

History of Data Visualization

Michael Friendly

Psych 6135

https://friendly.github.io/6135

Outline

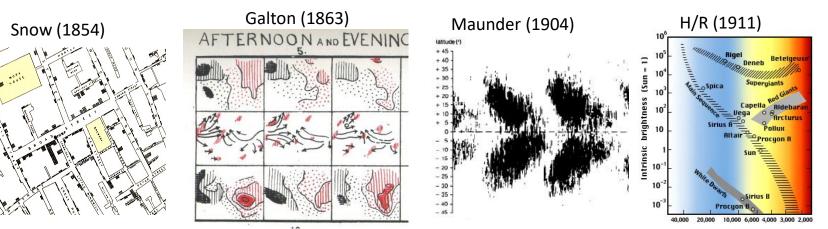
- Overview:
 - Roles of graphics in scientific discovery
 - Visualizing history: The Milestones Project
- Milestones tour of the history of data vis
 - Pre-history of visualization
 - The first statistical graph
 - The Big Bang: William Playfair
 - Influence of data, technology & visual thinking
- Other topics (later):
 - Moral statistics: the birth of social science
 - Graphs in the public interest: Nightingale, Farr and Snow
 - The Golden Age of statistical graphics

Orienting questions

History in context

What motivated graphical inventions?

How does it relate to other developments?

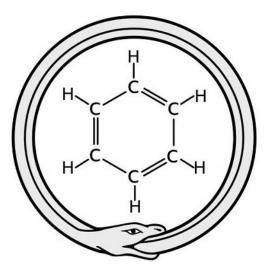

• What were the pre-cursors?

What was the communication goal?

How has this idea been used or reinvented today?

Orienting Q: Visualization-based discoveries ??

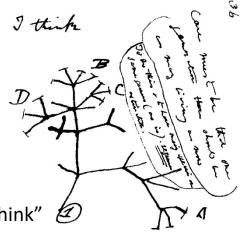
- When have graphics led to discoveries that might not have been achieved otherwise?
 - Snow (1854): cholera as a water-borne disease
 - Galton (1883): anti-cyclonic weather patterns
 - E.W. Maunder (1904): 11-year sunspot cycle
 - Hertzsprung/Russell (1911): spectral classes of stars

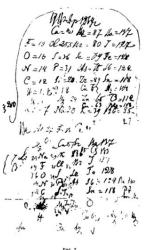

Stars' surface temperature (K)

Orienting Q: Visualization-based discoveries ??

- In the history of graphs, what features, and data led to such discoveries?
 - What were they thinking??
 - What visual ideas/representations were available?
 - What was needed to see/understand something new?
- As we go forward, are there any lessons?
 - What are the Big Questions for today?
 - How can data visualization help?

Visual thinking & scientific discovery




Dreams and snakes

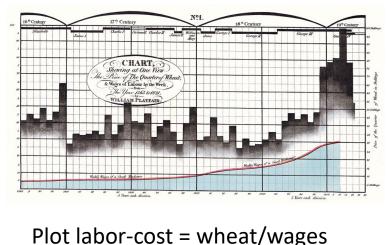
August Kekulé (1862) discovers the structure of benzene in a dream

Tree of evolution

Darwin (1859) imagines generations of species – "I think"

ESSAL D'	UNE S'	YSTEME	DES ÉLE	EMENTS
D'APRES LEURS	POIDS AT	MIQUES ET	FONCTION	S CHIMIQUES,
	par D	Mend	eleeff,	
protes	s. de l'U	nivers. à S	- Petersbo	urg.
		Ti = 50	Zr = 90	? = 180.
		V = 51	Nb = 94	Ta = 182
		Cr = 52	Mo= 96	W = 186
		Mn -= 55	Rh = 104	• Pt = 197.•
		Fe = 56	Ru = 104	4 lr = 198
	Ni	= Co == 59	PI = 106	6 Os = 199.
H == 1		Cu = 63,4	Ag = 108	Hg = 200
		Zn = 65.2		
		· ?=68		Au = 197?
		2 = 70		
N = 14	P = 31	As = 75	Sb = 122	Bi = 210?
		Se=79,4		6
		> Br = 80		
$L_1 = 7 N_2 = 23$		Rb = 85,4		
	Ca = 40	Sr = 87,6	Ba = 137	Pb = 207.
		Ce = 92		
	?Er56			
	小=60			
	35 = 750	$Th = 118^{9}$		

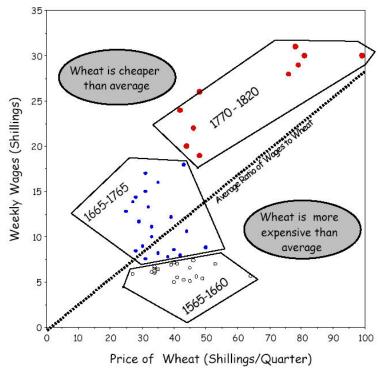
18 18 69


Solitaire and the periodic table

Mendeleev (1869) organized chemical elements after a mental image of cards on a table.

See: <u>https://medium.com/@michael.friendly/visual-</u> thinking-graphic-discoveries-128468677592

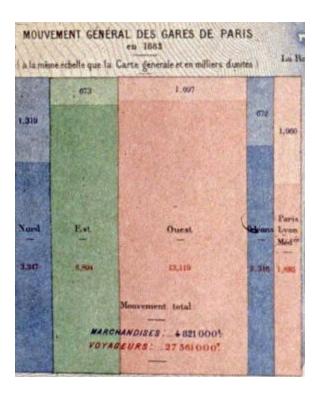
How to study #dataviz history?

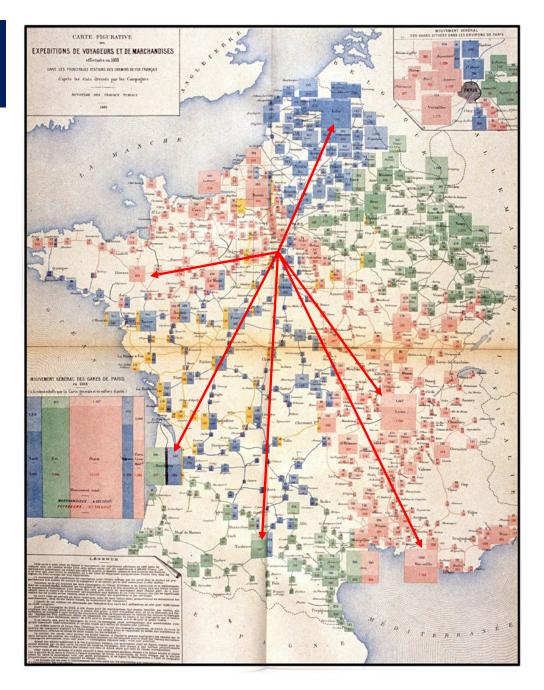

Re-Visioning: Understand historical graphs by re-creating from a modern perspective

12 Labor cost of a Quarter of Wheat (weeks) 9 Chart Shewing at One View Work Required to Purchase One Quarter of Wheat from 1865 to 1821 N 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 Year

What was he thinking? What was the audience? Could we do it better/differently today?

Annotated scatterplot


Playfair: Price of wheat & wages



Why study history of #datavis?

Those who don't know history are doomed to plagiarize it.

Recursive mosaic: Distribution of passengers and goods from the Paris railways to the rest of France [*Album*, 1884, pl. 11]

Quest for the Albums

- British library, BNF, Library of Congress: just a few copies
- Richard Langdon, U of T Fisher Rare Book Library: check out this bookshop, 3 rue des Beaux Arts, Paris
 - A complete set: all albums 1879 1899!
- Les Chevaliers
 - Collective purchase, owned by all, each held "in trust" by one member
 - "chevaliers": Foster a spirit of collegial study of history of data visualization & thematic cartography
 - Conference sessions: RC33 (Cologne, 2000), GFKL (Dortmund, 2004), JSM (Toronto, 2004), ...
 - Regular "Chevalier Lunch"

Les Chevaliers des Albums

Antoine de Falguerolles

Antony Unwin

Ian Spence

Howard Wainer

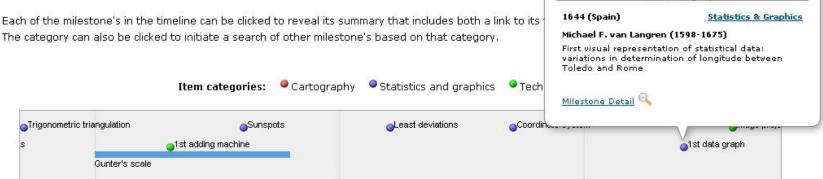
Michael Greenacre

RJ Andrews

Sandra Rendgen

Stephen Stigler

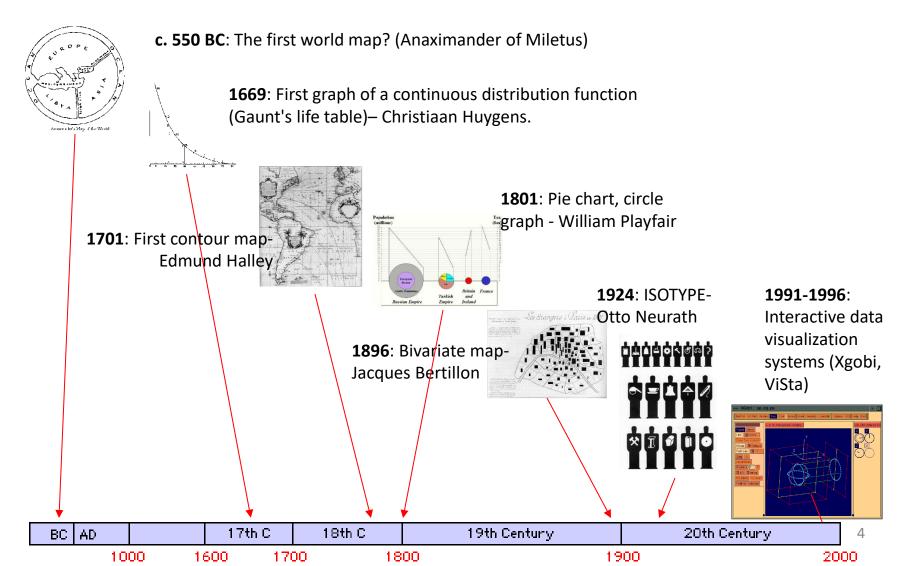
David Rumsey

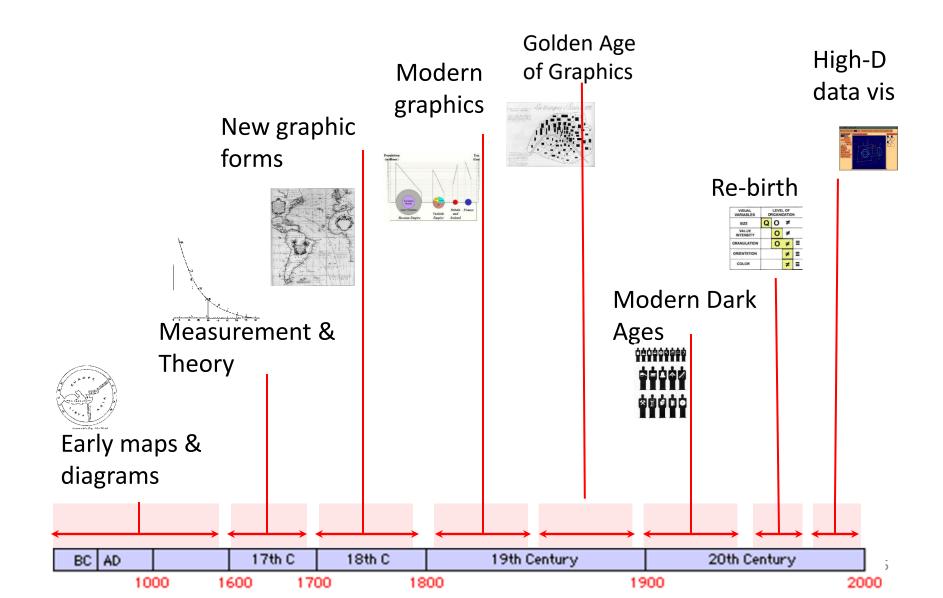


The Milestones Project

Milestones in the History of Thematic Cartography, Statistical Graphics, and Data Visualization An illustrated chronology of innovations by Michael Friendly and Daniel J. Denis	
🔒 Introduction Milestones Project Varieties of Data Visualization Related References Keyword Index	Search 🕑
Pre-1600 1600s 1700s 1800+ 1850+ 1900+ 1950+ 1975+	

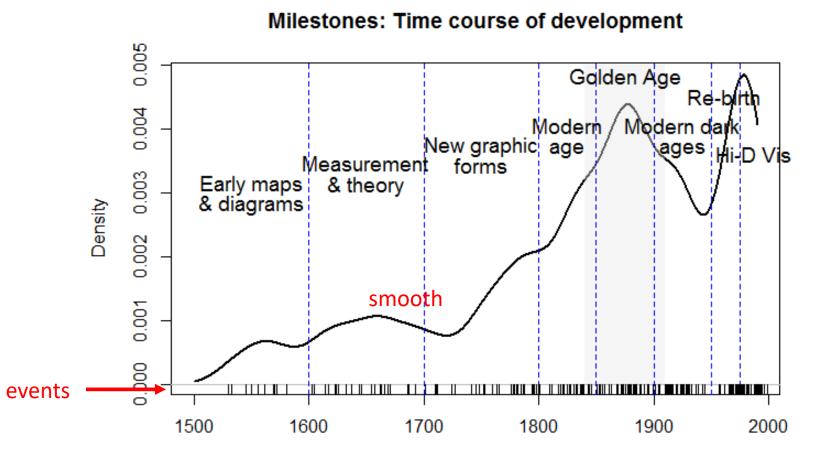
Timeline


This page provides a graphic overview of the events in the history of data visualization that we call "**milestones**." These milestones are shown below in the the form of an interactive timeline. The timeline is divided into two vertical sections. You can drag each section left or right to see milestones of different time periods. You can also click one of the links at the bottom of the timeline to jump to a particular epoch **1st data graph**


The web site: <u>http://datavis.ca/milestones</u> has an interactive timeline, allowing different kinds of search

Milestones: Content Overview

Every picture has a story – Rod Stewart



Milestones Tour: Epochs

Statistical historiography

Historical information, suitably organized can be treated as data, and analyzed. This plot shows a smoothed frequency distribution of 248 milestones items over time, in relation to the named time periods.

Prehistory of visualization

Lascaux Cave, ~ 15000 BCE, the "Sistine Chapel of pre-historic art"

Lascaux II, Main chamber

Lascaux: What were they thinking?

Lascaux II, Chamber of the Bulls

• Visual features:

show perspective, a sense of motion, rich use of color & texture

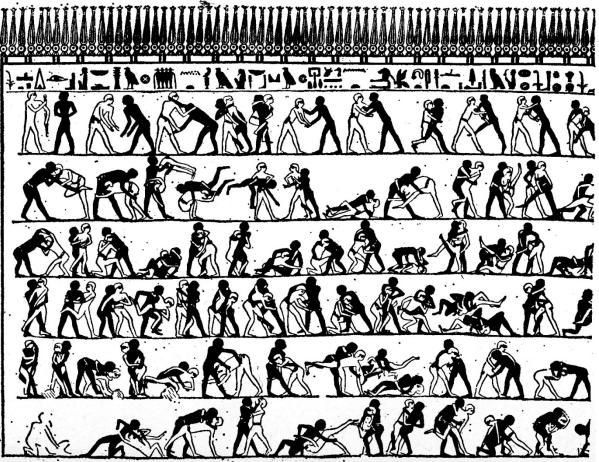
• What was the purpose?

- Hunting success? NO (they hunted reindeer)
- mostly symbolic visual language, story of communal myths

How to understand them?

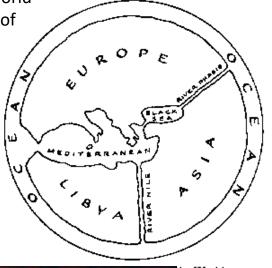
- A cognitive revolution: evidence for the modern human mind in Cro Magnon man
- inner vision, visual thinking, mental imagery– a gleam in the mind's eye
- Other cave art [20000BC 10000BC]: Altamira (Spain); Chauvet (France), Cueva de las Manos (Argentina), ...

Prehistory: Diagrams, graphic stories


Early Egyptian animated graphic diagram

Wrestling scene on east wall, tomb of Baqt at Beni Hasan (ca. 2000 BCE).

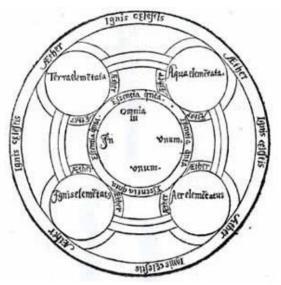
A visual explanation of a wrestling match


Anticipates modern graphic novels

Why? Perhaps Baqt's last lesson as a wrestler in his youth and later as a coach

Pre 17th C.: Early maps & diagrams

c. 550 BC: The first world map? (Anaximander of Miletus)


1350: Bar graph of theoretical function N. Oresme, France

D.flöriť Diffotis

1305: Mechanical diagram of knowledge- Ramon Llull, Spain

the World

1375: Catalan Atlas, an exquisitely beautiful visual cosmography, perpetual calendar, and thematic representation of the known world- Abraham Cresques, Spain

BC AD		17th C	18th C	19th Century	20th Century	20
	1000	1600 1	700 18	00 19	900 20	00

1350: Bar graphs of theoretical functions Nicole Oresme, France

Idea to visualize phenomena (speed of moving objects, expansion of heated rods) by 2 dimensions (latitude & longitude)

His diagrams considered the different forms these could take.

 \rightarrow Proto bar chart

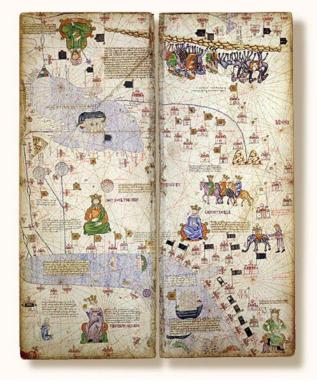
If Oresme had data, we might have had bar charts 350 years before Playfair

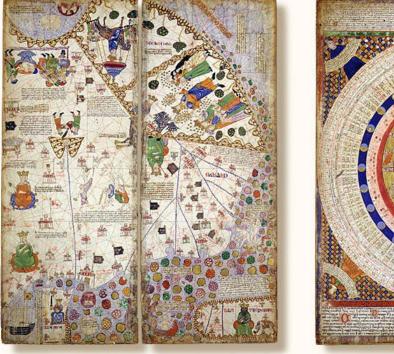
On the Latitude of Forms

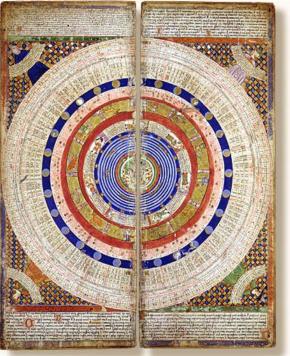
bifformis vniformiter variatio reddit vnifor fcip. z fiaf ad ing mater Difformater Difformes. [Latin: vni form i omoris c ils q inf escellus graduuz cá binanus fust cáde pportos e la me p. portoe equatio. Thá a un excellus graduus D.fforie Difforie inter ie eq outantin fuarent poortoj equita tis uc cci anta? viuformie Difictis ut Di et Diffuncionibus membrorum lecude publicis Rurlus il nulla proporcio feruat tunc nulla Dollet attendi visiormitas in latindine tali t DF) Dr. Ditofie fic non effet mitomiter Difioim i Difformis TLutu: offormiter D.fformiter Difformis Eilla g inter e. cellus gradui eque oistentius non ieruat candem proportionem licu. in fe cunda parte patebit. Thorandum tamen eft o ficur in fupradictis Diffuntoib9 ubi logtur De excellu graduum inter le eque outantium Debs accipi putancia fcom partes latitudinis ertélue z no intélue via ut loquint o.c.e oif finitoca à piffatia Sdui fituali n aut graduali

Equif scoa po in qua ut supradiera intelligation ad fenluz per l'iguras gcome tricas oftenduntur. Et ut omnem fpcciem lanudig in presenti materia via oc

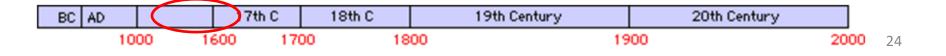
currat apparentior i-fitudies ad figuras aco metcas e oplicant. gita po oiuidif p tria ca Pitula que p" prinet Dionco.z" fuppolito.s


	_	-				_				-
BC /	AD	$ \rightarrow $		/	17th C		18th C	19th Century	20th Century	.2
		100	0	10	600 1	700	18	00 190	00 2	2000

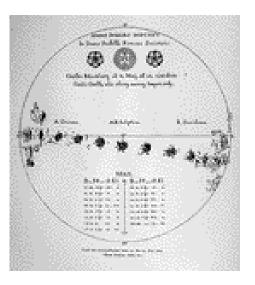

1375: Catalan Atlas, an exquisitely beautiful visual cosmography, perpetual calendar, and thematic representation of the known world- Abraham Cresques, Majorca, Spain [BNF: ESP 30]

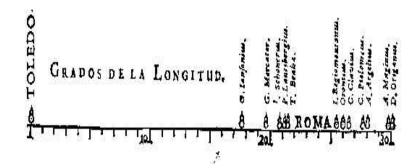

Western world

Eastern world (Marco Polo)

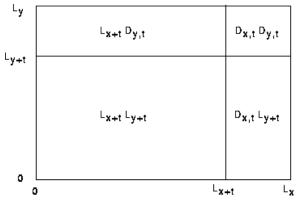

Perpetual calendar

BC AD		17th C	18th C	19th Century	20th Century]	
	1000	1600 1	700 18	300 19	900 20	00	23


1600-1699: Measurement and Theory


- The 17th century saw growth in theory and the dawn of attempts at visualization.
- Featured in this were:
 - rise of analytic geometry: (x, y) coordinates (Descartes, 1637),
 - theories of errors of measurement: astronomical observations (perfected by Laplace, ~ 1774)
 - the birth of probability theory-- games of chance, annuities (Fermat, DeMoivre, ... ~ 1650),
 - automatic graphic recording (Scheiner, 1626)
 - the first graphical representations of statistical data (van Langren, 1644)

1600-1699: Measurement and Theory


1626: Visual representations used to chart the changes in sunspots over time-Christopher Scheiner

1644: First visual representation of statistical data-M.F. van Langren, Spain

1669: First graph of a continuous distribution function (Gaunt's life table)– Christiaan Huygens.

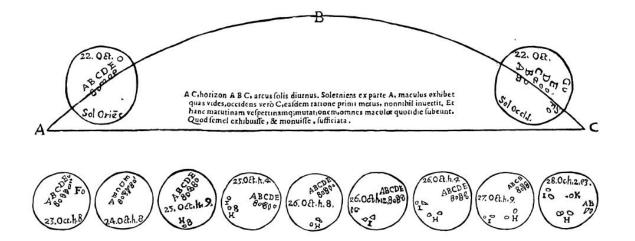
1693: First use of areas of rectangles to display probabilities of independent binary events-Edmund Hallev. England

BC AD		17th C	18th C	19th Century	20th Century		25
10	00 1	600 17	700 1	800 19	900 ::	2000	20

Sunspots: Galileo

1608: telescope (Hans Lippershey, NL)

1610: Galileo (Sidereus Nuncius)

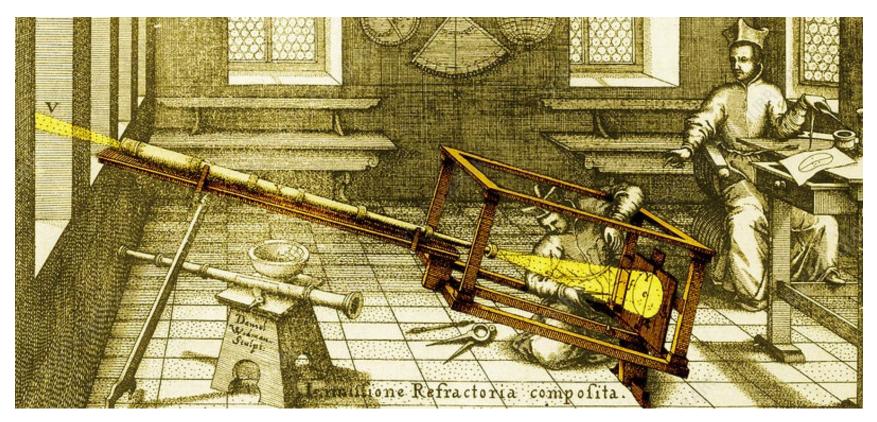


1611: Galileo records **movement** of sunspots over time (*Three letters on sunspots*, 1613)

Visual ideas:

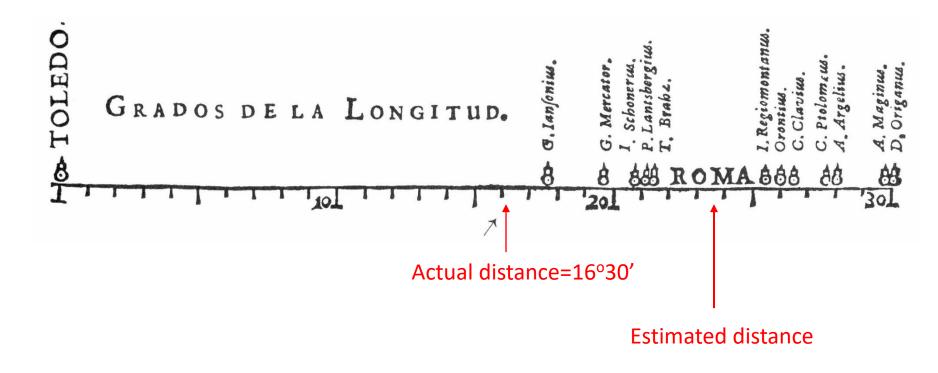
- •Animated graphic
- "Small multiples"
- •Allows comparison
- •Self-explaining diagram

A+ for info design!


The idea of diagrams for visualizing phenomena had arrived.

Scheiner: systematic recording

: Christoph Scheiner invents helioscope & camera obscura to record sunspots (*Rosa Ursina sive Sol*, 1626-1630)



Why the 1st statistical graph got it right

1644: First visual representation of statistical data: determination of longitude between Toledo and Rome- Michael Florent van Langren, Spain

BC	AD	17th i		18th C	19th Century	20th Century	
	10	600	1700	18	00 19	00 2	000

What else could he have done?

- What would occur to men of his time to convey a message to the king?
- ... he could used a *table* have sorted by *year* to establish *priority* (or show change).

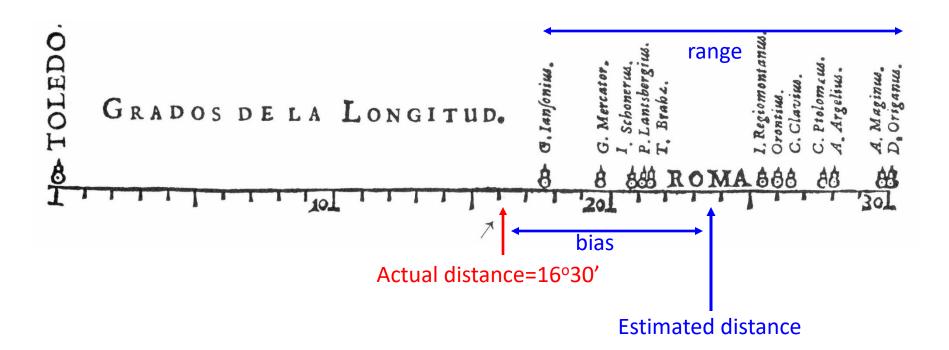
Sorted by Priority

Year	Name	Longitude	Where
150	Ptolomeus, C.	27.7	Egypt
1471	Regiomontanus,	25.4	Germany
1501	lanfonius, G.	17.7	
1530	Lantsbergius, P.	21.1	
1536	Schonerus, I.	20.8	Germany
1541	Argelius, A.	28.0	
1542	Ortonius	26.0	France
1567	Mercator, G.	19.6	Flanders
1567	Clavius, C.	26.5	Germany
1578	Brahe, T.	21.5	Denmark
1582	Maginus, A.	29.8	Italy
1601	Organus, D.	30.1	

he could have sorted
by <i>name,</i> to show
authority.

Name	Longitude	Year	Where
Argelius, A.	28.0	1541	
Brahe, T.	21.5	1578	Denmark
Clavius, C.	26.5	1567	Germany
lanfonius, G.	17.7	1501	
Lantsbergius, P.	21.1	1530	
Maginus, A.	29.8	1582	Italy
Mercator, G.	19.6	1567	Flanders
Organus, D.	30.1	1601	
Ortonius	26.0	1542	France
Ptolomeus, C.	27.7	150	Alexandria
Regiomontanus, I.	25.4	1471	Germany
Schonerus, I.	20.8	1536	Germany

Sorted by Longitude


 ... he could have sorted by *longitude* to show the *range*.

	Longitude	Name	Year	Where
4	17.7	G. lanfonius	1501	
	19.6	G. Mercator	1567	Flanders
	20.8	I. Schonerus	1536	Germany
	21.1	P. Lantsbergius	1530	
	21.5	T. Brahe	1578	Denmark
	25.4	I. Regiomontanus	1471	Germany
	26.0	Orontius	1542	France
	26.5	C. Clavius	1567	Germany
	27.7	C. Ptolomeus	150	Egypt
	28.0	A. Argelius	1541	
	29.8	A. Maginus	1582	Italy
	30.1	D. Organus	1601	

Only a graph shows...

- central location
- bias
- name labels
 – avoiding overplotting

- wide variability
- clustering, detached observations

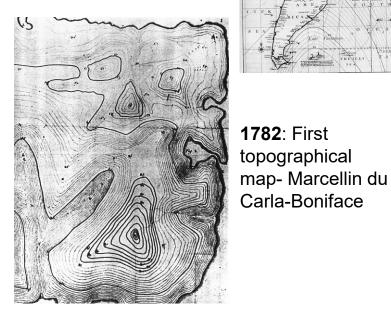
See: Friendly, M., & Kwan, E. (2003). Effect Ordering for Data Displays. *Computational Statistics and Data Analysis, 43*(4), 509—539; Friendly etal (2010),The First (Known) Statistical Graph: Michael Florent van Langren and the ``Secret'' of Longitude *The American Statistician, 64*, 185-191

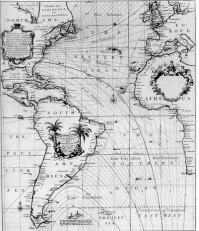
1700-1799: New graphic forms

- The 18th century witnessed the germination of the seeds of visualization & visual thinking, planted earlier.
- Map-makers began to try to show more than just geographical position-- the beginnings of thematic mapping of physical quantities
 - topographical maps
 - iso- contour maps

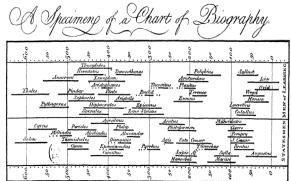
New graphic forms were invented:

- bar chart,
- line chart,
- timelines

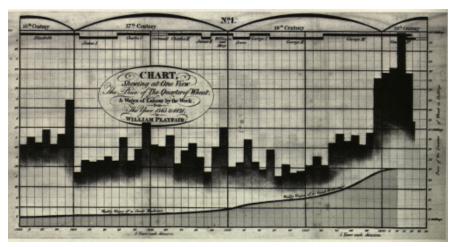

The Big Bang (Playfair)



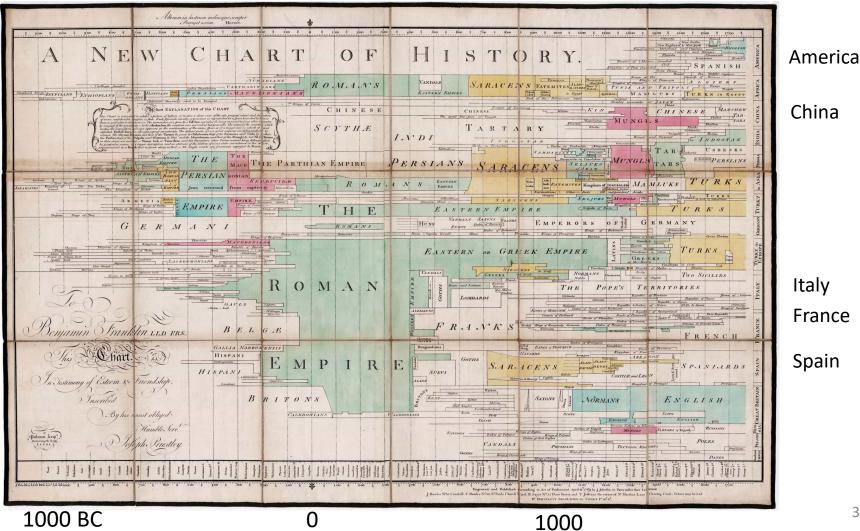
BC A	AD .		17th C	18th C	19th Century		20th Century	3
	100	00 16	500 17	00 1	1800	1900	20	00


1700-1799: New graphic forms

1701: Isobar map, lines of equal magnetic declination – Edmund Halley

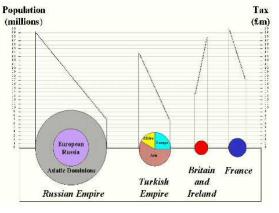


1765: Historical time line (life spans of famous people) Joseph Priestley

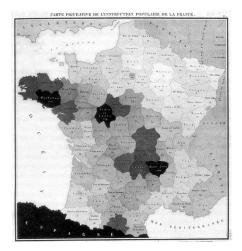

1786: Bar chart, line graphs of economic data-William Playfair

BC /	AD	17t	hC 🤇	18th C	19th Century	20th Century	34
	1000	1600	1700	1800	19	00 20	000

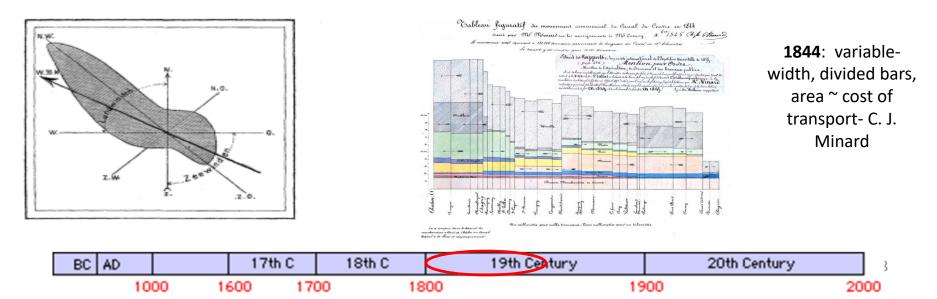
: Visualization of the history of civilizations & empires over ~3000 years --Joseph Priestley


1800-1849: Beginning of modern data graphics

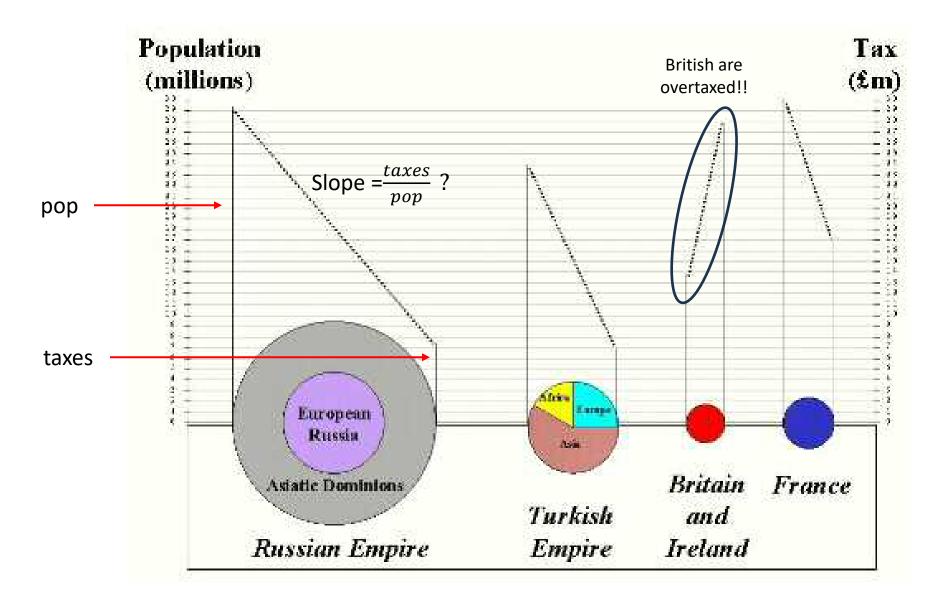
- The first half of the 19th century witnessed an explosive growth in statistical graphics and thematic mapping
 - Polar coordinates, log axes
 - Shaded (choropleth) maps of social data (literacy, crime)
- The birth of data: widespread national collection of data on social and medical issues
 - France: data on crime, literacy, prostitution, ... collected centrally
 - England: Births, deaths, disease mortality collected by Registrar General (William Farr)
 - US: Census Bureau tracks population by race, ethnicity; resources, trade, ...


BC AD		17th 0		18th C		19th Century	20th Century	7
	000	1600	1700	1	800	19	00	2000

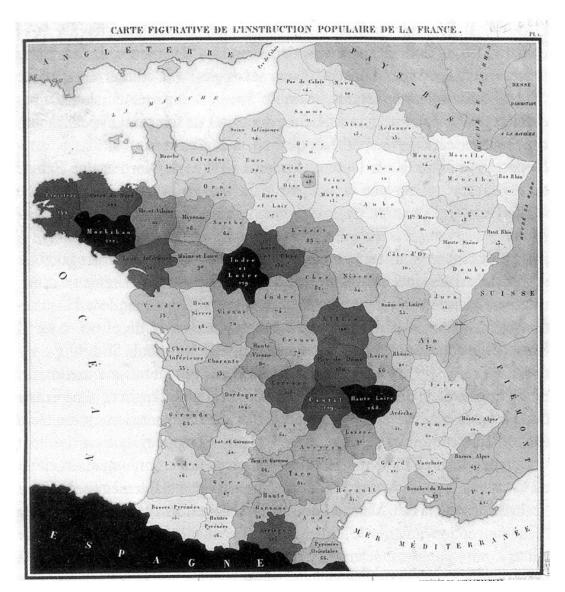
1800-1849: Beginning of modern data graphics


1801: Pie chart, circle graph invented- William Playfair

1826: First modern statistical map (illiteracy in France)- Charles Dupin

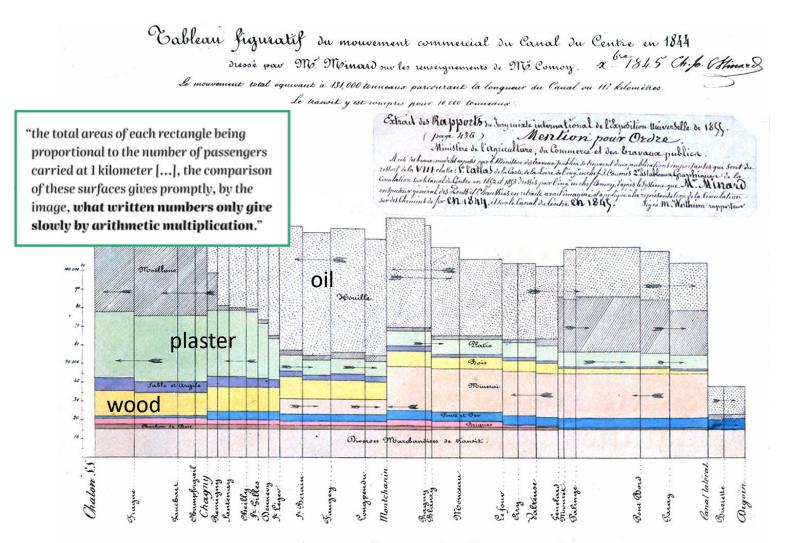


1843: Wind-rose (polar coordinates)- L. Lalanne



1801: Pie chart, circle graph invented- William Playfair (But with a graphic sin & fallacy – What are they?)

1826: The 1st choropleth map, showing the distribution of literacy in France – Baron Charles Dupin

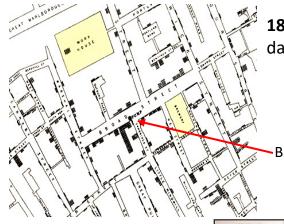


Social variables became:

- visual
- subject to scientific discussion

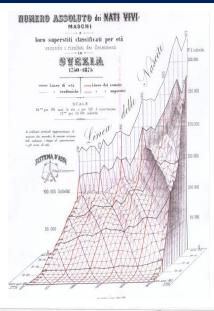
1844: *Tableau-graphique*: variable-width, divided bars, area ~ cost of transport- Charles Joseph Minard

Un millimette pour mille tonneaux - Prois millimettes pour un kilomètre.


On a compris dans le transit les marchandises allant de Châlon au Canal latieral à la Loire et réciproquement.

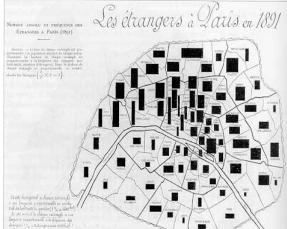
1850-1900: Golden Age

- By the last half of the 19th century the conditions for rapid growth of visualization had been established:
 - widespread data collection for planning, commerce, social theory
 - the beginnings of statistical theory and visual thinking
 - a wide range of graphic forms, reasonably well understood
 - technology:
 - lithography and color printing
 - automatic recording devices
 - calculation: machines & graphical calculators
- The result was a perfect storm-- among the most exquisite graphics ever produced.


1850-1900: Golden Age

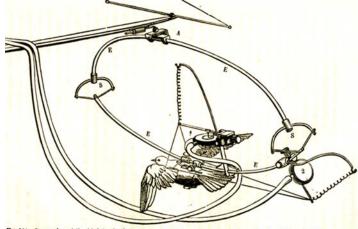
1855: Dot map of disease data (cholera)- John Snow

Broad St. pump


1879: Stereogram (3D population pyramid)- Luigi Perozzo

1884: Recursive multimosaic on a map-Emile Cheysson

1896: Area rectangles on a map to display two variables and their product- Jacques Bertillon


BC	AD		17th C	18th C	19th	Century		20th Century	
		00 1	600 17	00 18	00		1900		2000

E.-J. Marey: La Méthode Graphique

- First textbook of graphics
- How to make human and animal motion subject to precise scientific study?
- e.g., aerial locomotion of flying insects & birds
 - What is the frequency of wings of different species?
 - What are the mechanisms of wings to produce lift and forward motion?

A harness, designed to register the trajectory, force and speed of a bird's wing in flight

Marey (1870) Animal Mechanism

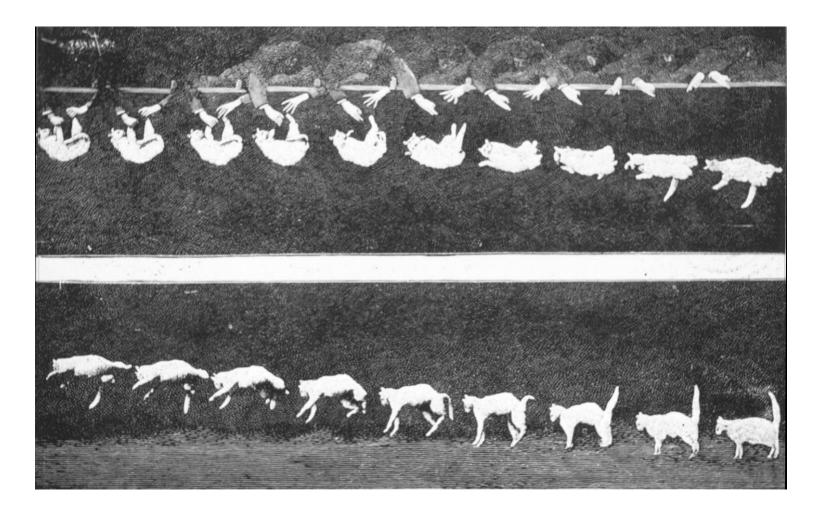
Fio. 104.—Suspension of the bird in the instrument. E E E E an ellipse of metal capable of oscillating freely in every direction, by means of the double suspension A. S S, india-nubber supports allowing the lower part of the ellipse to oscillate in the vertical direction. The suspensiony apparatus is fixed on the back of the pigcon. The leverdrum (i) receives the movements executed by the wing in a vertical direction. The lever-drum (2) receives those of the horizontal movements.


E.-J. Marey: Chronophotography

Rather than separate frames, Marey's "fusil photographique" allowed one to see motion continuously in a single static image.

This provides a visual analysis of a sprint:

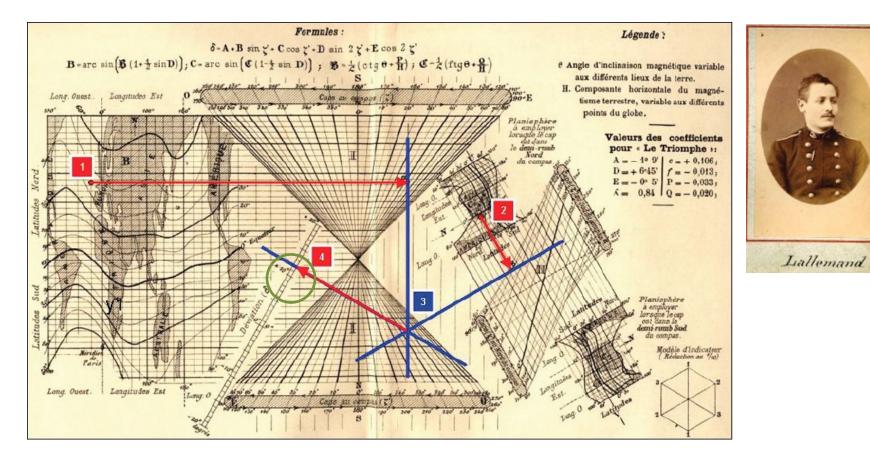
- The runner takes about ½ second (8 frames) to make it to an upright position
- Successive frames alternate between power push from the hind leg to landing on the opposite leg



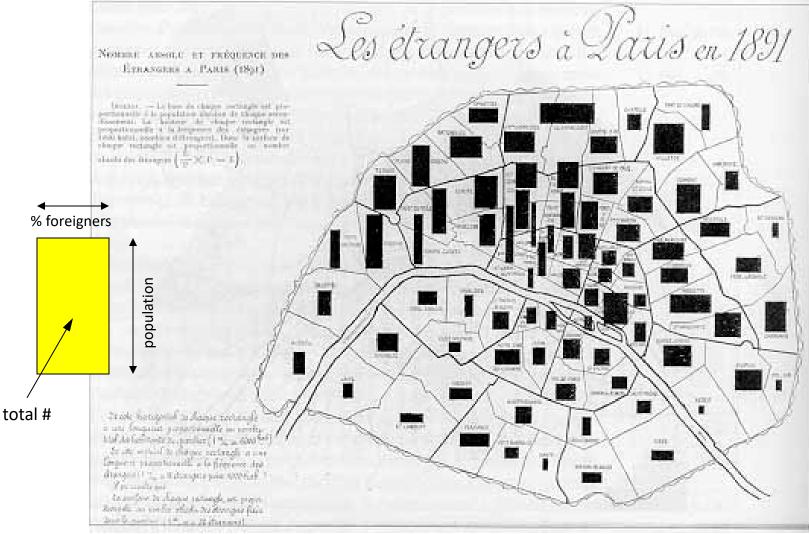
Source: https://lightsmellsloud.wordpress.com/tag/etienne-jules-marey/

The Falling Cat Problem

Another fundamental problem answered by chronophotography:


• How does a falling cat usually land on her feet? An OMG moment!

Nomography


1885: Charles Lallemand, graphical calculator for compass course corrections of a ship at sea

Combines: anamorphic maps, hexagonal coordinates, trigonometric scales (5 eqns)

: Area rectangles on a map to display two variables and their product-Jacques Bertillon

1900-1949: The Modern Dark Ages

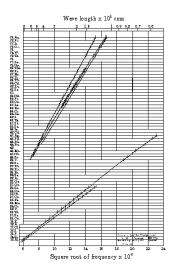
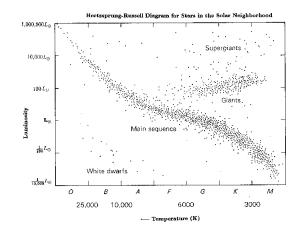
- By the 1930s, the growth of statistical methods supplanted enthusiasm for graphics
 - There were few graphic innovations
 - In statistics: numbers were precise; graphs were just "pretty pictures"
- But graphical methods had entered the mainstream & were popularized
 - Text books, college courses
- There were several graphic-based scientific discoveries
- Electronic computers were born

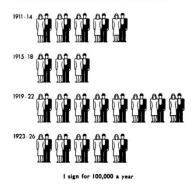
BC	AD		17th C	18th C	19th Century		20th Century	
	1.00	00 1)		00 18	:00	1900		2000

1900-1949: The Modern Dark Ages

1914: Brinton: *Graphic Methods for Presenting Facts*

1913: Discovery of atomic number, based on graphical analysis- H. Mosely

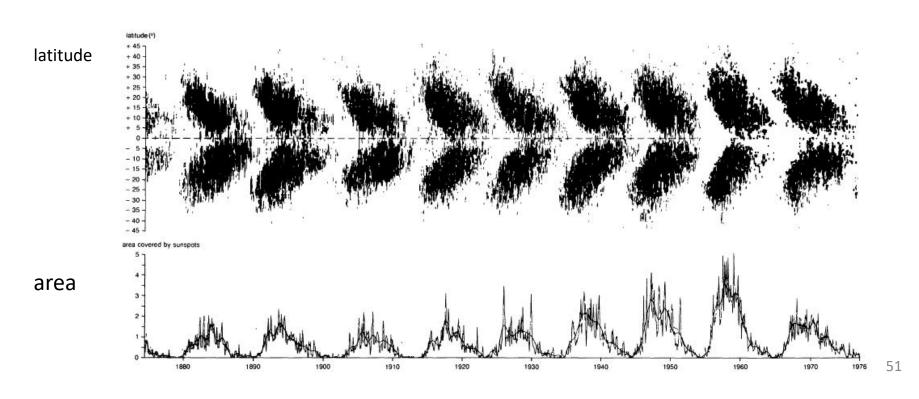

Fig. 33. Rank of States in Rach of Ten Educational Prentures, 1910. White Indicate that the State Ranks in the Highest 12 of the 45, Light Stading that it Rank in Second 12, Derk Shading that it Ranks in Third 13, and Black that it Ranks in Lowest 12.

1911-1913: The Hertzsprung-Russell diagram & evolution of stars

1924: ISOTYPE method of pictorial graphics—Otto Neurath

Men Getting Married in Germany in a Year

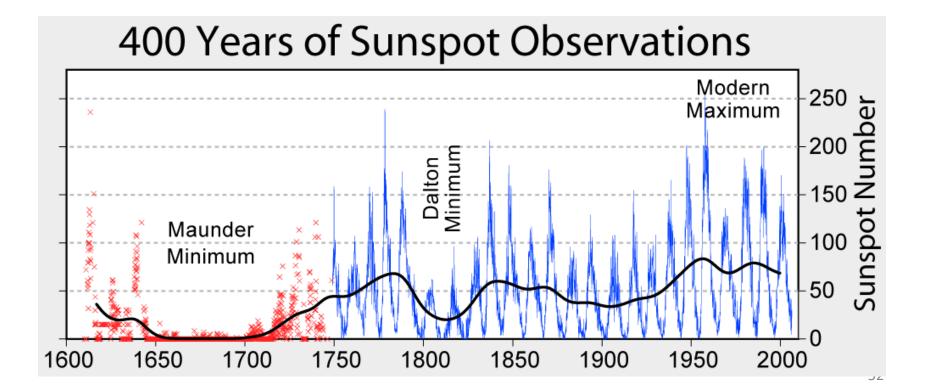
1944: Harvard's Mark I, the first digital computer- Howard Aiken, Grace Hopper



Maunder: Butterfly diagram

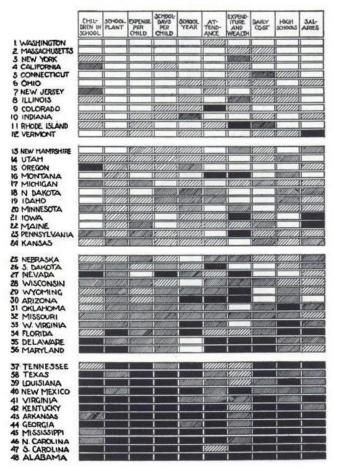
1904: E.W. Maunder plots distribution of sunspots in sun's latitude by time

• Discovery of 11-year sunspot cycles (& 22-yr: reversal of sun's magnetic field)

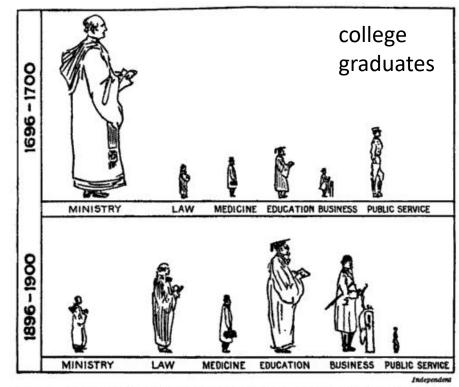


Maunder: Butterfly diagram

1904: E.W. Maunder plots distribution of sunspots in sun's latitude by time


- Discovery of "Maunder minimum" (1645-1715): "Little Ice Age"
- Smoothing reveals other extrema

1914: Willard C. Brinton publishes *Graphic Methods for Presenting Facts*, the 1st popular book on the topic


heatmap

TEN TESTS OF EFFICIENCY

Fig. 33. Rank of States in Each of Ten Educational Features, 1910. White Indicates that the State Ranks in the Highest 12 of the 48, Light Shading that it Ranks in Second 12, Dark Shading that it Ranks in Third 12, and Black that it Ranks in Lowest 12

pictogram

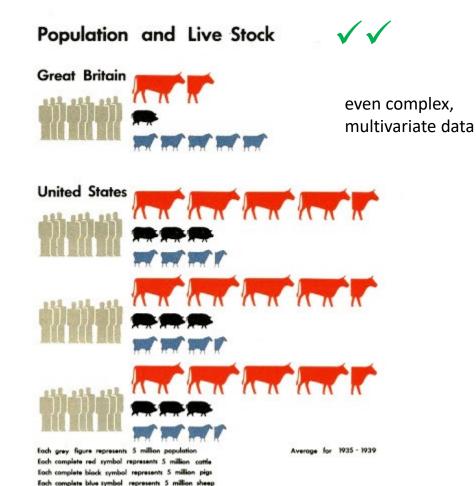


Fig. 39. Proportion of College Graduates in Different Professions in 1696-1700 and in 1896-1900

Charts of this kind with men represented in different sizes are usually so drawn that the data are represented by the height of the man. Such charts are misleading because the area of the pictured man increases more rapidly than his height. Considering the years 1696–1700, the pictured minister has about two and onehalf times the height of the man representing public service. The minister looks over-important because he has an area of more than six times that of the man drawn to represent public service. This kind of graphic work has little real value

1924: Otto Neurath developed the Isotype (International System of Typographic Picture Education) method to communicate statistical information to the broad public in an intuitive, pictorial way.



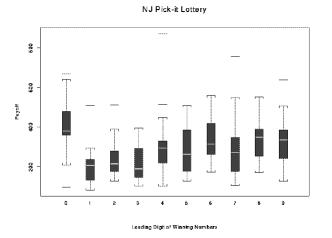
NOT pictograms X 1926 1920 1925 1915 1910 Men Getting Married in Germany in a Year 1911.14 1915-18 \checkmark 1919.22 1923 26 I sign for 100,000 a year

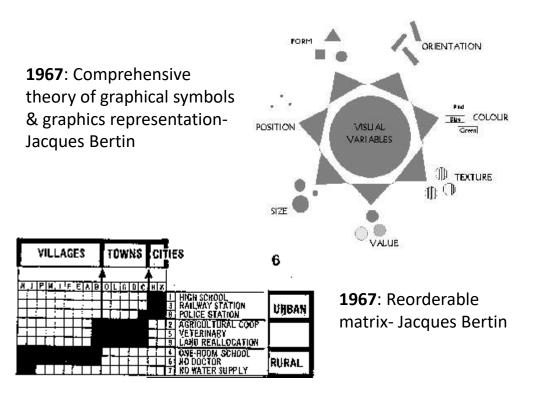
145

John W. Tukey

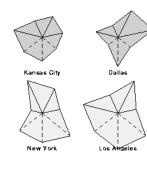
EXPLORATORY DATA ANALYSIS

VISUAL	LEVEL OF ORGANIZATION				DEPLOYMENT MODE				
VARIABLES					PUNCTUAL			LINEAR	ZONAL
SIZE	Q	0	≠		•	٠	٠	~~	$ \cdots\rangle/ $
VALUE INTENSITY		0	¥		0	۲	•		
GRANULATION		0	¥	≡		۵	۵		
ORIENTATION			¥	≡	1	1	-	ATTER STORE	
COLOR			≠	≡	•	•	0	~~~	
FORM			¥	Ξ		•			

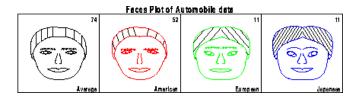

1950-1974: Re-birth of graphics


- Visualization began to rise from dormancy in the mid 1960s, spurred largely by:
 - J. W. Tukey's *Exploratory Data Analysis*: The power of graphics to show the unexpected in data analysis
 - Jacques Bertin's Semiologie Graphique: A general theory of composing graphs and maps
 - computer hardware for computation and display
 - the advent of statistical and graphics software

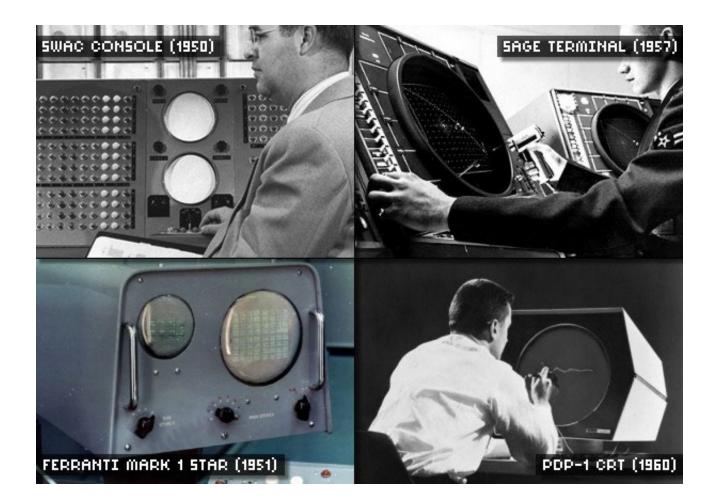
	BC AD)	17th C	18th C	19th Century	20th Ce xtury 5
_		1000 1	600 17	00 18	00 19	00 2000


1950-1974: Re-birth of graphics

1969: Graphical innovations for EDA (stemand-leaf, box-plots, etc.)- J.W. Tukey



Multivariate glyphs



1971: Star plots- J. H. Siegel etal 1973: Face plots- Herman Chernoff

Digital display devices

The biggest limitation in the early development of dynamic and interactive graphics was in graphics display devices.

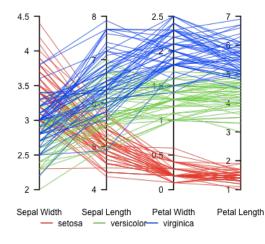
Only B/W, but for the first time, dynamic displays became possible.

By the late 1950s, pen-like input devices allowed rudimentary direct interaction

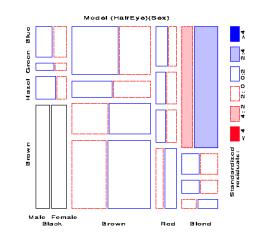
1975-present

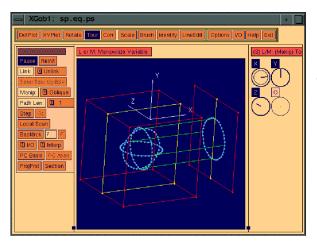
Technology:

- Progressively more powerful computation & graphics
 - Mainframes \rightarrow PCs \rightarrow workstations \rightarrow servers \rightarrow cloud computing
 - pen plotters \rightarrow CRTs \rightarrow graphics hardware & firmware
 - stand-alone \rightarrow client-server architecture
- Internet
 - email \rightarrow bitnet -> file sharing (FTP) \rightarrow www (HTML) \rightarrow Java \rightarrow javascript
 - data: open data initiatives (~1995) \rightarrow APIs (census, health, ...)
 - eCommerce: Amazon, Netflix, ... \rightarrow BIG data, recommender systems
- Software
 - Graphics packages: SYSTAT, Data Desk, XGobi, ViSta
 - Statistical packages: SAS, SPSS
 - Statistical programming environments: R, matlab, Stata
 - Contributed package archives: CTAN (latex), CPAN (perl), CRAN (R)
 - Collaborative development sites: github, bitbucket, ...

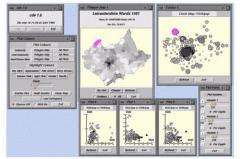

1975-present

Themes in data visualization:


- high-D problems of progressively higher dimensions
 - grand tour: $n-D \rightarrow 2D$ projections
 - Dimension reduction methods (PCA, MDS, biplots)
- graphics & methods for other data types:
 - categorical, frequency data,
 - networks, trees, ...
 - text (word clouds, ...)
 - spatial data & models
- interactive data vis
 - linked views
 - direct manipulation: select, zoom, filter
 - dynamic graphics & animation


1975-present

Parallel coordinate plot, Fisher's Iris data


1985: Parallel coordinates plots for high-D data-Alfred Inselberg **1991**: Mosaic display for visual analysis of log-linear models- Michael Friendly

1991-1996: High-interaction systems for data analysis and visualization, e.g., *XGobi*, *ViSta*

1996: Cartographic Data Visualiser – Jason Dykes

60

Tukey: PRIM-9

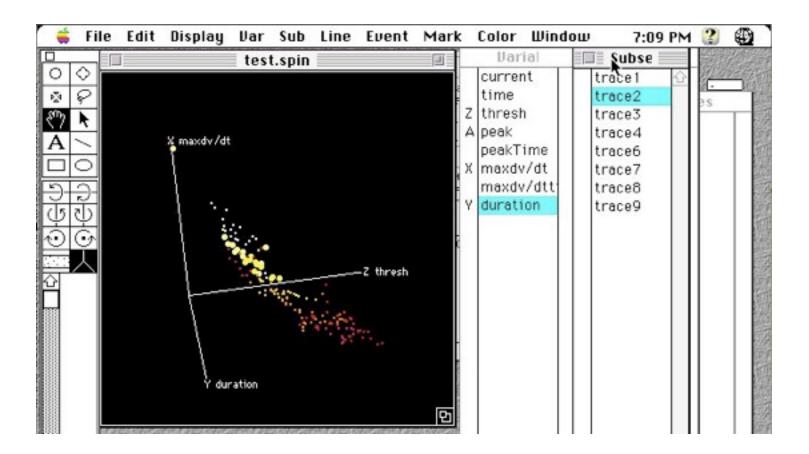
1973: a group at the Stanford Linear Accelerator developed PRIM-9

- Picturing, Rotating, Isolation, Masking in up to 9 dimensions
- \$400K graphic display & keypad; computations on a mainframe, \$500/hr

PRIM-9 Movie: https://www.youtube.com/watch?v=sN2gCCd2Rr8

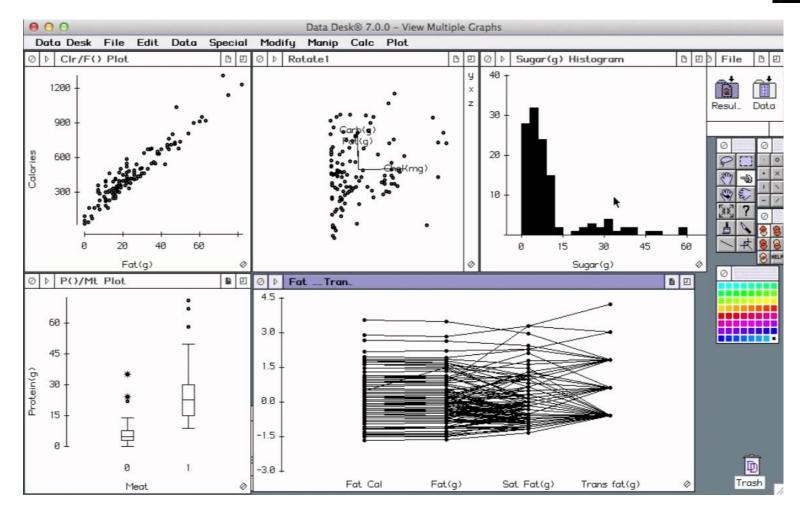
Next steps: Hardware

- Dynamic 3D graphics was painfully slow for larger data sets.
- Specialized 3D graphics hardware:
 - Early 1970s: Simple LSI graphics chips for video games
 - 70s—80s: Graphics co-processors (GPUs) with increasing graphics capabilities
 - 80s—90s: Silicon Graphics develops high-performance 3D graphics workstations



Software

 MacSpin – Andrew & David Donoho (1984—85). At ASA meetings 1986, "dynamic graphics became as portable as a 25-lb Macintosh"



Linking, brushing, 3D rotation


Paul Velleman (~1985): Data Desk provided multiple 1D, 2D, 3D views

- Brushing: selection of points, regions, ... via mouse
- Linking: Any action in one plot reflected in all others

64

Visual Statistics

₩ILEY

Visual Statistics

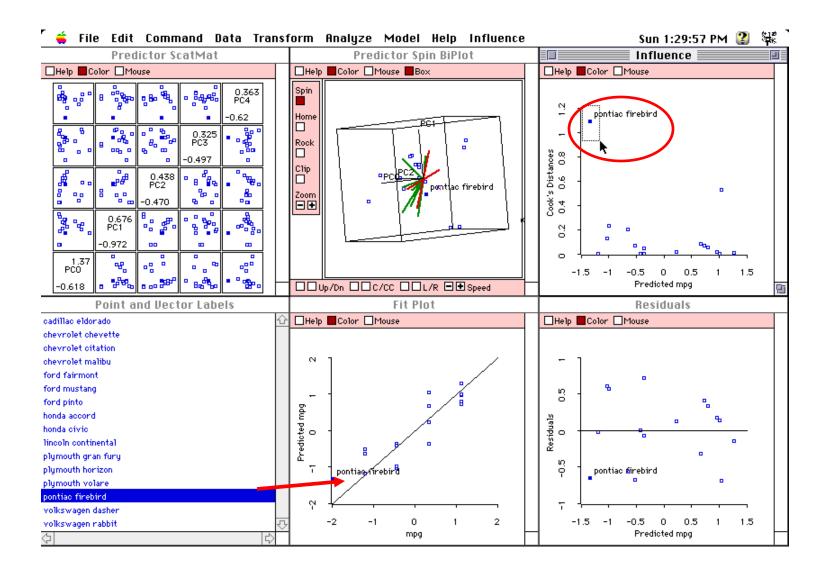
Seeing Data with Dynamic Interactive Graphics

> Forrest W. Young Pedro M. Valero-Mora Michael Friendly

Wiley Series in Probability and Statistics

Young, Valero-Mora & Friendly (2006)

A philosophy & pedagogy for statistics based on dynamic interactive graphics


A theory of object-oriented #datavis software:

- objects (data, model, ...)
- methods (print, plot,)
- manipulating plot objects & dimensions
- spin plots: rotating 3D plots
- spreadplots: dynamically linked views
- workmaps: visual record of analysis steps

Details: https://www.uv.es/visualstats/

See: The History of ViSta: The Visual Statistics System, https://onlinelibrary.wiley.com/doi/full/10.1002/wics.1203

ViSta: Visual Statistics

Summary

- Data Visualization has deep & wide roots:
 - Cartography: map-making, geo-measurement, thematic cartography, GIS, geo-visualization
 - Statistics: probability theory, distributions, estimation, models, stat-graphics, stat-visualization
 - Data: population, economic, social, moral, medical, ...
 - Visual thinking: geometry, functions, mechanical diagrams, EDA, ...
 - Technology: printing, lithography, computing...
- Problem driven: developments often driven by practical and theoretical problems of the day
- **Communication driven**: developments often arose from a desire to communicate better

Conclusions

• Why study the history of data visualization?

"The only new thing in the world is the history you don't know" – Harry S. Truman

"Those who cannot remember the past are condemned to repeat it."– George Santayana (*The Life of Reason*, 1905)

"No scientific discovery is named after its original discoverer" – Stigler's Law of Eponomy (1980). But: originally due to Merton!

- Today:
 - Narrow, specialized work in many fields
 - New methods "invented" and re-named w/o knowing history.
 - mosaic displays: Georg von Mayr (1877)
 - heatmaps: Loua (1873); Brinton (1914), Bertin (1967)
 - Nightingale (1859) rose diagram: polar diagrams by Guerry (1829), Lalanne (1843)