

Efficiency of Stream Graphs

By Holly Echlin and Samantha Roberts

PSYC 6135

Stream Graphs

- Popularized in 2008 by New York Times journalist in an article displaying box office revenues (Bloch, Byron, Carter, & Cox, 2008)
- Variation of the stacked area chart
- Organic shapes "streams"
 displaying change over
 time
- Visually appealing

FEEDBACK

Benefits of Using Stream Graphs

- Minimization of 'wiggle' in data points seen in the stacked bar graph
- Provides the ability to look at data of multiple groups overtime
- Shows all data points rather than magnitude data at specific time points
- More visually appealing and increased readability (Thudt et al., 2016)

Focus of Covid-19 deaths has switched from Asia to Europe - and now the US

Daily deaths of patients diagnosed with coronavirus

Drawbacks to Stream Graphs

- Easily cluttered
- Does not support negative values (or combinations of negative and positive values together)
 - No clear baseline to differentiate
 positive and negative data values
- Challenging to read the scale at a glance due to the lack of y-axis
- Difficult to draw relationships between variables

Equivocal Literature Comparing Stacked Bar and Stream Graphs

- Stream graphs have been found to smooth distortions of each stream which has been found to improve the readability over ThemeRiver but not stacked bar graphs (Thudt, 2016)
- Stream graphs have been found to reduce the time-series distortion which has been found to improve the readability over basic stacked bar graphs (Byron & Wattenberg, 2008; Vander Plaus, 2015)
- Analyzed several examples of causal stream graphs published on the web and concluded that stream graphs are difficult to read due to their uncommon shapes (Kirk, 2010)
- Stream graphs have been found to be more aesthetically appealing; however, the low-distortion of stream graphs based on the perception of curved slopes and slope ratios have been found not to improve the readability over stacked bar graphs (Bartolomeo & Hu, 2016)

Perceptual Factors

Journal of the American Statistical Association, September 1984

Stream Graphs in the Media:

COVID-19 Data

Data sources: Our World in Data. World Bank 2020 classifications used for country groups.

Methods

Participants

- 120 adults: 60 female and 60 male
- York University Research Participant Pool
- Demographics:
 - Age
 - Sex
 - Years of post-secondary education
 - # of statistics courses taken

Procedure

Training trial

Feedback

Experimental Task

• Here is the question you must answer after viewing the graph on the upcoming screen:

At the end of January, which part of the world had the third highest number of COVID-19-positive adults?

- Please press the spacebar to continue.
- Once the upcoming graph is displayed, you will have a maximum of 30 seconds to choose your answer from a multiple-choice list on the following screen. Try to answer as quickly and accurately as possible.
- Please press the spacebar when you are ready to view the graph.

At the end of January, which part of the world had the third highest number of COVID-19-positive adults?

Participants will see everything on the same screen:

Data Analyses

Average time to respond

- Regression analyses for each of the conditions
- Independent variables:
 - The 2 graph types, age, sex, question about graph, and previous exposure to a statistics course

Order of Counterbalancing for Both Groups

Group A	Stacked bar	Stream graph	Stacked bar	Stream graph	Stacked bar
	(1 st question)	(1 st question)	(2 nd question)	(2 nd question)	(3 rd question)
Group B	Stream graph	Stacked bar	Stream graph	Stacked bar	Stream graph
	(1 st question)	(1 st question)	(2 nd question)	(2 nd question)	(3 rd question)

Note. The order continues for 60 trials including and beyond the order shown here.

Types of Questions to Ask

- Data-related variables to assess
 - Slope (e.g., which month shows the greatest increase for BC)
 - Magnitude (e.g., on which day does Quebec have the most cases)
 - Relationship (e.g., on the 24th: what is the relationship between Quebec and Ontario)
- Graph-related variables to assess
 - Continuous versus discrete data
 - Small versus larger number of groups
 - Perceptual factors (e.g., easiest to read the group that is lowest visually on the graph)

Stacked Bar Graph

Anticipated Results

- We're hoping to derive basic perceptual principles
 - e.g., confirming whether it's easier to read stream graphs when the slope is steeper (might have less of an impact on a bar graph)
 - e.g., we often impose lines to show trends or patterns in data and this might be a way that we are familiar with analyzing our data – given the continuous lines of a stream graph, might suggest they'd be better at showing trends
 - While stacked bar graphs might be better at identifying data at a specific point
- Expecting a type of question by type of graph interaction
- Specific results include
 - Position on graph, number of groups, judging proportions, etc.