
The Language of Graphs: from 
Bertin to GoG to ggplot2

Michael Friendly
Psych 6135 

https://friendly.github.io/6135/

Meta questions
• How did we get from early ideas of graph types (line, bar, pie 

charts, scatterplots, …) to expressing those in modern 
software?

2

data idea code graph

? What new thinking was required?
? How to formalize different kinds of graphs and their attributes?
? How to make the language of a graph express what we want to see?
? How to do that most simply, elegantly, and generalizable?

Topics
• Idea: Graphs as visual language

Early attempts at standardization of graphs
• Jacques Bertin: Semiology of Graphics

Mapping of visual properties to data relations
• Graphics programming languages: 

Goal: power & elegance
• Lee Wilkinson: Grammar of Graphics
• Hadley Wickham: ggplot2
• Graphs in data science

3

Metaphor: Graphs as visual language
• Playfair, Guerry, Minard and others described their 

fundamental insight that graphical displays convey 
quantitative data more directly than numbers.

• Playfair (1802) 
“Regarding numbers and proportions, the best way to catch the imagination is 
to speak to the eyes”

• Minard (1861)
“The aim of my carte figurative is … to convey promptly to the eye the relation 
not given quickly by numbers requiring mental calculation.”

4



Metaphor: Graphs as visual language

• Émile Cheysson (1890) took this further:
“When a law is contained in figures, it is buried like metal in an ore; it 
is necessary to extract it.  This is the work of graphical representation. 
It points out the coincidences, the relationships between phenomena, 
their anomalies, and we have seen what a powerful means of control it 
puts in the hands of the statistician to verify new data, discover and 
correct errors with which they have been stained.”

5

Willard C. Brinton: An ode to graphs

6

W. C. Brinton,
Graphic 
Presentation, 
1939

Context: Statistical 
albums, 1870-

1910

From ~ 1870—1910, statistical albums 
of official statistics on topics of 
population, trade, moral & political 
issues became widespread throughout 
Europe and the U.S.
• France: Album de Statistique 

Graphique: 1879-1899 (trade, 
commerce & other topics)

• USA: Census atlases: 1870/80/90--  
• Switzerland: Atlas graphique de la 

Suisse:1897, 1914

7 8888888888888888888888888888888



Need for standardization
• Beautiful graphics: Yes, but all separate designs

Can anything be compared across countries?
• Émile Cheysson (1878)

“The time will come when Science has to lay down general 
principles and decide on well-defined standards. We can no 
longer tolerate this sort of anarchy“

• International statistical meetings (ISI)
1852 (Brussels), 1857 (Vienna), 1869 (The Hague), 1872 (St. 
Petersburg),  1876 (Budapest) …
Participants: Quetelet, Cheysson, Levasseur (France), Ernest Engel, 
Gustav von Mayr, Hans Schwabe (Germany), Francis Walker (U.S.), …

9
Cheysson Levasseur von Mayr Walker

Quetelet

No consensus, but the germ of an idea
• ISI St. Petersburg (1872) resolutions:

“The Congress accepts that it is not worth going into details about the choice 
of methods or facts for graphical representation”.
“no strict rule can be imposed on authors, because the only real problem is 
that of applying the graphical method to data that is comparable”. 

• Most of the debate had to do with thematic maps
number of class intervals for a quantitative variable
number and variety of shading colors

• Yet, the idea of a visual language had been accepted, 
along with the need for some theory of graphs

10

Standardize the data before the graphs!

Fast forward

Bertin: Modern 
theory of data 

graphics

A Semiology of graphics: 

• Visual variables
• Decoding: Reading levels 

of a graph
• Reorderable matrix

11

Bertin: Semiology of graphics (1967)
• Defines a system of “grammatical elements” of graphs and 

relations among visual attributes that give meaning 
(semantics) from perceptual features

Planar variables: (x,y) coordinates
Retinal variables: shape, size, color, …

12



Bertin: Semiology of graphics
• Defines a system of mapping retinal variables (marks) to 

properties of data variables for perception of relations
Association ( ) – marks are perceived as similar/same

Selection ( ) – marks are perceived as forming classes

Order (O) – marks are perceived as showing order

Quantity (Q) – marks are perceived as proportional

• The first theory of graphs relating visual attributes (encoding) 
to perceptual characteristics (decoding).

• BONUS: It comprises nearly all known graph and thematic 
map types in a general system

13

encode decodeview

Visual variables & data characteristics

15

Visual variables differ in the kinds of information they can convey

 (O) (Q) 

Some recommendations

16

Various authors have used Bertin’s system to make recommendations for the 
best attributes to use with different symbol types

(O, Q) 

(O, Q) 

17

Retinal variables allow several variables to be encoded together.
Bertin’s system provides a general framework for thematic mapping, allowing multiple 
variables to shown simultaneously in a single map. 

Legend:
GEO: (x,y)
T, V, OR: ordered

For Bertin, the legend is 
a symbolic description 
of the coordinate 
system and variables 
displayed.



18

Various maps of France, encoding quantitative and categorical variables in a wide 
number of different ways. 

This semiology is 
productive, as is the 
semiology of 
language.

Allows one to imagine 
new graphic 
encodings.

Decoding: Reading a graphic

How successful is a graph for transmitting information?
Bertin defines three stages for reading a graphic:
• External: What is the overall context?

Graph title, axis labels
• Internal: What visual variables are used to represent the 

components in the graphic?
points, lines, …
size, shape, color:hue, color:intensity, texture, …

• Relationships:
How are these components related? 
What questions can I ask of this graphic? 
What can I learn?

Research topic: Have there been any studies of this ordering in 
graph perception?

19

Reading levels
Questions a graph should answer:
• Elementary: find some specific value
• Intermediate: make comparisons, see a trend
• Overall: what is the general message or overall trend?

20

These ideas provided the beginnings of a theory of graphs 
related to graph perception.

Reading levels: Example

21

Reading tasks:
• Elementary: “How many guns were sold in January of 2013?”
• Intermediate: “What’s the trend in gun sales since President Obama was 

elected?”
• Overall: “What’s the overall trend in gun sales in America since the year 

2000?”

Graph from the NY Times, 
Feb. 3, 2016

From: https://medium.com/@karlsluis/before-tufte-there-was-bertin-63af71ceaa62 

External: “Gun sales”, 
time, Obama, text 
labels

Internal: lines, points for 
labeled events
Relationships: what is the 
message?



Bertin: The reorderable matrix

22

A data table: objects by characteristics

Encode each value by visual attributes

Both rows and columns are 
 reorderable

Visual encoding facilitates 
seeing patterns, trends, 
anomalies

Data on facilities of townships, 
(No:0), (Yes:1)

The reorderable matrix

23

Permute rows and columns to put like with like

Interpret row/col order & clusters

This is an early example of 
what I called “effect 
ordering” for data display

24

This was used by Bertin and 
others in a large number of 
applied projects

Bertin  was to visual data 
analysis  in France what Tukey 
was to EDA in N. America

A physical device 
implementing matrix 
reordering

Bertifier

25

Bertifier: A web app implementing Bertin’s idea of the reorderable matrix
See: http://www.aviz.fr/bertifier 

(a) table: Attitudes and attributes by country
(b) Values encoded by size and shape
(c) Sorted and grouped by themes and country regions

Watch: Youtube video of Bertifier, http://youtu.be/tJxAF_a_yBQ  



seriate package

26

Matrix reordering is now recognized as a general problem, with criteria for many 
different goals, implemented in the seriate package

library(seriation)
data("Townships")
order <- seriate(Townships, 
        method = "BEA_TSP")
bertinplot(Townships, order)

> list_seriation_methods(kind="matrix")
 [1] "AOE"           "BEA"       "BEA_TSP"       "BK_unconstrained“     "CA"                  "Heatmap"         
 [7] "Identity"     "LLE"        "Mean"            "PCA"                               "PCA_angle"    "Random"      "Reverse"     

Heatmaps

27

Heatmaps are a re-invention of 
Bertin’s ideas:
• Cluster analysis to reorder rows/cols
• Shading cells to show some variable

This example shows a microarray 
analysis of 128 leukemia patients 
using 12625 genes.
• The goal is to distinguish two types 

of leukemia
• The shading variable is a z-score 

for how well a given gene 
distinguishes the two types.

• Several clusters of high association 
are discovered!

Image source: https://warwick.ac.uk/fac/sci/moac/people/students/peter_cock/r/heatmap/ 
See also: Wilkinson & Friendly, The History of the Cluster Heat Map, The American Statistician, 2009, 63, 179-184

Patients

Ge
ne

s

Heatmaps: the devil is in the details

28From: http://www.sthda.com/english/articles/28-hierarchical-clustering-essentials/93-heatmap-static-and-interactive-absolute-
guide/ 

There are many implementations of “heatmaps”
They differ importantly in the details of: clustering, shading scheme

This example shows a data 
set of 11 measures on 32 
cars from the 1974 Motor 
Tends magazine
• Each variable was converted 

to z-scores
• The value was shaded using 

a bipolar color scheme
• Clusters of cars are slightly 

separated
• The very high and low values 

stand out

variables

ca
r m

od
el

s

Software for computer graphics

29

data

How to ask a computer to 
draw a graph?

code

+

graphical output

BEG: “Pretty please, 
Mr. Computer, draw 
me a graph”



Making graphs: menus vs. syntax

30

Menu-driven graphics provide a wide range of graph types, with options
What’s wrong with that?

WYSIAYG: What you see is all you get. No way to do something different
Not reproducible: Change the data  Re-do manually from scratch
Often designed by programmers with little sense of data vis

Programming languages: Power & elegance

• CS view: All programming languages can be proved 
to be equivalent (to a Turing machine)

• Cognitive view: Languages differ in:
expressive power: ease of translating what you want to do 
into the results you want
elegance: how well does the code provide a human-
readable description of what is done?
extensibility: ease of generalizing a method to wider scope
learn-ability: your learning curve (rate, asymptote)

+

Language Features:Tools for thinking?
FORTRAN Subroutines – reusable code

Subroutine libraries (e.g., BLAS)

APL, 
APL2STAT

N-way arrays, nested arrays 
Generalized reduction, outer product
Function operators

Logo Turtle graphics
Recursion, list processing

Lisp, LispStat, 
ViSta

Object-oriented computing
Functional programming

Perl Regular expressions
Search, match, transform, apply

SAS Data steps, PROC steps, BY processing
SAS macros, Output Delivery system

R Object-oriented methods, tidyverse: dplyr, 
ggplot2, …

Programming languages: Power & elegance

My journey

What did I learn 
along the way?

Features:
• Based on Lisp, but tuned to young minds

Papert: Mindstorms: Children, Computers, and Powerful Ideas (1980)
• Turtle graphics: draw by directing a turtle, not by (x,y) coords

Analytic geometry rests on a coordinate system. 
Turtle geometry is "body syntonic“: Tell turtle what to do.

• Data types: 
• words, lists, arrays, property lists

• Lists & list processing: inherited from Lisp, but with gentler syntax. 
• Lists are infinitely expandable & nestable. 

• Recursion rather than iteration is the natural method to process 
lists

• Extensions: 
• multiple, animated turtles (sprites); 
• object-oriented programming (message passing) -> SmallTalk

Programming languages: Elegance - Logo



Logo : Turtle graphics

Turtle primitives: forward, back, left, right, 
penup, pendown, ...

No need for (x, y) coordinates
Just tell a turtle what to do!

How to encapsulate that?

Logo : Procedures

Turtle primitives: forward, back, left, right, 
penup, pendown, ...

> to spiral :size :angle
  if :size > 100 [stop]
  forward :size
  right :angle
  spiral (:size + 2) :angle
  end > spiral 0 90 > spiral 0 91

Recursive procedures:

> to square :side
  repeat 4 [fd :side rt 90]
  end

> square 100

Logo procedures: teach the turtle a new word

Logo : Hilbert curves

to Hilbert0 :turn :size
 right :turn
 forward :size 
 left :turn
 forward :size
 left :turn
 forward :size
 right :turn
end

Start with some basic shape
What happens if you replace each line with a smaller copy 
of the basic shape?

What happens if you continue this process?

What happens if you choose a different basic shape?

Logo was more than just pretty pictures

It was graphics & mathematics for young 
minds: A language for learning

Logo : Hilbert curves

to Hilbert :depth :turn :size
 if :depth = 0 [stop]
 right :turn
  Hilbert (:depth-1) -:turn :size
 forward :size 
 left :turn
  Hilbert (:depth-1)  :turn :size
 forward :size
  Hilbert (:depth-1)  :turn :size
 left :turn
 forward :size
  Hilbert (:depth-1) -:turn :size
 right :turn
end

Hilbert curve: A continuous, space-filling fractal, 
of Hausdorff dimension 2

Theorem (Hilbert, 1891): The euclidean length of the n-th depth 
Hilbert curve, Hn is 

Proof (by enumeration): Redefine forward to calculate total 
turtle path length

to forward.length :size
  make "total.length :total.length + :size
  forward :size
  end

depth: 1 depth: 2 depth: 3 depth: 4 depth: 5



Logo: Tower of Hanoi

38

to Hanoi :n :start :goal :spare          # move disks 1:n from START to GOAL 
if :n=0 [stop]                                     # are we done?
Hanoi :n-1 :start :spare :goal           # move disks 1:n-1 from START to SPARE
move :n :start :goal                          # move disk n from START to GOAL
Hanoi :n-1 :spare :goal :start           # move disks 1:n-1 from SPARE to GOAL
end

The Tower of Hanoi problem has an elegant solution  in Logo
Change the ‘move’ instruction to render on screen or by a 
robot!

A direct translation 
of an algorithm into 
code

Move N disks from one pole to another, with no disk ever resting on a disk smaller than itself.

Graphics programming languages: SAS
• SAS: procedures + annotate facility + macros

PROC GPLOT (x,y plots), PROC GCHART, PROC GMAP, …
Annotate: data set with instructions (move, draw, text, 
fonts, colors)
Macros: Create a new, generic plot type,  combining PROC 
steps and DATA steps.

39

data class;
 input age sex ht wt;
datalines;
 20 M 75 152
 22 F 69 132

proc glm data=class;
  class sex;
  model wt = ht sex;
  output out=results
    p=predict r=resid;

results
proc gplot data=results;
  plot wt * ht = sex;
  symbol1 ...
  symbol2 ... 

Why I gave up SAS: This works well, and is 
very powerful, but lacks elegance

DATA step PROC step PROC GPLOT

SAS thinking : many languages

Output delivery system (ODS)

ODS graphics
• template language 

Base SAS, SAS/STAT
• data step, proc steps

• procs, Annotate language
SAS/Graph: 

proc iml
• matrix language, graphics

%macro language

Wilkinson: Grammar of Graphics
• Natural language:

Grammar/syntax: What are the minimal, complete 
set of rules to describe all well-formed sentences?

• John ate the big red apple
• John big apple red apple ate the

Semantics: How to distinguish meaning, nonsense, 
poetry in well-formed sentences?

• Large green trucks carry garbage
• Colorless green ideas sleep furiously

• How to apply these ideas to graphics?
Grammar: Algebra, scales, statistics, geometry, …
Semantics: Space, time, uncertainty, …
Needed: a complete formal theory of graphs & 
computational graphics language

41

??



Wilkinson: Grammar of Graphics
• A complete system, describing the components of graphs and 

how they combine to produce a finished graphic
“The grammar of graphics takes us beyond a limited set of charts 
(words) to an almost unlimited world of graphical forms (statements)” 
(Wilkinson, 2005, p. 1). 
“... describes the meaning of what we do when we construct statistical 
graphics … more than a taxonomy”
“This system is capable of producing some hideous graphics … This 
system cannot produce a meaningless graphic, however.”

• This is a general theory for producing graphs.
the foundation of most modern software systems; 
not connected with a theory for reading graphs à la Bertin.

42

Wilkinson: Grammar of Graphics
• Components:

specification: a formal language for composing graphs
assembly: coordination of attributes

• internal: a data structure for a graphical “object”

rendering: producing a graphic on a display system
• low level: device drivers for screen, PDF, PNG, SVG, …

43

code data structure graphical output

Grammar of Graphics: Specification
• Algebra: combine variables into a data set to be plotted

cross (A*B), nest (A/B), blend (A+B), filter, subset, …

• Scales: how variables are represented 
categorical, linear, log, power, logit, …

• Statistics: computations on the data
binning, summary (mean, median, sd), region (CI), smoothing

44

think: dplyr

SCALE: linear(dim(1))

Grammar of Graphics: Specification
• Geometry: Creation of geometric objects from variables

Functions: point, line, area, interval, path, …
Partitions: polygon, contour,
Networks: edge
Collision modifiers: stack, dodge, jitter

• Coordinates: Coordinate system for plotting
transformations: translation, rotation, dilation, shear, projection
mappings: Cartesian, polar, map projections, warping, Barycentric
3D+: spherical, cylindrical, dimension reduction (MDS, SVD, PCA) 

45



Grammar of Graphics: Specification
• Aesthetics: mapping of qualitative and quantitative scales to 

sensory attributes (extends Bertin)
Form: position, size, shape (polygon, glyph, image), rotation, …
Surface: color (hue, saturation, brightness), texture (pattern, 
orientation), blur, transparency
Motion: direction, speed, acceleration
Sound: tone, volume, rhythm, voice, … 

Text: label, font, size, …
• Facets: Construct multiplots (“small multiples”) by 

partitioning, blending or nesting
• Guides: Allow for reading the encodings of variables mapped 

to aesthetics
scales: axes, legend (labels: size, shape, color, …)
annotations (title, footnote, line, arrow, ellipse, text, …)

46

Grammar of Graphics: Implementation
• Wilkinson illustrates the GoG with a programming language 

(GPL: the Graphics Production Language)
• GPL statements

DATA: expressions that create variables to display from data sets
TRANS: variable transformations prior to plotting (e.g., ranking the 
data points) 
ELEMENT: define graphical elements (e.g., points, lines, …) and their 
aesthetic attributes (e.g., shape, color, …) to use in the display
SCALE: apply scale transformations to the plot (e.g., square root or 
log)
COORD: select the coordinate system for use in the graphic (e.g., 
Cartesian, polar) 
GUIDE: guides to aid interpretation (axes, legends)

47

GPL example: scatterplot

48

DATA: x = "SepalLength"
DATA: y = "SepalWidth"
DATA: z = “Species"
TRANS: x = x
TRANS: y = y
ELEMENT: point(position(x*y), color(z))
COORD: rect(dim(1,2))
SCALE: linear(dim(1))
SCALE: linear(dim(2))
GUIDE: axis(dim(1), label("Sepal Length"))
GUIDE: axis(dim(2), label("Sepal Width"))

A simple scatterplot of the Iris data, points colored by species
TRANS, SCALE, COORD and GUIDE all 
show the defaults & aren’t necessary 
here.
The key one is ELEMENT, specifying 
points, positioned by (x*y) and colored 
by z

SPSS graphics now use GPL as 
the backend (syntax) for their 
graphics engine

GPL example: contour plot

49

ELEMENT: point(position(birth*death), label(country))
ELEMENT: contour(position(smooth.kernel.density(birth*death)), color.hue())
GUIDE: form.line(position((0,0), (30,30)), label(“Zero population growth”))
GUIDE: axis(dim(1), label(“Birth rate"))
GUIDE: axis(dim(2), label(“Death rate"))

A smoothed contour plot of birth rate vs. death rate for selected countries

Wilkinson, Grammar of Graphics, Fig 1.1



GPL syntax

50

The essential features of a graph are described by ELEMENT
• The geometrical objects (point, line, interval, …) are specified within this
• Their visual properties (position, color) and statistical summaries are given as well

Some typical graph types:

From: Pere Milán, Imagining data with ggplot2, QM Forum presentation, Nov. 23, 2015

GPL in SPSS syntax

51

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=read write
  /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
SOURCE: s=userSource(id("graphdataset"))
DATA: read=col(source(s), name("read"))
DATA: write=col(source(s), name("write"))
GUIDE: axis(dim(1), label("reading score"))
GUIDE: axis(dim(2), label("writing score"))
ELEMENT: point(position(read*write))
END GPL.

SPSS menu choices  GPL code
You can:
• Extract the code
• Tweak it
• Save to make it reproducible

https://stats.oarc.ucla.edu/spss/library/spss-librarymaking-graphs-with-the-ggraph-command-and-gpl/ 

Facets & frames
Tables of graphs:
• Facets:  graphs of subset
• Frames:  separate graphs

Linked micromap:
• Population density of US, 

divided in octiles
• States in each octile shown 

separately

52

GoG was a coherent language for 
specifying and producing nearly all 
known graphic forms.

Colorless green graphs sleep furiously
• JSM 2017: Dinner with Lee Wilkinson, Howard Wainer, Paul 

Vellman, & others
• The great debate:

LW: The GoG is a complete theory, a formal mathematical 
model comprehending all graphs.

"Beauty is truth, truth beauty,"--that is all Ye know on earth, and all ye need to know.

MF: There is more--
• Implementation matters: translating a graphic idea into a finished 

graph should be facilitated by the language of graphic code.
• A productive language for graphs should encompass the steps of 

data analysis 
Pere Milán: A truly expressive graphic language should recommend 
the right graphic(s) to “get the message home”

53
See: Friendly (2022), Colorless Green Graphs Sleep Furiously: A Conversation with Leland Wilkinson, https://bit.ly/3m5eJKF 



Wickham: ggplot2
• ggplot2: Elegant graphics for data 

analysis
a computational language for thinking 
about & constructing graphs
sensible, aesthetically pleasing defaults

• + themes: default, bw, journal, tufte, …

infinitely extendable
• ggplot extensions: 

https://exts.ggplot2.tidyverse.org/  

54

Wickham: ggplot2
• Implementation of GoG in R as 

layers of a graphic
Basic layers: 

• Data, 
• Aesthetics (data  plot mapping)
• Geoms (points, lines, bars, …), 

Statistics: summaries & models
Coordinates: plotting space
Facets: partition into sub-plots
Themes: define the general features 
of all graphical elements 

55

ggplot2: data + geom = graph
• Every graph can be described as a combination of 

independent building blocks, connected by “+” (read: “and”)
data: a data frame: quantitative, categorical; local or data base query
aesthetic mapping of variables into visual properties: size, color, x, y
geometric objects (“geom”): points, lines, areas, arrows, …
coordinate system (“coord”): Cartesian, log, polar, map, 

56

ggplot(FMA, 
             aes(x=F, y=A, color=F, size=A) +
   geom_point()

ggplot2: data + geom = graph

57

ggplot(data=mtcars,                             
            aes(x=hp, y=mpg,                    
                   color=cyl, shape=cyl)) +    
     geom_point(size=3)                      

In this call:
• data=mtcars: data frame               
• aes(x=, y=):  plot X,Y variables      
• aes(color=, shape=):  attributes   
• + geom_point(): what to plot       
• the coordinate system is taken to be 

the standard Cartesian (x,y)
• a corresponding legend is 

automatically generated



ggplot2: geoms

58

Wow! I can really see something there.

How can I enhance this visualization?

Easy:  add a geom_smooth() to fit linear 
regressions for each level of cyl

ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
    geom_point(size=3) +
    geom_smooth(method="lm", aes(fill=cyl)) 

ggplot2: GoG -> graphic language
• The implementation of GoG ideas in ggplot2 for R 

created a more expressive language for data graphs
layers:  graph elements combined with “+” (read: “and”)

themes: change graphic elements consistently

59

ggplot(mtcars, aes(x=hp,  y=mpg)) +
     geom_point(aes(color = cyl)) +
     geom_smooth(method ="lm") +

ggplot2: more geoms

60

ggplot2 facilitates graphical 
thinking by making a clear 
separation among: 
• mapping data variables to plot 

features (aes());
• geometric objects (geom_())
• statistical summaries (stat_())

ggplot2: layers & aes()

61

ggplot(mtcars, aes(x=hp, y=mpg)) +
    geom_point(size=3, aes(color=cyl, shape=cyl)) +
    geom_smooth(method="lm", aes(color=cyl, fill=cyl)) +

geom_smooth(method="loess", color="black", se=FALSE)

Aesthetic attributes in the ggplot() 
call are inherited by geom_() layers

Other attributes can be passed as 
constants (size=3, color=“black”) or
with aes(color=, …) in different layers

This plot adds an overall loess smooth to 
the previous plot



ggplot2: themes

62

All the graphical attributes of ggplot2 are 
governed by themes – settings for all 
aspects of a plot

A given plot can be rendered quite 
differently just by changing the theme

If you haven’t saved the ggplot object, 
last_plot() gives you something to work 
with further

last_plot() + theme_bw()

ggplot2: themes

63

Built-in ggplot themes provide a wide variety of basic graph styles

Other packages provide custom themes, or you can easily define your own 

theme_economist() theme_bluewhite() theme_hc()

ggplot2: facets

64

plt <-
ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
 geom_point(size=3) +
 geom_smooth(method="lm", aes(fill=cyl)) 

plt + facet_wrap(~gear)

Facets divide a plot into separate subplots based on one or more discrete variables

Syntax:
facet_wrap(rowvar ~ colvar)

ggplot2: extensions

65

ggplot2 provides a prototype system for implementing new geoms, stats, themes, …
Many of these are listed at https://exts.ggplot2.tidyverse.org/ 



ggplot2: extensions

66

ggplot2 provides a prototype system for implementing new geoms, stats, themes, …
Many of these are listed at https://exts.ggplot2.tidyverse.org/ 

ggplot2: extensions

67

ggwordcloud

ggridges ggstatsplot The wide range of 
extensions indicates 
the power of ggplot2 
as a general framework 
for data graphics

gganimate: A grammar of animation
• gganimate extends ggplot2 grammar to include a 

structured description of animation.
•  New grammar classes added to a plot object 

specify how it should change with time.
 transition_*() how data should change and how it relates to 
itself across time.
view_*() how positional scales should change along the 
animation.
enter_*()/exit_*() how new data appear, and old data 
disappear over the animation.
ease_aes() defines how different aesthetics should change over 
transitions

68 69

Goal: Produce an animation of Rosling’s gapminder data, showing how life 
expectancy varies with GDP per capita. 
• Stratify by continent: ffacet_wrap(~continent) 
• Animate this by Year: transition_time(year) 



70

library(gapminder)
ggplot(gapminder, aes(ggdpPercap, lifeExp, ssize = pop, colour = country)) +
  geom_point(alpha = 0.7, show.legend = FALSE) +
  scale_colour_manual(values = country_colors) +
  scale_size(range = c(2, 12)) +
  scale_x_log10() +
  ffacet_wrap(~continent) +

Basic bubble plot by continent:  lifeExp ~ gdp; 
• size ~ population; 
• facet ~ continent

Animate this: 
• change frame title; 
• transition over year; 
• interpolate linearly

labs(title = 'Year: {{frame_time}’, 

      x = 'GDP per capita', y = 'life expectancy') +
  ttransition_time(year) +
  eease_aes('linear')

interpolate linearly

Going Meta: Graphic notation

How do different software graphic languages make it easier or harder to 
produce the graph I want?

71
From: Nicolas Kruchten, Usability of Visualization Notations 

Meta: Comparing graphic notation
• Graphs can be produced in a variety of software 

languages: 
R, ggplot2, D3, Vega-Lite, matplotlib, Seaborn, Plotly, …

• How do they differ is ease of use, efficiency of 
expression?

• Cognitive dimensions of notations?
viscosity (how easy to make changes to specifications), 
abstraction (how easy to extend the notation), 
closeness of mapping (how similar notation to target 
domain), 
progressive evaluation (how easy to check work done to 
date),  
hard mental operations (how demanding notation is of 
working memory).

72https://en.wikipedia.org/wiki/Cognitive_dimensions_of_notations 

Software metrics

73

• Generate a collection of graph types
• Code each in a variety of specification languages & implementations
• Calculate metrics for each:

• Terseness: # characters in code for given graph
• Economy: Size of vocabulary (operators, functions, …) to combine/add new 

stuff
• Viscosity: How hard to change one notation to another?



Notascope

74

https://app.notascope.io/  - Online tool to demonstrate the metric-driven approach to 
graphic software evaluation

Evaluate, Analyze

75

Given a collection of graphs, implementations and metrics, we can better understand 
the how software languages differ in translation from IDEA  CODE  GRAPH

A larger view: Data science
• Data science treats statistics & data visualization as parts of a larger 

process
Data import: text files, data bases, web scraping, …
Data cleaning  “tidy data”
Model building & visualization
Reproducible report writing

76

The tidyverse of R packages

77

These ideas inspire a larger view of data analysis and graphics based on tidy principles.



The tidyverse expands

78

Summary
• Graphical developers in the Golden Age recognized the idea of 

“graphic language,” but could not define it. 
• Bertin first formalized the relations between graphical 

“reading levels”
• Wilkinson, in GoG, created a comprehensive syntax and 

algebra to define any syntactically correct graph
• Wickham, in ggplot2, created an expressive language to ease 

the translation of graphic ideas into plots.
• More general views can evaluate usability of graphic notations
• Tidyverse ideas place data analysis & graphics within a 

communication-oriented, reproducible research framework.

79


