Visualizing Uncertainty

Adina Levi & Shaya Samet PSYC 6135: Psychology of Data Visualization Dr. Michael Friendly

Agenda

- 1. Navigating uncertainty through visualization
- 2. Visualization pipeline, i.e., modelling and acquisition, filtering and transformations, mapping and rendering, perception and cognition, and interaction
- 3. Broad visualization techniques, i.e., graphical annotations and visual encoding methods
- 4. Cognitive theories underlying visualizing uncertainty with examples (e.g., hypothetical outcome plot and ensemble display)
- 5. Discussion questions

Visualization Pipeline

Modelling and Acquisition

- Uncertainty can refer to varying aspects of data, such as error and variability that may impact the quality of the data.
- To understand the type of uncertainty you are visualizing, you must:
 - Understand the source of uncertainty
 - Understand the nature of the uncertainty

Graphical Annotations of Distributional Properties

Uncertainty visualization technique #1:

Graphical annotations

Uncertainty visualization technique #2:

Visual encodings and hybrid approaches

probability density and interval plot

Filtering and Transformations

- Reduce the amount of data shown or simplify the data to reduce its complexity
- Techniques:
 - 1. Set ranges
 - 2. Clustering groups adds structure to the data
 - 3. Reduce dimensionality

Mapping and Rendering

- Transformed data is produced into a representation
- Develop appropriate visual mappings
- Consider variables such as:
 - Colour
 - Opacity
 - Contour crispness
 - Transparency
 - Resolution
 - Geometric attributes

Resolution

Uncertainty visualizations for future projections

Perception and Cognition

- Design the visualization so that it is understandable by the recipient i.e., consider human factors.
- Caution to convey uncertainty and avoid misinterpretations.

Visualizing uncertainty: Cognitive theories

Theory	Summary	Visualization Techniques
Frequency Framing [30] (Section 1.2)	Uncertainty is more intuitively understood in a frequency framing (1 out of 10) than in a probabilistic framing (10%)	icon array [13], quantile dotplot [11], hypothetical outcome plots [10]
Attribute Substitution [31] - Deterministic Construal Error [32] (Section 1.2)	If given the opportunity, viewers will mentally substitute uncertainty information for data that are easier to understand	hypothetical outcome plots [10]
Visual Boundaries = Cognitive Categories [21] (Section 1.2)	Ranges that are represented by boundaries lead people to believe that data inside and outside the boundary are categorically different	ensemble display [12], error bar alternatives [7, 9]
Visual Semiotics [14] (Section 1.2)	Some encoding techniques naturally map onto uncertainty	fuzziness, transparency, location, etc. [14], value-suppressing color pallet [25]

Hypothetical Outcome Plot (HOP)

Visualizing uncertainty: Cognitive theories

Theory	Summary	Visualization Techniques
Frequency Framing [30] (Section 1.2)	Uncertainty is more intuitively understood in a frequency framing (1 out of 10) than in a probabilistic framing (10%)	icon array [13], quantile dotplot [11], hypothetical outcome plots [10]
Attribute Substitution [31] - Deterministic Construal Error [32] (Section 1.2)	If given the opportunity, viewers will mentally substitute uncertainty information for data that are easier to understand	hypothetical outcome plots [10]
Visual Boundaries = Cognitive Categories [21] (Section 1.2)	Ranges that are represented by boundaries lead people to believe that data inside and outside the boundary are categorically different	ensemble display [12], error bar alternatives [7, 9]
Visual Semiotics [14] (Section 1.2)	Some encoding techniques naturally map onto uncertainty	fuzziness, transparency, location, etc. [14], value-suppressing color pallet [25]

Visual boundaries = Cognitive categories

Potential solution: Ensemble display

Liu et al., 2015

Interaction

• The user's ability to engage with the visualization

Weiskopf, 2022

Summary & Conclusion

- Uncertainty has a significant impact on visualizations and how recipients perceive and understand the information.
- Uncertainty visualization can be challenging due to the interplay of the different components in the visualization process.
- Cognitive theories play a role in how we perceive uncertainty in visualizations
- Techniques: Visual variables such as colour, opacity, contour crispness, transparency, resolution, and geometric attributes can be used to represent uncertainty along with interactive techniques
- Uncertainty visualizations can have real-world safety implications (i.e., weather forecasting)

Discussion Questions

- 1. What are some uncertainty techniques that speak to you/do not speak to you?
- 2. Do you have any personal experience with misinterpreting a graph depicting uncertainty based on the way it was visualized?
- 3. How can graph designers balance the need for accuracy and precision with the desire for simplicity and clarity in uncertainty visualization?
- 4. How do cultural or societal factors influence the perception and interpretation of uncertainty in visualization techniques?