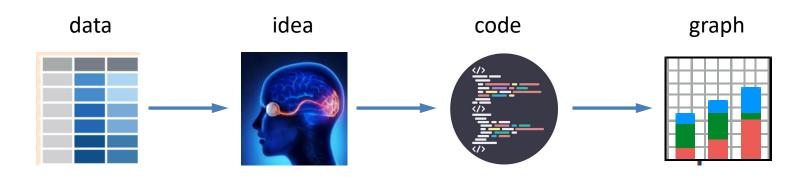


The Language of Graphs: from Bertin to GoG to ggplot2

Michael Friendly
Psych 6135



https://friendly.github.io/6135/

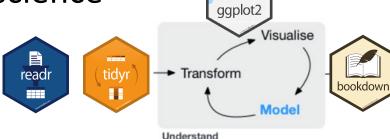
Meta questions

 How did we get from early ideas of graph types (line, bar, pie charts, scatterplots, ...) to expressing those in modern software?

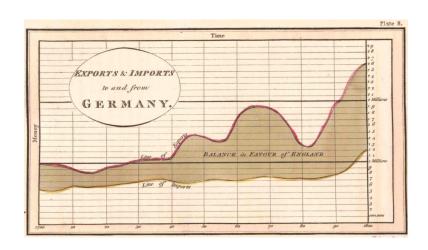
- ? What new thinking was required?
- ? How to formalize different kinds of graphs and their attributes?
- ? How to make the language of a graph express what we want to see?
- ? How to do that most simply, elegantly, and generalizable?

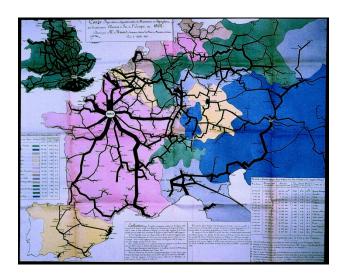
Topics

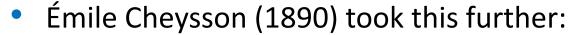
- Idea: Graphs as visual language
 - Early attempts at standardization of graphs
- Jacques Bertin: Semiology of Graphics
 - Mapping of visual properties to data relations



- Graphics programming languages:
 - Goal: power & elegance
- Lee Wilkinson: Grammar of Graphics
- Hadley Wickham: ggplot2

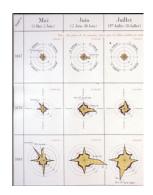





Metaphor: Graphs as visual language

- Playfair, Guerry, Minard and others described their fundamental insight that graphical displays convey quantitative data more directly than numbers.
- Playfair (1802)
 - "Regarding numbers and proportions, the best way to catch the imagination is to speak to the eyes"
- Minard (1861)
 - "The aim of my carte figurative is ... to convey promptly to the eye the relation not given quickly by numbers requiring mental calculation."

Metaphor: Graphs as visual language



- "When a law is contained in figures, it is buried like metal in an ore; it is necessary to extract it. This is the work of graphical representation.
- It points out the coincidences, the relationships between phenomena, their anomalies, and we have seen what a powerful means of control it puts in the hands of the statistician to verify new data, discover and correct errors with which they have been stained."

Willard C. Brinton: An ode to graphs

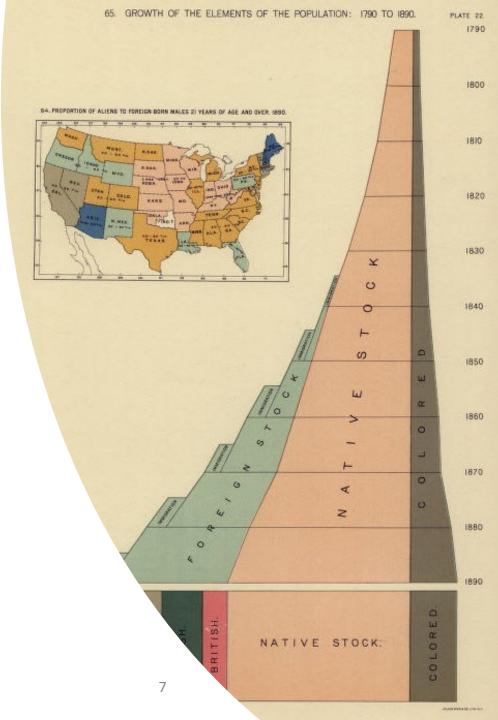
MAGIC IN GRAPHS

HERE is a magic in graphs. The profile of a curve reveals in a flash a whole situation—the life history of an epidemic, a panic, or an era of prosperity. The curve informs the mind, awakens the imagination, convinces.

Graphs carry the message home. A universal language, graphs convey information directly to the mind. Without complexity there is imaged to the eye a magnitude to be remembered. Words have wings, but graphs interpret. Graphs are pure quantity, stripped of verbal sham, reduced to dimension, vivid, unescapable.

Graphs are all inclusive. No fact is too slight or too great to plot to a scale suited to the eye. Graphs may record the path of an ion or the orbit of the sun, the rise of a civilization, or the acceleration of a bullet, the climate of a century or the varying pressure of a heart beat, the growth of a business, or the nerve reactions of a child.

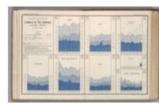
The graphic art depicts magnitudes to the eye. It does more. It compels the seeing of relations. We may portray by simple graphic methods whole masses of intricate routine, the organization of an enterprise, or the plan of a campaign. Graphs serve as storm signals for the manager, statesman, engineer; as potent narratives for the actuary, statist, naturalist; and as forceful engines of research for science, technology and industry. They display results. They disclose new facts and laws. They reveal discoveries as the bud unfolds the flower.


W. C. Brinton, Graphic Presentation, 1939

Context: Statistical albums, 1870-1910

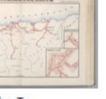
From ~ 1870—1910, statistical albums of official statistics on topics of population, trade, moral & political issues became widespread throughout Europe and the U.S.

- France: Album de Statistique Graphique: 1879-1899 (trade, commerce & other topics)
- USA: Census atlases: 1870/80/90--
- Switzerland: *Atlas graphique de la Suisse*:1897, 1914



Ministere des T... Statistical Dia... 1882 National Atlas TRelated (32)

Ministere des T... Statistical Dia... 1882 National Atlas Related (32)


Ministere des T... Statistical Dia... 1883 National Atlas Related (34)

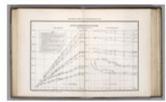
Ministere des T... Statistical Dia... 1883 National Atlas Related (34)

Ministere des T... Statistical Dia... 1883 National Atlas Related (34)

Mini Stat 188 Nati

Ministere des T... Statistical Dia... 1883 National Atlas Related (34)

Ministere des T... Statistical Dia... 1883 National Atlas Related (34)


Ministere des T... Statistical Dia... 1885 National Atlas Related (31)

Ministere des T... Statistical Dia... 1884 National Atlas Related (31)

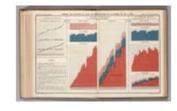
Ministere des T... Statistical Dia... 1885 National Atlas Related (31)

Ministere des T... Statistical Dia... 1885 National Atlas V Related (31)

Statistical Dia... 1885 National Atlas TRelated (31)

Ministere des T... Statistical Dia... 1885 National Atlas Related (31)


Ministere des T... Statistical Dia... 1884 National Atlas V Related (31)


Ministere des T... Statistical Dia... 1884 National Atlas Related (31)

Ministere des Statistical Dia 1886 National Atlas V Related (2

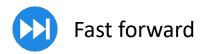
Need for standardization

- Beautiful graphics: Yes, but all separate designs
 - Can anything be compared across countries?
- Émile Cheysson (1878)
 - "The time will come when Science has to lay down general principles and decide on well-defined standards. We can no longer tolerate this sort of anarchy"
- International statistical meetings (ISI)
 - 1852 (Brussels), 1857 (Vienna), 1869 (The Hague), 1872 (St. Petersburg), 1876 (Budapest) ...
 - Participants: Quetelet, Cheysson, Levasseur (France), Ernest Engel,
 Gustav von Mayr, Hans Schwabe (Germany), Francis Walker (U.S.), ...

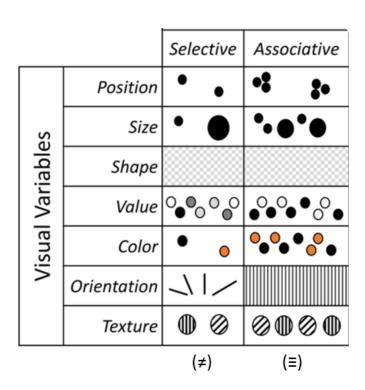
Cheysson

Levasseur

von Mayr

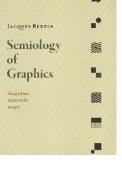

Walker

No consensus, but the germ of an idea

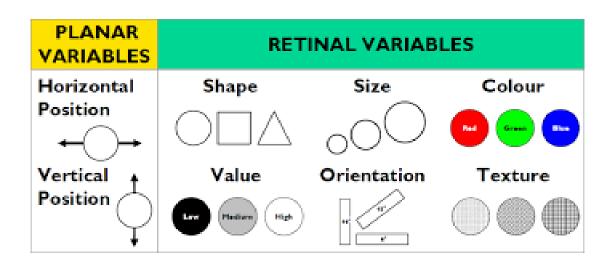

- ISI St. Petersburg (1872) resolutions:
 - "The Congress accepts that it is not worth going into details about the choice of methods or facts for graphical representation".
 - "no strict rule can be imposed on authors, because the only real problem is that of applying the graphical method to data that is comparable".

Standardize the data before the graphs!

- Most of the debate had to do with thematic maps
 - number of class intervals for a quantitative variable
 - number and variety of shading colors
- Yet, the idea of a visual language had been accepted, along with the need for some theory of graphs

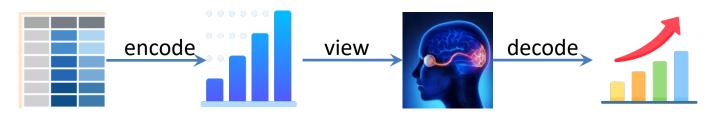

Bertin: Modern theory of data graphics

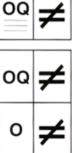
A Semiology of graphics:


- Visual variables
- Decoding: Reading levels of a graph
- Reorderable matrix

Bertin: Semiology of graphics (1967)

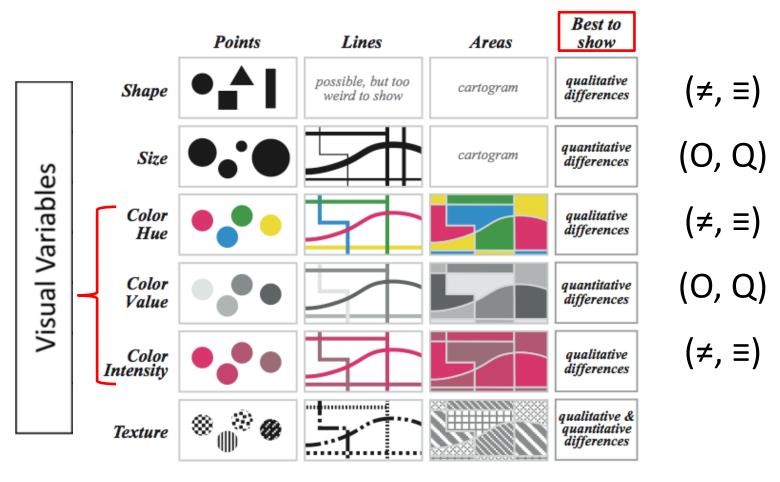
- Defines a system of "grammatical elements" of graphs and relations among visual attributes that give meaning (semantics) from perceptual features
 - Planar variables: (x,y) coordinates
 - Retinal variables: shape, size, color, ...




Bertin: Semiology of graphics

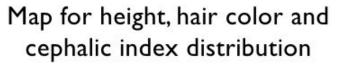
Defines a system of mapping retinal variables (marks) to properties of data variables for perception of relations

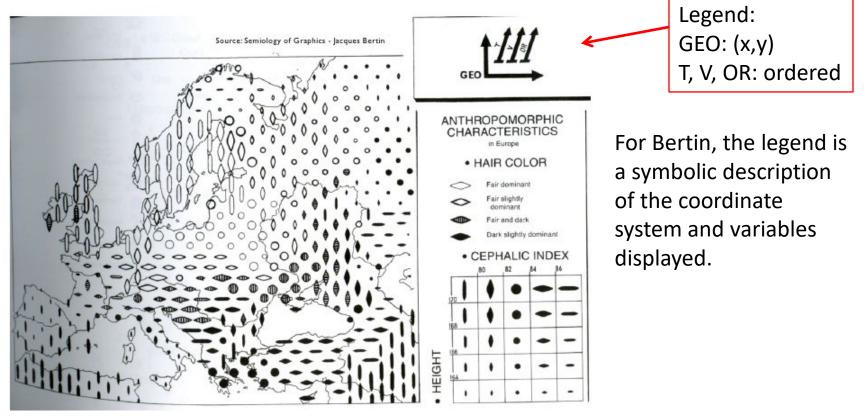
- Association (≡) marks are perceived as similar/same
- Selection (≠) marks are perceived as forming classes
- Order (O) marks are perceived as showing order
- Quantity (Q) marks are perceived as proportional
- The first theory of graphs relating visual attributes (encoding) to perceptual characteristics (decoding).
- BONUS: It comprises nearly all known graph and thematic map types in a general system


Visual variables & data characteristics

Visual variables differ in the kinds of information they can convey

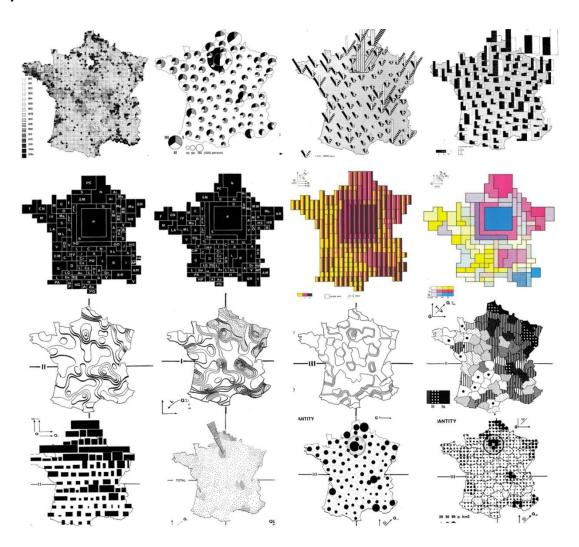
		Selective	Associative	Quantitative	Order	Length
	Position	•	•	1	1	Theoretically Infinite
Se	Size	•	••••			Selection: ~5 Distinction: ~20
Variables	Shape					Theoretically Infinite
Visual Var	Value		•••••		0<0<0<0<•••	Selection: <7 Distinction: ~10
	Color	•				Selection: <7 Distinction: ~10
	Orientation	7/				Theoretically Infinite
	Texture	• Ø	\emptyset			Theoretically Infinite
		(≠)	(≡)	(Q)	(O)	15


Some recommendations


Various authors have used Bertin's system to make recommendations for the best attributes to use with different symbol types

Retinal variables allow several variables to be encoded together.

Bertin's system provides a general framework for thematic mapping, allowing multiple variables to shown simultaneously in a single map.



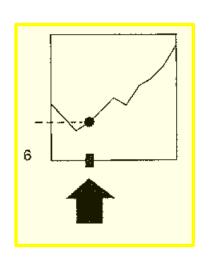
Various maps of France, encoding quantitative and categorical variables in a wide number of different ways.

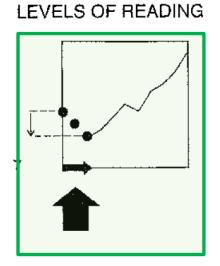
This semiology is productive, as is the semiology of language.

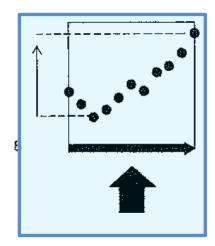
Allows one to imagine new graphic encodings.

Decoding: Reading a graphic

How successful is a graph for transmitting information? Bertin defines three stages for reading a graphic:

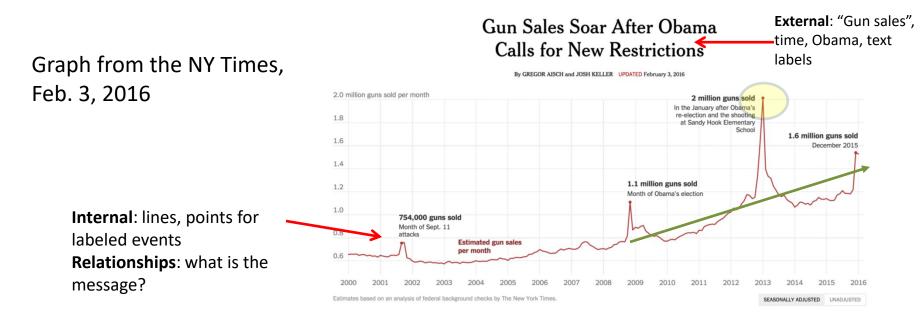

- External: What is the overall context?
 - Graph title, axis labels
- Internal: What visual variables are used to represent the components in the graphic?
 - points, lines, ...
 - size, shape, color:hue, color:intensity, texture, ...
- Relationships:
 - How are these components related?
 - What questions can I ask of this graphic?
 - What can I learn?


Research topic: Have there been any studies of this ordering in graph perception?


Reading levels

Questions a graph should answer:

- Elementary: find some specific value
- Intermediate: make comparisons, see a trend
- Overall: what is the general message or overall trend?



These ideas provided the beginnings of a theory of graphs related to graph perception.

Reading levels: Example

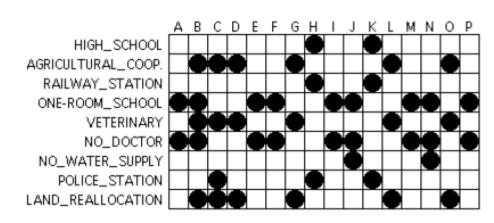
Reading tasks:

- Elementary: "How many guns were sold in January of 2013?"
- Intermediate: "What's the trend in gun sales since President Obama was elected?"
- Overall: "What's the overall trend in gun sales in America since the year 2000?"

From: https://medium.com/@karlsluis/before-tufte-there-was-bertin-63af71ceaa62

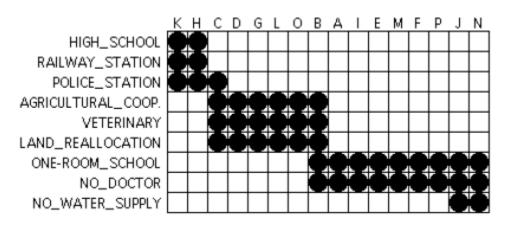
Bertin: The reorderable matrix

A data table: objects by characteristics

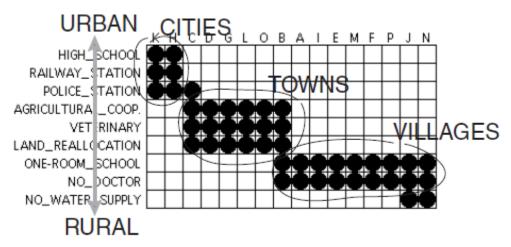

n		Α	В	С	D	E	F	G	н	1	J	К	L	М	N	0	P
1	High School	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
2	Agricultural Cooperative	0	1	1	1	0	0	1	0	0	0	0	1	0	0	1	0
3	Railway Station	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
4	One Room School	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1
5	Veterinary	0	1	1	1	0	0	1	0	0	0	0	1	0	0	1	0
6	No Doctor	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1
7	No Water Supply	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0
8	Police Station	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0
9	Land Reallocation	0	1	1	1	0	0	1	0	0	0	0	1	0	0	1	0

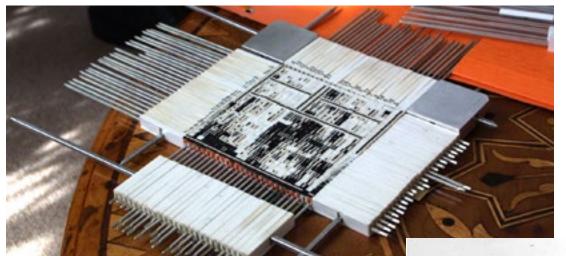
Data on facilities of townships, (No:0), (Yes:1)

Both rows and columns are classed $(\neq,\neq) \rightarrow$ reorderable


Encode each value by visual attributes

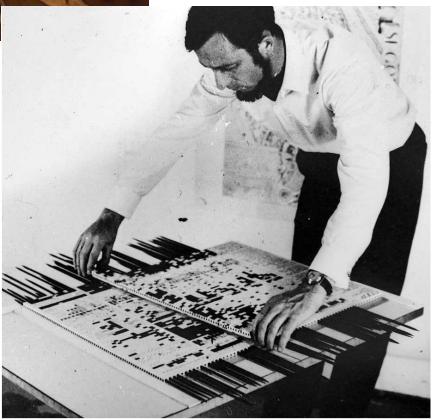
Visual encoding facilitates seeing patterns, trends, anomalies


The reorderable matrix


Permute rows and columns to put like with like

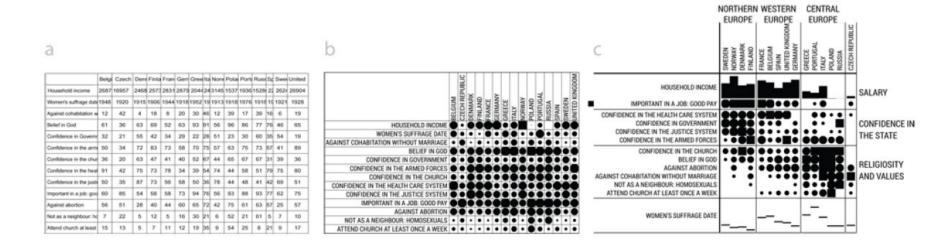
This is an early example of what I called "effect ordering" for data display

Interpret row/col order & clusters



A physical device implementing matrix reordering

This was used by Bertin and others in a large number of applied projects

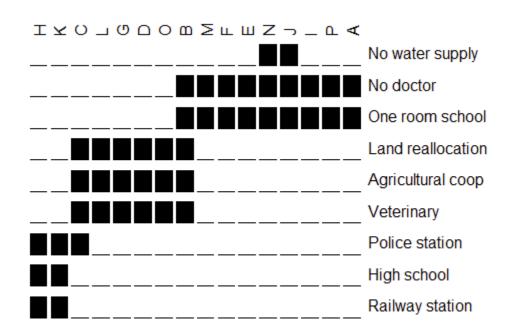

Bertin was to visual data analysis in France what Tukey was to EDA in N. America

Bertifier

Bertifier: A web app implementing Bertin's idea of the reorderable matrix

See: http://www.aviz.fr/bertifier

- (a) table: Attitudes and attributes by country
- (b) Values encoded by size and shape
- (c) Sorted and grouped by themes and country regions


Watch: Youtube video of Bertifier, http://youtu.be/tJxAF a yBQ

seriate package

Matrix reordering is now recognized as a general problem, with criteria for many different goals, implemented in the seriate package

```
> list_seriation_methods(kind="matrix")
[1] "AOE" "BEA" "BEA_TSP" "BK_unconstrained" "CA" "Heatmap"
[7] "Identity" "LLE" "Mean" "PCA" "PCA_angle" "Random" "Reverse"
```


Heatmaps

Heatmaps are a re-invention of Bertin's ideas:

- Cluster analysis to reorder rows/cols
- Shading cells to show some variable

This example shows a microarray analysis of 128 leukemia patients using 12625 genes.

- The goal is to distinguish two types of leukemia
- The shading variable is a z-score for how well a given gene distinguishes the two types.
- Several clusters of high association are discovered!

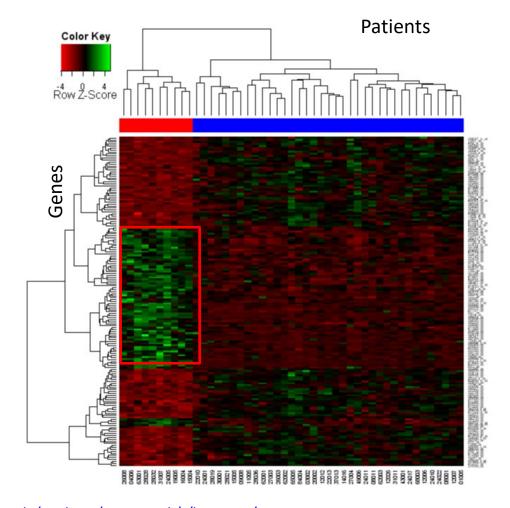
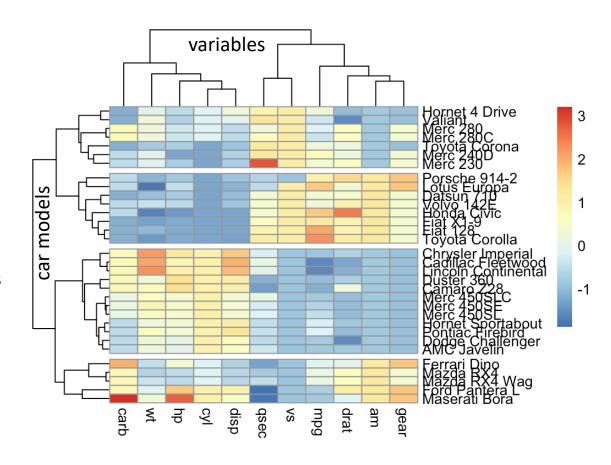


Image source: https://warwick.ac.uk/fac/sci/moac/people/students/peter cock/r/heatmap/
See also: Wilkinson & Friendly, https://warwick.ac.uk/fac/sci/moac/peter cock/r/heatmap/
See also: Wilkinson & Friendly, https://warwick.ac.uk/fac/sci/moac/peter cock/r/heatmap/
See also: Wilkinson & Friendly, https://warwick.ac.uk/fac/sci/moac/peter cock/r/heatmap/
See also: Wilkinson & Friendly,


Heatmaps: the devil is in the details

There are many implementations of "heatmaps"

They differ importantly in the details of: clustering, shading scheme

This example shows a data set of 11 measures on 32 cars from the 1974 Motor Tends magazine

- Each variable was converted to z-scores
- The value was shaded using a bipolar color scheme
- Clusters of cars are slightly separated
- The very high and low values stand out

Software for computer graphics

How to ask a computer to draw a graph?

data

ELEMENT: point(position(x*y),

COORD: rect(dim(1,2))
SCALE: linear(dim(1))
SCALE: linear(dim(2))

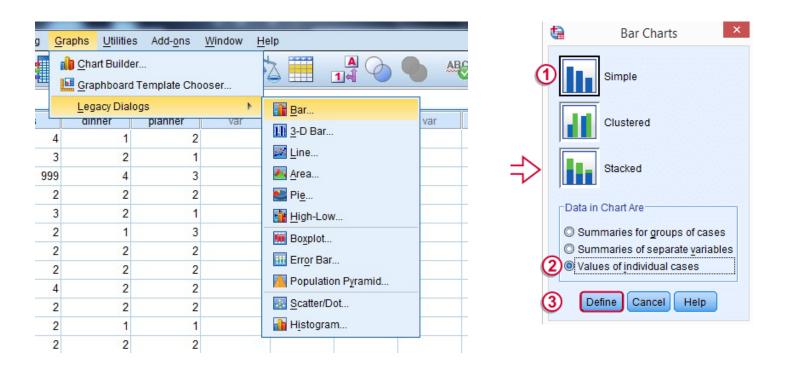
GUIDE: axis(dim(1), label("Sepa GUIDE: axis(dim(2), label("Sepa

BEG: "Pretty please,

Mr. Computer, draw

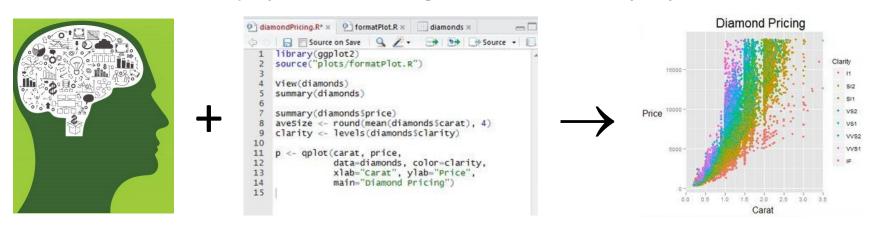
me a graph"

code



graphical output

Making graphs: menus vs. syntax


Menu-driven graphics provide a wide range of graph types, with options What's wrong with that?

WYSIAYG: What you see is **all** you get. No way to do something different **Not reproducible**: Change the data \rightarrow Re-do manually from scratch Often designed by programmers with little sense of data vis

Programming languages: Power & elegance

- CS view: All programming languages can be proved to be equivalent (to a Turing machine)
- Cognitive view: Languages differ in:
 - expressive power: ease of translating what you want to do into the results you want
 - elegance: how well does the code provide a humanreadable description of what is done?
 - extensibility: ease of generalizing a method to wider scope
 - learn-ability: your learning curve (rate, asymptote)

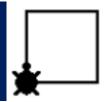
Programming languages: Power & elegance

My journey

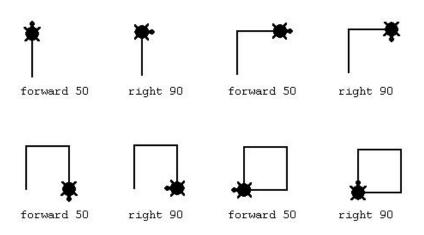
What did I learn along the way?

Language	Features:Tools for thinking?					
FORTRAN	Subroutines – reusable code					
	Subroutine libraries (e.g., BLAS)					
APL,	N-way arrays, nested arrays					
APL2STAT	Generalized reduction, outer product					
	Function operators					
Logo	Turtle graphics	advanced LOGO				
	Recursion, list processing					
Lisp, LispStat,	Object-oriented computing	Visual Statistics Social transition Department of the department of the control o				
ViSta	Functional programming	**************************************				
Perl	Regular expressions					
	Search, match, transform, apply					
SAS	Data steps, PROC steps, BY processing					
	SAS macros, Output Delivery system	Michael Friends,				
R	Object-oriented methods, tidyverse: dplyr, ggplot2,	Discrete Date Analysis with R More requirements of the More requirement				

Programming languages: Elegance - Logo


Features:

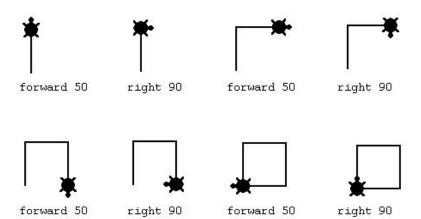
- Based on Lisp, but tuned to young minds
 - Papert: Mindstorms: Children, Computers, and Powerful Ideas (1980)
- Turtle graphics: draw by directing a turtle, not by (x,y) coords
 - Analytic geometry rests on a coordinate system.
 - Turtle geometry is "body syntonic": Tell turtle what to do.
- Data types:
 - words, lists, arrays, property lists
- Lists & list processing: inherited from Lisp, but with gentler syntax.
 - Lists are infinitely expandable & nestable.
- Recursion rather than iteration is the natural method to process lists
- Extensions:
 - multiple, animated turtles (sprites);
 - object-oriented programming (message passing) -> SmallTalk



Logo: Turtle graphics

Turtle primitives: forward, back, left, right, penup, pendown, ...

pen down



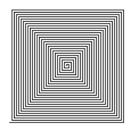
No need for (x, y) coordinates Just tell a turtle what to do!

How to encapsulate that?

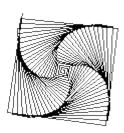
Logo: Procedures

Turtle primitives: forward, back, left, right, penup, pendown, ...

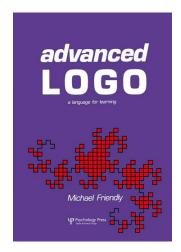
Logo **procedures**: teach the turtle a new word

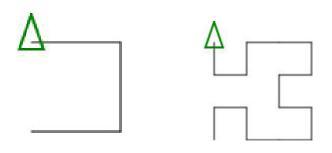

> to square :side repeat 4 [fd :side rt 90] end

> square 100



Recursive procedures:


> to spiral :size :angle if :size > 100 [stop] forward :size right :angle spiral (:size + 2) :angle end


> spiral 0 90

> spiral 0 91

Logo: Hilbert curves

Logo was more than just pretty pictures

It was graphics & mathematics for young minds: A language for learning

to Hilbert0 :turn :size

right :turn

forward:size

left :turn

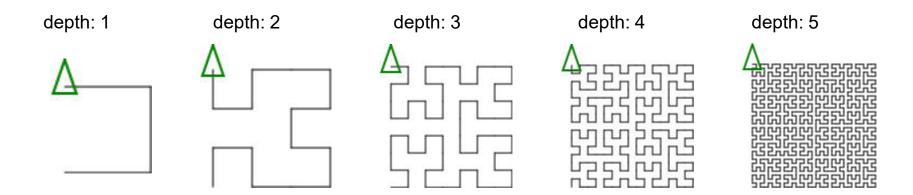
forward:size

left :turn

forward :size

right :turn

end


Start with some basic shape

What happens if you replace each line with a smaller copy of the basic shape?

What happens if you continue this process?

What happens if you choose a different basic shape?

Logo: Hilbert curves


```
to Hilbert :depth :turn :size
if :depth = 0 [stop]
right :turn
Hilbert (:depth-1) -:turn :size
forward :size
left :turn
Hilbert (:depth-1) :turn :size
forward :size
Hilbert (:depth-1) :turn :size
left :turn
forward :size
Hilbert (:depth-1) -:turn :size
right :turn
end
```

Hilbert curve: A continuous, space-filling fractal, of Hausdorff dimension 2

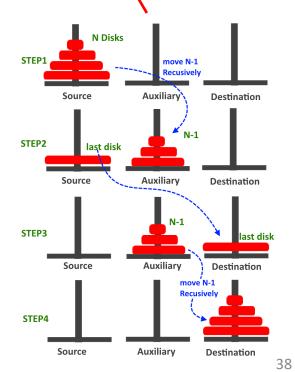
Theorem (Hilbert, 1891): The euclidean length of the n-th depth Hilbert curve, H_n is $2^n - \frac{1}{2^n}$

Proof (by enumeration): Redefine forward to calculate total turtle path length

```
to forward.length :size
make "total.length :total.length + :size
forward :size
end
```

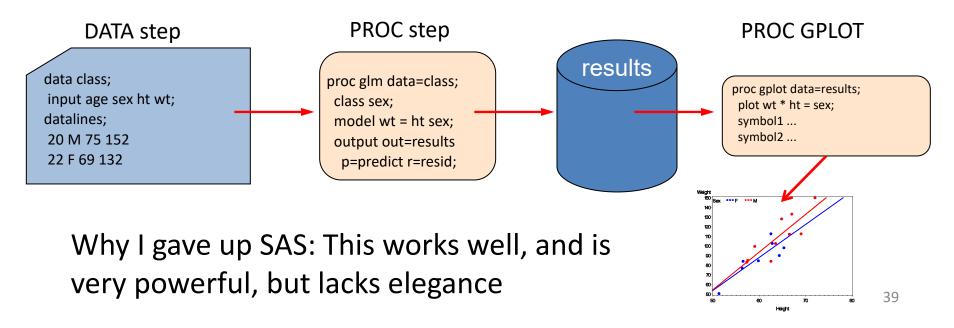
Logo: Tower of Hanoi


Move N disks from one pole to another, with no disk ever resting on a disk smaller than itself.


```
to Hanoi :n :start :goal :spare if :n=0 [stop]
Hanoi :n-1 :start :spare :goal move :n :start :goal
Hanoi :n-1 :spare :goal :start end
```

move disks 1:n from START to GOAL
are we done?
move disks 1:n-1 from START to SPARE
move disk n from START to GOAL
move disks 1:n-1 from SPARE to GOAL

A direct translation of an algorithm into code


The Tower of Hanoi problem has an elegant solution in Logo Change the 'move' instruction to render on screen or by a robot!



Graphics programming languages: SAS

- SAS: procedures + annotate facility + macros
 - PROC GPLOT (x,y plots), PROC GCHART, PROC GMAP, ...
 - Annotate: data set with instructions (move, draw, text, fonts, colors)
 - Macros: Create a new, generic plot type, combining PROC steps and DATA steps.

SAS thinking: many languages

ODS graphics

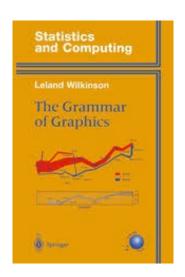
template language

Output delivery system (ODS)

%macro language

proc iml

- matrix language, graphics
- procs, Annotate language SAS/Graph:


Base SAS, SAS/STAT

• data step, proc steps

Wilkinson: Grammar of Graphics

- Natural language:
 - Grammar/syntax: What are the minimal, complete set of rules to describe all well-formed sentences?
 - John ate the big red apple

- John big apple red apple ate the
- Semantics: How to distinguish meaning, nonsense, poetry in well-formed sentences?
 - Large green trucks carry garbage
 - Colorless green ideas sleep furiously ??
- How to apply these ideas to graphics?
 - Grammar: Algebra, scales, statistics, geometry, ...
 - Semantics: Space, time, uncertainty, ...
 - Needed: a complete formal theory of graphs & computational graphics language

Wilkinson: Grammar of Graphics

- A complete system, describing the components of graphs and how they combine to produce a finished graphic
 - "The grammar of graphics takes us beyond a limited set of charts (words) to an almost unlimited world of graphical forms (statements)" (Wilkinson, 2005, p. 1).
 - "... describes the meaning of what we do when we construct statistical graphics ... more than a taxonomy"
 - "This system is capable of producing some hideous graphics ... This system cannot produce a meaningless graphic, however."
- This is a general theory for producing graphs.
 - the foundation of most modern software systems;
 - not connected with a theory for reading graphs à la Bertin.

Wilkinson: Grammar of Graphics

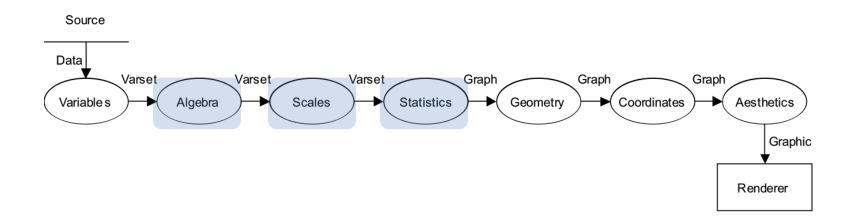
- Components:
 - specification: a formal language for composing graphs
 - assembly: coordination of attributes
 - internal: a data structure for a graphical "object"
 - rendering: producing a graphic on a display system
 - low level: device drivers for screen, PDF, PNG, SVG, ...

ELEMENT: point(position(x*y),

COORD: rect(dim(1,2))
SCALE: linear(dim(1))
SCALE: linear(dim(2))

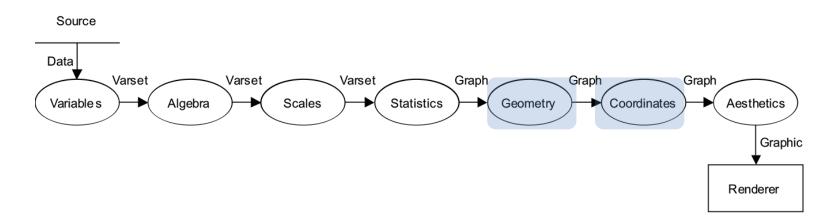
GUIDE: axis(dim(1), label("Sepa GUIDE: axis(dim(2), label("Sepa

data structure


graphical output

code

Grammar of Graphics: Specification


- Algebra: combine variables into a data set to be plotted
 - cross (A*B), nest (A/B), blend (A+B), filter, subset, ...
 think: dplyr
- Scales: how variables are represented
 - categorical, linear, log, power, logit, ...
 SCALE: linear(dim(1))
- Statistics: computations on the data
 - binning, summary (mean, median, sd), region (CI), smoothing

Grammar of Graphics: Specification

- Geometry: Creation of geometric objects from variables
 - Functions: point, line, area, interval, path, ...
 - Partitions: polygon, contour,
 - Networks: edge
 - Collision modifiers: stack, dodge, jitter
- Coordinates: Coordinate system for plotting
 - transformations: translation, rotation, dilation, shear, projection
 - mappings: Cartesian, polar, map projections, warping, Barycentric
 - 3D+: spherical, cylindrical, dimension reduction (MDS, SVD, PCA)

Grammar of Graphics: Specification

- Aesthetics: mapping of qualitative and quantitative scales to sensory attributes (extends Bertin)
 - Form: position, size, shape (polygon, glyph, image), rotation, ...
 - Surface: color (hue, saturation, brightness), texture (pattern, orientation), blur, transparency
 - Motion: direction, speed, acceleration
 - Sound: tone, volume, rhythm, voice, ...

- Text: label, font, Size, ...
- Facets: Construct multiplots ("small multiples") by partitioning, blending or nesting
- Guides: Allow for reading the encodings of variables mapped to aesthetics
 - scales: axes, legend (labels: size, shape, color, ...)
 - annotations (title, footnote, line, arrow, ellipse, text, ...)

Grammar of Graphics: Implementation

- Wilkinson illustrates the GoG with a programming language (GPL: the Graphics Production Language)
- GPL statements
 - DATA: expressions that create variables to display from data sets
 - TRANS: variable transformations prior to plotting (e.g., ranking the data points)
 - **ELEMENT**: define graphical elements (e.g., points, lines, ...) and their aesthetic attributes (e.g., shape, color, ...) to use in the display
 - SCALE: apply scale transformations to the plot (e.g., square root or log)
 - COORD: select the coordinate system for use in the graphic (e.g., Cartesian, polar)
 - GUIDE: guides to aid interpretation (axes, legends)

GPL example: scatterplot

A simple scatterplot of the Iris data, points colored by species

```
DATA: x = "SepalLength"

DATA: y = "SepalWidth"

DATA: z = "Species"

TRANS: x = x

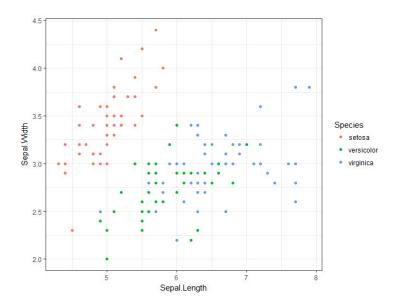
TRANS: y = y

ELEMENT: point(position(x*y), color(z))

COORD: rect(dim(1,2))

SCALE: linear(dim(1))

SCALE: linear(dim(2))


GUIDE: axis(dim(1), label("Sepal Length"))

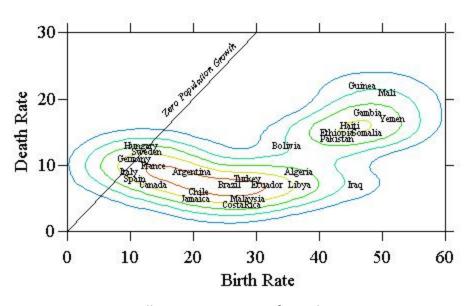
GUIDE: axis(dim(2), label("Sepal Width"))
```

TRANS, SCALE, COORD and GUIDE all show the defaults & aren't necessary here.

The key one is ELEMENT, specifying points, positioned by (x*y) and colored by z

SPSS graphics now use GPL as the backend (syntax) for their graphics engine

GPL example: contour plot


A smoothed contour plot of birth rate vs. death rate for selected countries

ELEMENT: point(position(birth*death), label(country))

ELEMENT: contour(position(smooth.kernel.density(birth*death)), color.hue())

GUIDE: form.line(position((0,0), (30,30)), label("Zero population growth"))

GUIDE: axis(dim(1), label("Birth rate"))
GUIDE: axis(dim(2), label("Death rate"))

Wilkinson, Grammar of Graphics, Fig 1.1

GPL syntax

The essential features of a graph are described by **ELEMENT**

- The geometrical objects (point, line, interval, ...) are specified within this
- Their visual properties (position, color) and statistical summaries are given as well

Some typical graph types:

Graph	Syntax
scatterplot	ELEMENT: point (position (d*r))
$line\ chart$	ELEMENT: $line(position(d*r))$
bar chart	ELEMENT: $interval$ ($position$ ($d*r$))
hor. bar chart	COORD: rotate (270)
	ELEMENT: point (position (d*r))
clustered bar chart	ELEMENT: $interval.dodge$ (position (d*r),
	color(c))
stacked bar chart	ELEMENT: $interval.stack$ (position
	(summary.proportion(r), color(c))
histogram	ELEMENT: interval (position
	(summary.count(bin.rect(y))))

From: Pere Milán, Imagining data with ggplot2, QM Forum presentation, Nov. 23, 2015

GPL in SPSS syntax

```
GGRAPH
```

/GRAPHDATASET NAME="graphdataset" VARIABLES=read write /GRAPHSPEC SOURCE=INLINE.

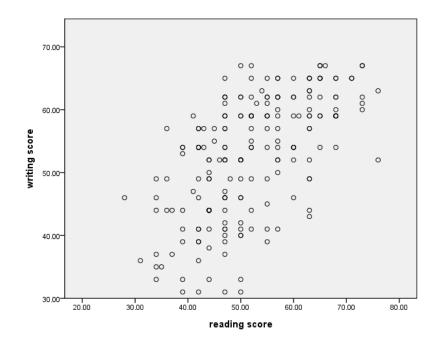
BEGIN GPL

SOURCE: s=userSource(id("graphdataset"))

DATA: read=col(source(s), name("read"))

DATA: write=col(source(s), name("write"))

GUIDE: axis(dim(1), label("reading score"))


GUIDE: axis(dim(2), label("writing score"))

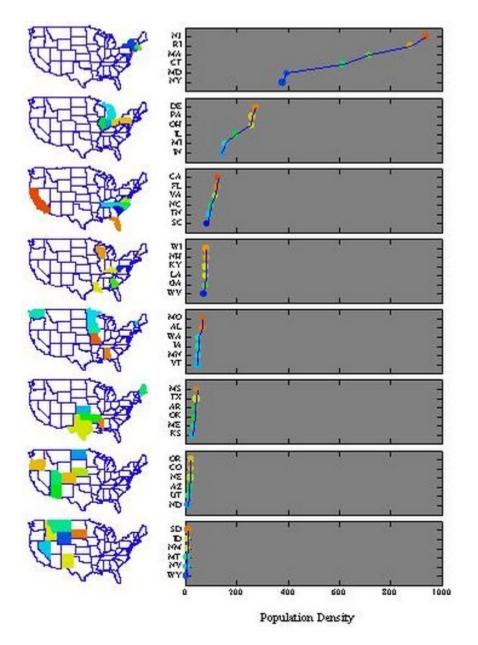
ELEMENT: point(position(read*write))

END GPL.

SPSS menu choices → GPL code You can:

- Extract the code
- Tweak it
- Save to make it reproducible

Facets & frames


Tables of graphs:

- Facets: → graphs of subset
- Frames: → separate graphs

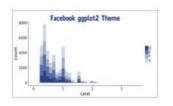
Linked micromap:

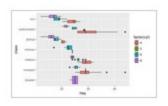
- Population density of US, divided in octiles
- States in each octile shown separately

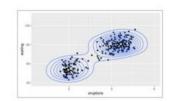
GoG was a coherent language for specifying and producing nearly all known graphic forms.

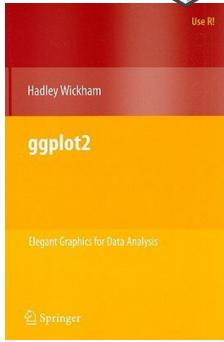
Colorless green graphs sleep furiously

- JSM 2017: Dinner with Lee Wilkinson, Howard Wainer, Paul Vellman, & others
- The great debate:
 - LW: The GoG is a complete theory, a formal mathematical model comprehending all graphs.

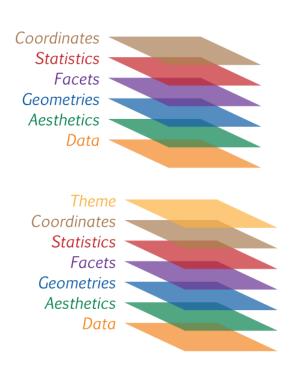

"Beauty is truth, truth beauty,"--that is all Ye know on earth, and all ye need to know.


- MF: There is more--
 - Implementation matters: translating a graphic idea into a finished graph should be facilitated by the language of graphic code.
 - A productive language for graphs should encompass the steps of data analysis
- Pere Milán: A truly expressive graphic language should recommend the right graphic(s) to "get the message home"

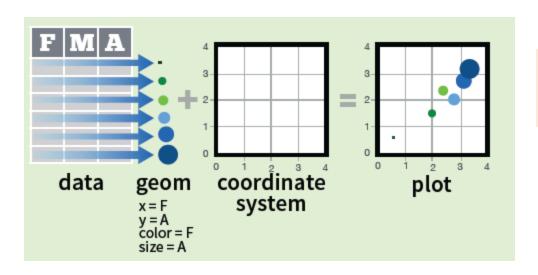

Wickham: ggplot2



- ggplot2: Elegant graphics for data analysis
 - a computational language for thinking about & constructing graphs
 - sensible, aesthetically pleasing defaults
 - + themes: default, bw, journal, tufte, ...
 - infinitely extendable
 - ggplot extensions:
 https://exts.ggplot2.tidyverse.org/



Wickham: ggplot2


- Implementation of GoG in R as layers of a graphic
 - Basic layers:
 - Data,
 - Aesthetics (data → plot mapping)
 - Geoms (points, lines, bars, ...),
 - Statistics: summaries & models
 - Coordinates: plotting space
 - Facets: partition into sub-plots
 - Themes: define the general features of all graphical elements

ggplot2: data + geom = graph

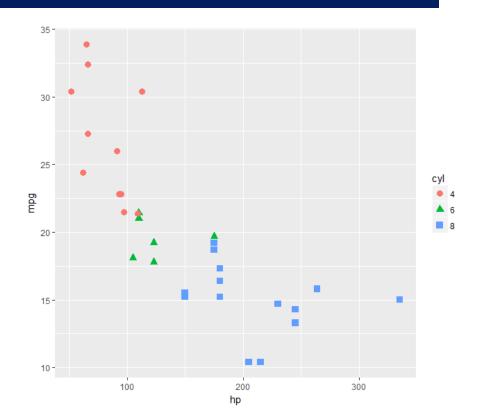
- Every graph can be described as a combination of independent building blocks, connected by "+" (read: "and")
 - data: a data frame: quantitative, categorical; local or data base query
 - aesthetic mapping of variables into visual properties: size, color, x, y
 - geometric objects ("geom"): points, lines, areas, arrows, ...
 - coordinate system ("coord"): Cartesian, log, polar, map,


```
ggplot(FMA,
aes(x=F, y=A, color=F, size=A) +
geom_point()
```

ggplot2: data + geom = graph

0

```
ggplot(data=mtcars,

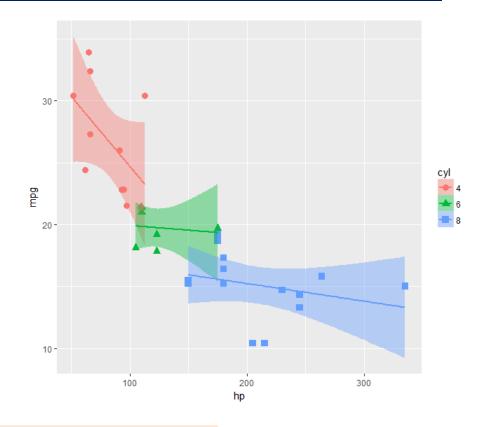

aes(x=hp, y=mpg,

color=cyl, shape=cyl)) + 3

geom_point(size=3)
```

In this call:

- data=mtcars: data frame
- aes(x=, y=): plot X,Y variables
- aes(color=, shape=): attributes
- + geom_point(): what to plot
- the coordinate system is taken to be the standard Cartesian (x,y)
- a corresponding legend is automatically generated

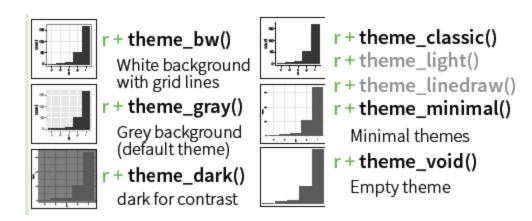


ggplot2: geoms

Wow! I can really see something there.

How can I enhance this visualization?

Easy: add a geom_smooth() to fit linear regressions for each level of cyl


```
ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
  geom_point(size=3) +
  geom_smooth(method="Im", aes(fill=cyl))
```

ggplot2: GoG -> graphic language

- The implementation of GoG ideas in ggplot2 for R created a more expressive language for data graphs
 - layers: graph elements combined with "+" (read: "and")

```
ggplot(mtcars, aes(x=hp, y=mpg)) +
  geom_point(aes(color = cyl)) +
  geom_smooth(method ="lm") +
```

themes: change graphic elements consistently

ggplot2: more geoms

Continuous X, Continuous Y

e <- ggplot(mpg, aes(cty, hwy))

e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

e + geom_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size

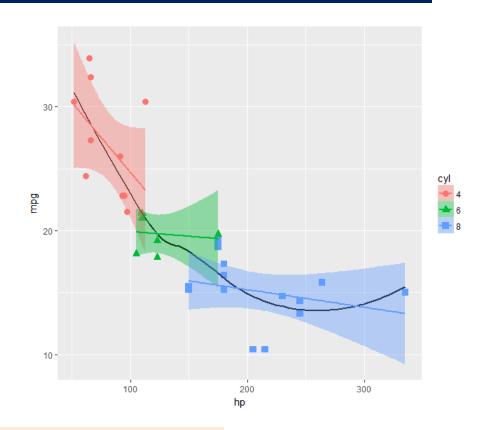
e + geom_point()
x, y, alpha, color, fill, shape, size, stroke

e + geom_quantile()
x, y, alpha, color, group, linetype, size, weight

e + geom_rug(sides = "bl") x, y, alpha, color, linetype, size

e + geom_smooth(method = lm) x, y, alpha, color, fill, group, linetype, size, weight

e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust ggplot2 facilitates graphical thinking by making a clear separation among:


- mapping data variables to plot features (aes());
- geometric objects (geom_())
- statistical summaries (stat ())

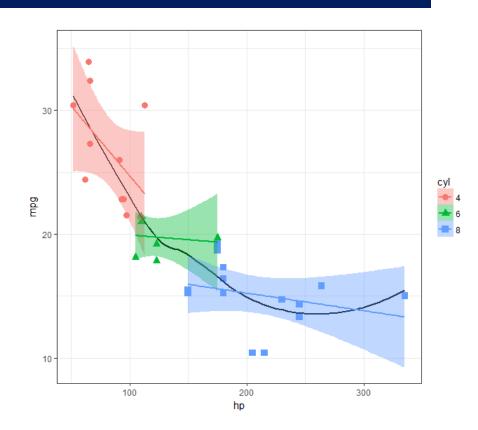
ggplot2: layers & aes()

Aesthetic attributes in the ggplot() call are inherited by geom_() layers

Other attributes can be passed as constants (size=3, color="black") or with aes(color=, ...) in different layers

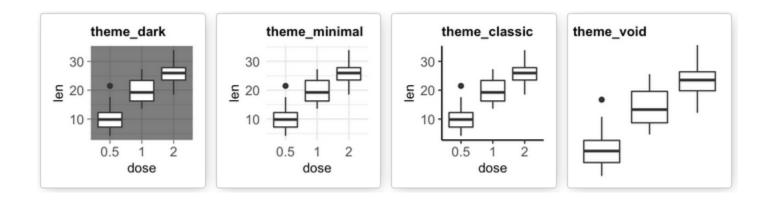
This plot adds an overall loess smooth to the previous plot


```
ggplot(mtcars, aes(x=hp, y=mpg)) +
  geom_point(size=3, aes(color=cyl, shape=cyl)) +
  geom_smooth(method="lm", aes(color=cyl, fill=cyl)) +
  geom_smooth(method="loess", color="black", se=FALSE)
```

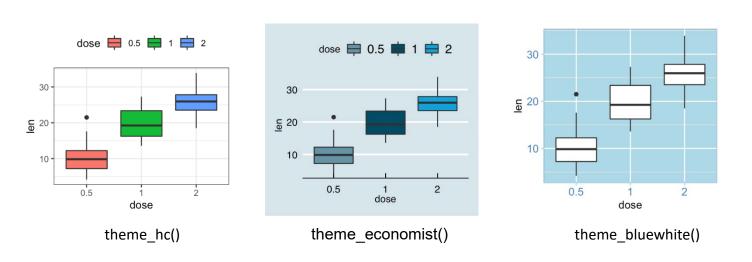

ggplot2: themes

All the graphical attributes of ggplot2 are governed by themes – settings for all aspects of a plot

A given plot can be rendered quite differently just by changing the theme

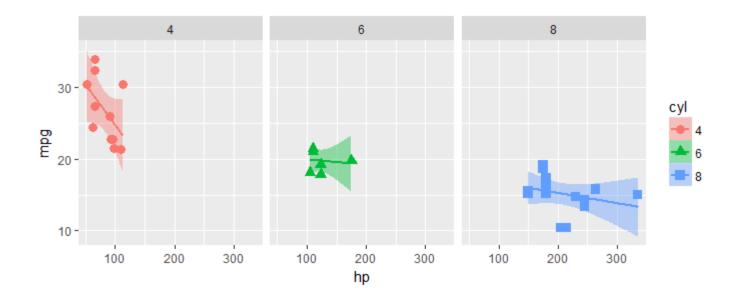

If you haven't saved the ggplot object, last_plot() gives you something to work with further

last_plot() + theme_bw()

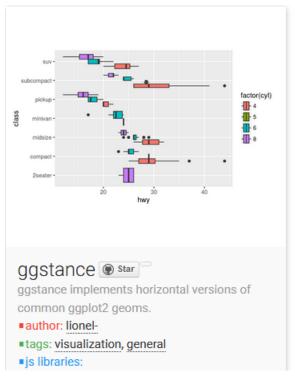


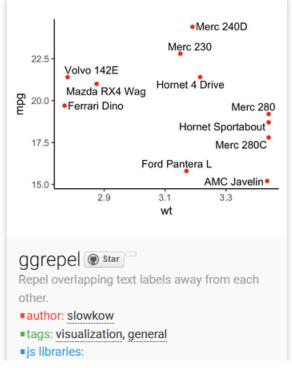
ggplot2: themes

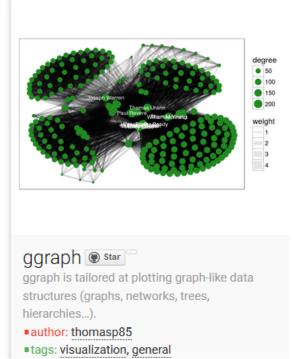
Built-in ggplot themes provide a wide variety of basic graph styles


Other packages provide custom themes, or you can easily define your own

ggplot2: facets

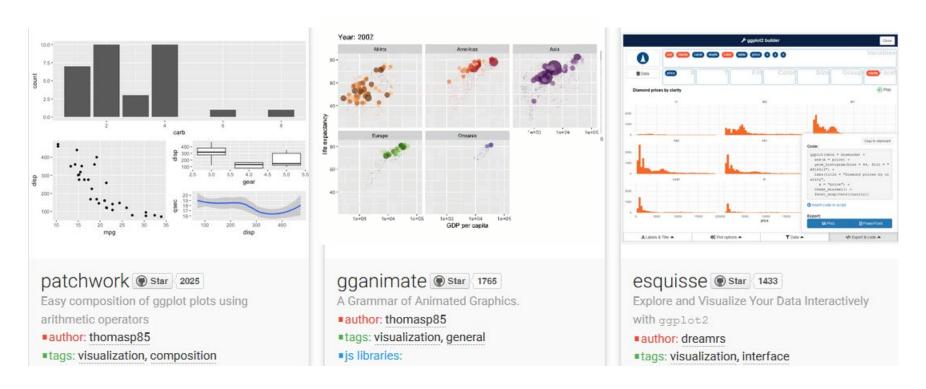

Facets divide a plot into separate subplots based on one or more discrete variables

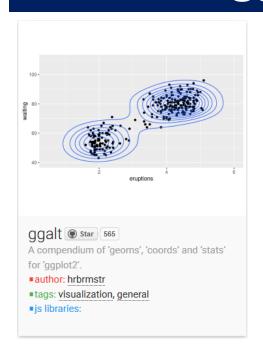

Syntax: facet_wrap(rowvar ~ colvar)

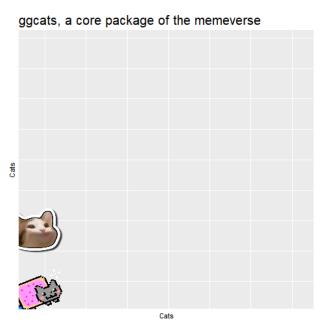


ggplot2: extensions

ggplot2 provides a prototype system for implementing new geoms, stats, themes, ... Many of these are listed at https://exts.ggplot2.tidyverse.org/

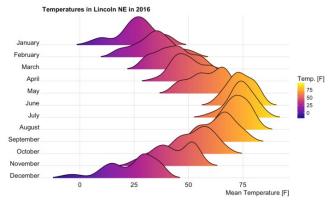


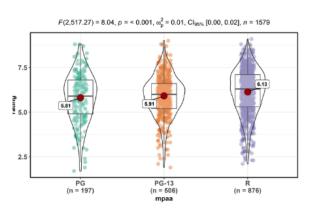



ggplot2: extensions

ggplot2 provides a prototype system for implementing new geoms, stats, themes, ... Many of these are listed at https://exts.ggplot2.tidyverse.org/

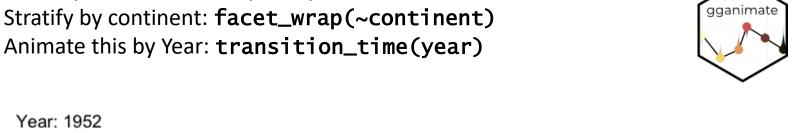
ggplot2: extensions

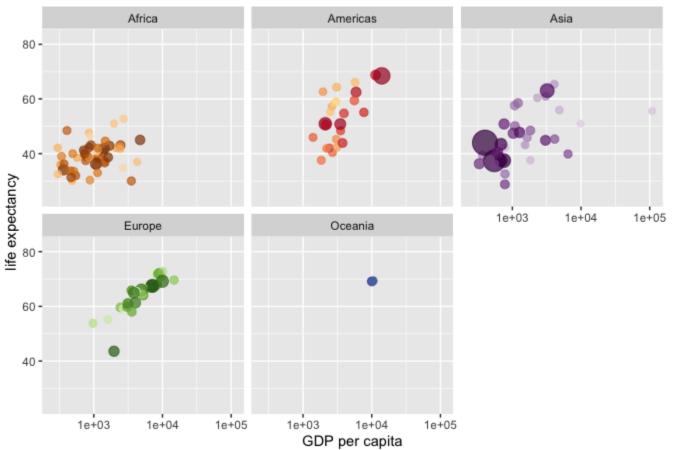



ggwordcloud

ggridges

ggstatsplot


The wide range of extensions indicates the power of ggplot2 as a general framework for data graphics


gganimate: A grammar of animation

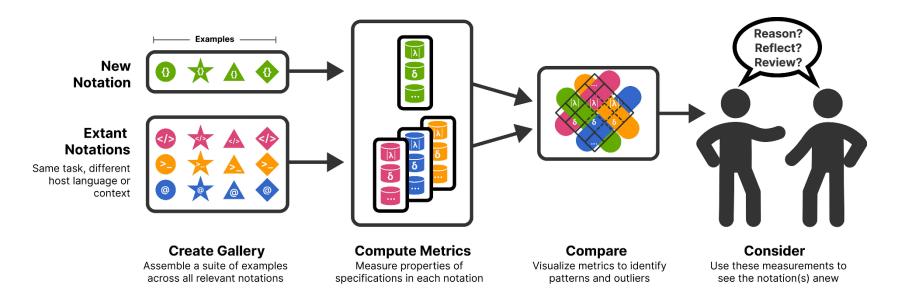
- gganimate extends ggplot2 grammar to include a structured description of animation.
- New grammar classes added to a plot object specify how it should change with time.
 - transition_*() how data should change and how it relates to itself across time.
 - view_*() how positional scales should change along the animation.
 - enter_*()/exit_*() how new data appear, and old data disappear over the animation.
 - ease_aes() defines how different aesthetics should change over transitions

Goal: Produce an animation of Rosling's gapminder data, showing how life expectancy varies with GDP per capita.

- Stratify by continent: **facet_wrap(~continent)**

Basic bubble plot by continent: lifeExp ~ gdp;

- size ~ population;
- facet ~ continent


```
library(gapminder)
ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) +
   geom_point(alpha = 0.7, show.legend = FALSE) +
   scale_colour_manual(values = country_colors) +
   scale_size(range = c(2, 12)) +
   scale_x_log10() +
   facet_wrap(~continent) +
```

Animate this:

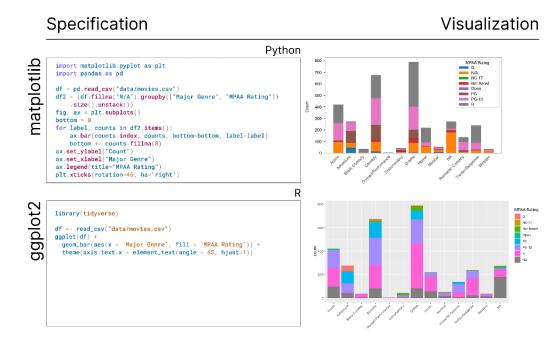
- change frame title;
- transition over year;
- interpolate linearly

Going Meta: Graphic notation

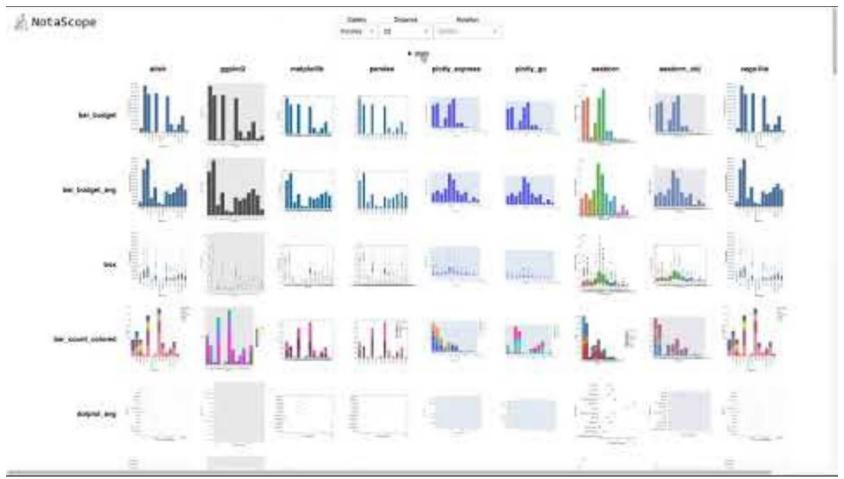
How do different software graphic languages make it easier or harder to produce the graph I want?

From: Nicolas Kruchten, <u>Usability of Visualization Notations</u>

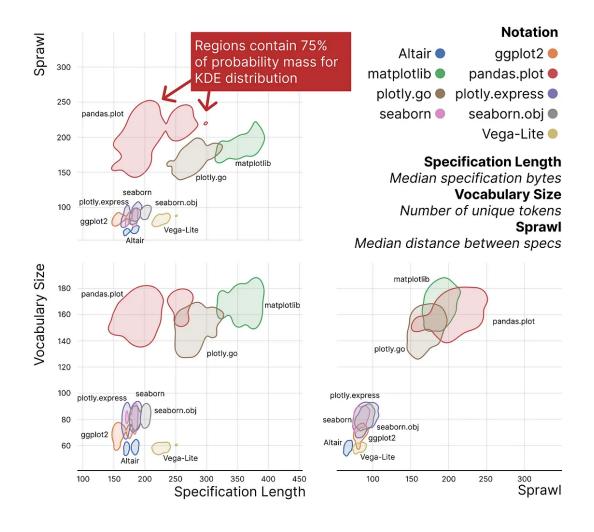
Meta: Comparing graphic notation


- Graphs can be produced in a variety of software languages:
 - R, ggplot2, D3, Vega-Lite, matplotlib, Seaborn, Plotly, ...
- How do they differ is ease of use, efficiency of expression?

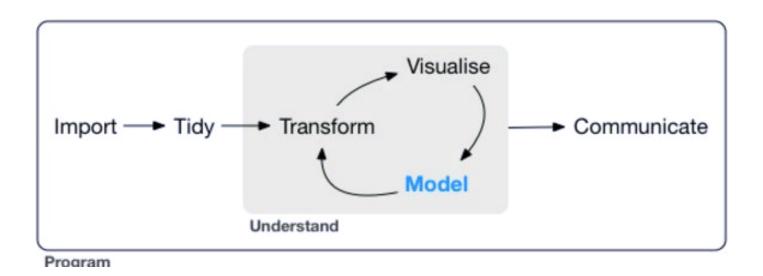
- Cognitive dimensions of notations?
 - viscosity (how easy to make changes to specifications),
 - abstraction (how easy to extend the notation),
 - closeness of mapping (how similar notation to target domain),
 - progressive evaluation (how easy to check work done to date),
 - hard mental operations (how demanding notation is of working memory).


Software metrics

- Generate a collection of graph types
- Code each in a variety of specification languages & implementations
- Calculate metrics for each:
 - Terseness: # characters in code for given graph
 - Economy: Size of vocabulary (operators, functions, ...) to combine/add new stuff
 - Viscosity: How hard to change one notation to another?


Notascope

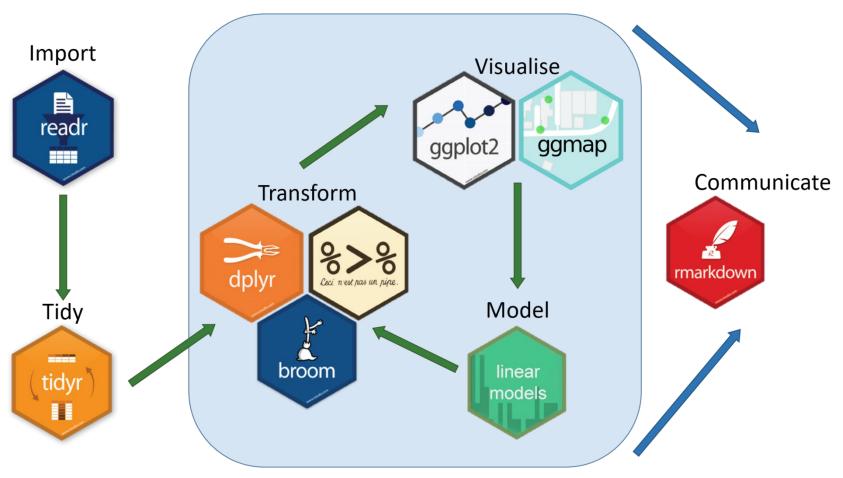
<u>https://app.notascope.io/</u> - Online tool to demonstrate the metric-driven approach to graphic software evaluation

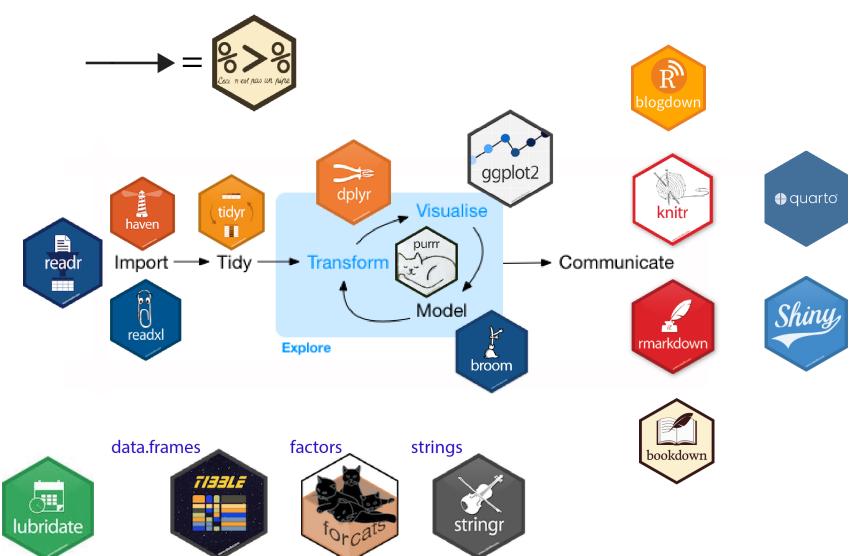

Evaluate, Analyze

Given a collection of graphs, implementations and metrics, we can better understand the how software languages differ in translation from IDEA \rightarrow CODE \rightarrow GRAPH

A larger view: Data science

- Data science treats statistics & data visualization as parts of a larger process
 - Data import: text files, data bases, web scraping, ...
 - Data cleaning → "tidy data"
 - Model building & visualization
 - Reproducible report writing




The tidyverse of R packages

These ideas inspire a larger view of data analysis and graphics based on tidy principles.

The tidyverse expands

Summary

- Graphical developers in the Golden Age recognized the idea of "graphic language," but could not define it.
- Bertin first formalized the relations between graphical features ("retinal variables"), data attributes (O, Q, ≠, ≡), and "reading levels"
- Wilkinson, in GoG, created a comprehensive syntax and algebra to define any syntactically correct graph
- Wickham, in ggplot2, created an expressive language to ease the translation of graphic ideas into plots.
- More general views can evaluate usability of graphic notations
- Tidyverse ideas place data analysis & graphics within a communication-oriented, reproducible research framework.