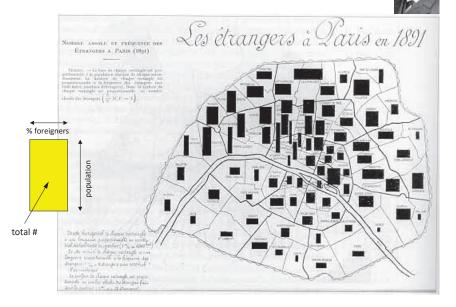

- The runner takes about ½ second (8 frames) to make it to an upright position
- Successive frames alternate between power push from the hind leg to landing on the opposite leg

Source: https://lightsmellsloud.wordpress.com/tag/etienne-jules-marey/


The Falling Cat Problem

• How does a falling cat usually land on her feet? An OMG moment!

1885: Charles Lallemand, graphical calculator for compass course corrections of a ship at sea


Combines: anamorphic maps, hexagonal coordinates, trigonometric scales (5 eqns)

https://deadreckonings.files.wordpress.com/2010/05/lallemandhexagonalchartstriangularcoordinates.pd

1896: Area rectangles on a map to display two variables and their product- Jacques Bertillon

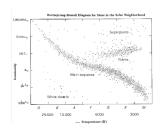
1900-1949: The Modern Dark Ages

- By the 1930s, the growth of statistical methods supplanted enthusiasm for graphics
 - There were few graphic innovations
 - In statistics: numbers were precise; graphs were just "pretty pictures"
- But graphical methods had entered the mainstream & were popularized
 - Text books, college courses
- There were several graphic-based scientific discoveries
- Electronic computers were born

| BC | AD | 17th C | 18th C | 19th Century | 20th Century | 1000 | 1600 | 1700 | 1800 | 1900 | 2000

1900-1949: The Modern Dark Ages

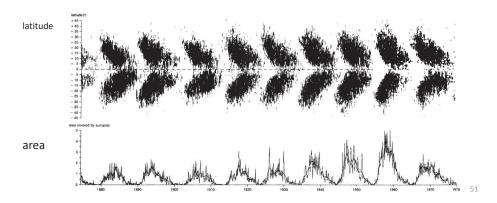
1914: Brinton: *Graphic Methods for Presenting Facts*


1924: ISOTYPE method of pictorial graphics—Otto
Neurath

1913: Discovery of atomic number, based on graphical analysis- H. Mosely

1911-1913: The Hertzsprung-Russell diagram & evolution of stars

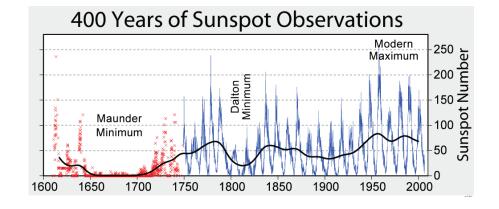
1944: Harvard's Mark I, the first digital computer- Howard Aiken, Grace Hopper


50

Maunder: Butterfly diagram

1904: E.W. Maunder plots distribution of sunspots in sun's latitude by time

• Discovery of 11-year sunspot cycles (& 22-yr: reversal of sun's magnetic field)



Maunder: Butterfly diagram

1904: E.W. Maunder plots distribution of sunspots in sun's latitude by time

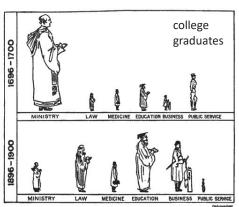
- Discovery of "Maunder minimum" (1645-1715): "Little Ice Age"
- Smoothing reveals other extrema

1914: Willard C. Brinton publishes *Graphic Methods for Presenting Facts*, the 1st popular book on the topic

heatmap

Fig. 33. Rank of States in Each of Ten Educational Features, 1910. White Indicate that the State Ranks in the Highest 12 of the 48, Light Shading that it Rank in Second 12, Dark Shading that it Ranks in Third 12, and Black that it Ranks in

pictogram



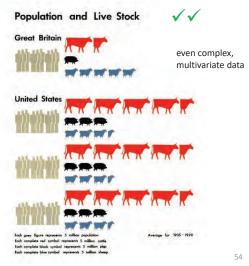
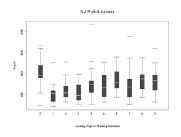


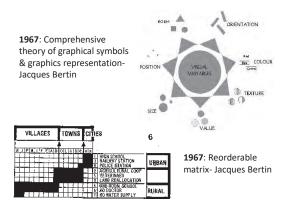
Fig. 39. Proportion of College Graduates in Different Professions in 1696-1700 and in 1896-1700

by the height of the man. See charts are milesding because the area of the pictured man increases more modely than his height. Considering the years 1000-1700, he pictured minister looks over-important because half times the height of the man representing public service. The iminister looks over-important because he has an area of more than six times that of the man drawn to represent public service. This kind of graphic work has little real values **1924**: Otto Neurath developed the Isotype (International System of Typographic Picture Education) method to communicate statistical information to the broad public in an intuitive, pictorial way.

John W. Tukey EXPLORATORY DATA ANALYSIS I TO THE PROPERTY OF THE PROPERTY OF

VISUAL LEVEL OF			DEPLOYMENT MODE						
VARIABLES	OF	RGANI	ZATIO	N .	PUNCTUAL		AL.	LINEAR	ZONAL
SIZE	Q	0	7			•	•		· · · \ / ·
VALUE INTENSITY		0	#		0	0	•		
GRANULATION		0	7	≡		0	0		•
ORIENTATION			#	≡	1	1	-	ALL SOME	
COLOR			#	≡	•	•	•		
FORM			≠	=	•	•		### ***********	-1


1950-1974: Re-birth of graphics

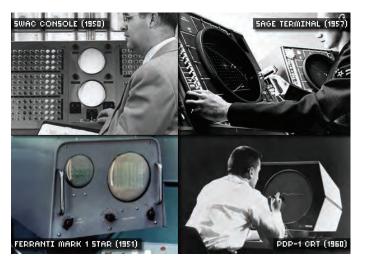

- Visualization began to rise from dormancy in the mid 1960s, spurred largely by:
 - J. W. Tukey's Exploratory Data Analysis:
 The power of graphics to show the unexpected in data analysis
 - Jacques Bertin's Semiologie Graphique:
 A general theory of composing graphs and maps
 - computer hardware for computation and display
 - the advent of statistical and graphics software

BC AD		17th C	18th C	19th Century	20th Ce xt ury	5
10	00 1	600 17	00 18	00 19	00	2000

1950-1974: Re-birth of graphics

1969: Graphical innovations for EDA (stemand-leaf, box-plots, etc.)- J.W. Tukey

Multivariate glyphs


1971: Star plots- J. H. Siegel etal

1973: Face plots- Herman Chernoff

Digital display devices

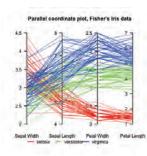
The biggest limitation in the early development of dynamic and interactive graphics was in graphics display devices.

Only B/W, but for the first time, dynamic displays became possible.

By the late 1950s, pen-like input devices allowed rudimentary direct interaction

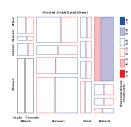
1975-present

Technology:


- Progressively more powerful computation & graphics
 - Mainframes → PCs → workstations → servers → cloud computing
 - pen plotters → CRTs → graphics hardware & firmware
 - stand-alone → client-server architecture
- Internet
 - email \rightarrow bitnet -> file sharing (FTP) \rightarrow www (HTML) \rightarrow Java \rightarrow javascript
 - data: open data initiatives (~1995) → APIs (census, health, ...)
 - eCommerce: Amazon, Netflix, ... \rightarrow BIG data, recommender systems
- Software
 - Graphics packages: SYSTAT, Data Desk, XGobi, ViSta
 - Statistical packages: SAS, SPSS
 - Statistical programming environments: R, matlab, Stata
 - Contributed package archives: CTAN (latex), CPAN (perl), CRAN (R)
 - Collaborative development sites: github, bitbucket, ...

1975-present

Themes in data visualization:


- high-D problems of progressively higher dimensions
 - grand tour: n-D → 2D projections
 - Dimension reduction methods (PCA, MDS, biplots)
- graphics & methods for other data types:
 - categorical, frequency data,
 - networks, trees, ...
 - text (word clouds, ...)
 - spatial data & models
- interactive data vis
 - linked views
 - direct manipulation: select, zoom, filter
 - dynamic graphics & animation

1975-present



1985: Parallel coordinates plots for high-D data-Alfred Inselberg

1991: Mosaic display for visual analysis of log-linear models- Michael Friendly

1996: Cartographic Data

1991-1996: High-interaction systems for data analysis and visualization, e.g., XGobi, ViSta

Tukey: PRIM-9

1973: a group at the Stanford Linear Accelerator developed PRIM-9

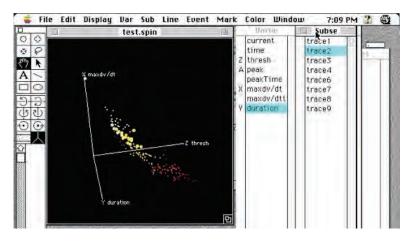
- Picturing, Rotating, Isolation, Masking in up to 9 dimensions
- \$400K graphic display & keypad; computations on a mainframe, \$500/hr

Next steps: Hardware

- Dynamic 3D graphics was painfully slow for larger data sets.
- Specialized 3D graphics hardware:
 - Early 1970s: Simple LSI graphics chips for video games
 - 70s—80s: Graphics co-processors (GPUs) with increasing graphics capabilities
 - 80s—90s: Silicon Graphics develops high-performance 3D graphics workstations

Linking, brushing, 3D rotation

Paul Velleman (~1985): Data Desk provided multiple 1D, 2D, 3D views

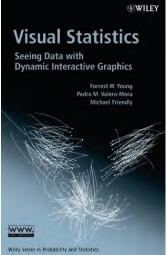

- Brushing: selection of points, regions, ... via mouse
- Linking: Any action in one plot reflected in all others

Software

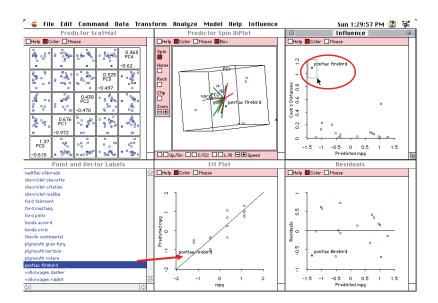
MacSpin – Andrew & David Donoho (1984—85). At ASA meetings 1986, "dynamic graphics became as portable as a 25-lb Macintosh"

Visual Statistics

A philosophy & pedagogy for statistics based on dynamic interactive graphics


A theory of object-oriented #datavis software:

- objects (data, model, ...)
- methods (print, plot,)
- manipulating plot objects & dimensions
- spin plots: rotating 3D plots
- spreadplots: dynamically linked views
- workmaps: visual record of analysis steps


Details: https://www.uv.es/visualstats/

See: The History of ViSta: The Visual Statistics System, https://onlinelibrary.wiley.com/doi/full/10.1002/wics.1203

ViSta: Visual Statistics

Conclusions

• Why study the history of data visualization?

"The only new thing in the world is the history you don't know" – Harry S. Truman

"Those who cannot remember the past are condemned to repeat it."— **George Santayana** (*The Life of Reason*, 1905)

"No scientific discovery is named after its original discoverer" – Stigler's Law of Eponomy (1980). But: originally due to Merton!

- Today:
 - Narrow, specialized work in many fields
 - New methods "invented" and re-named w/o knowing history.
 - mosaic displays: Georg von Mayr (1877)
 - heatmaps: Loua (1873); Brinton (1914), Bertin (1967)
 - Nightingale (1859) rose diagram: polar diagrams by Guerry (1829), Lalanne (1843)

68

Summary

- Data Visualization has deep & wide roots:
 - Cartography: map-making, geo-measurement, thematic cartography, GIS, geo-visualization
 - Statistics: probability theory, distributions, estimation, models, stat-graphics, stat-visualization
 - **Data**: population, economic, social, moral, medical, ...
 - Visual thinking: geometry, functions, mechanical diagrams, EDA, ...
 - Technology: printing, lithography, computing...
- Problem driven: developments often driven by practical and theoretical problems of the day
- Communication driven: developments often arose from a desire to communicate better