Making the Visible: Visualizing Latent Variables in Structural

Equation Modeling

Gabriel Crone PSYC 6135 Class Presentation

Making the nvisible visible: **Visualizing Latent Variables in Structural**

Equation Modeling

Gabriel Crone PSYC 6135 Class Presentation

Presentation Overview

Definitions & Factor Score Estimation Reccomended plots & flexplavaan package Visualizing nonlinear SEMs!

Software Demo!

Generating Plots in R with Guided Example

Introduction

Definitions & Factor Score Estimation

What are Latent Variables?

- Two types of variables: those we can observe, and those we cannot
 - Observed = Manifest
 - E.g., height, weight, temperature, survey item scores, time
 - Our Constraints of the second seco
 - E.g., depression, anxiety, mood, boredom, life satisfaction, and many more!

Measuring Latent Variables

- How can we measure that which we cannot observe?
- We define it in terms of what we can measure: manifest variables!
 - e.g., SPSS anxiety can be measured by individual items on a scale measuring it (see right)
- Measurement model
 - We define latent variables ("factors") in terms of their manifest variables ("indicators")

Source:

https://stats.oarc.ucla.edu/spss/seminars/introduction-tofactor-analysis/a-practical-introduction-to-factor-analysis/

What is Structural Equation Modeling (SEM)?

- Structural Equation Modeling (SEM) = Broad and powerful statistical modeling framework
- Different models within SEM capture relationships between different variables:
 - o 3 main types:
 - Path analysis
 - Factor analysis
 - Structural regression

Some Examples!

Path analysis can depict complex relationships between manifest variables!

Notation: Manifest variables are inside boxes

Path analysis

Some Examples!

Factor Analysis Models define latent factor in terms of (manifest) indicators.

Notation: Latent variables are inside circles

Test & Class Anxiety

Factor Analysis

Some Examples!

Structural Regression models depict linear relationships between latent factors!

Structural Regression

Summary of SEM Types

Model	Relationship between manifest variables?	Uses measurement model?	Relationship between latent variables?	Relationship between latent <i>and</i> manifest variables?
Path Analysis				
Factor Analysis				
Structural Regression		\mathbf{V}	\mathbf{V}	

How can latent variables be visualized?

- If latent variables are never observed, how can they be visualized?
- The answer: Factor Score
 Estimation!
 - Statistical technique that uses an SEM model to assign latent "scores" to each participant (for details, see Grice, 2001)

Factor Scores Explained

e.g., Computer anxiety defined by CARS 1 & 2

ID	CARS 1	CARS 2	Computer
1	•••	•••	???
2	•••	•••	???
3	•••	•••	???
•••	•••	•••	???
n	•••	•••	???

Factor Scores Explained

	Computer Anxiety	CARS 2	CARS 1	ID
	???	•••	•••	1
Eastar	???	•••	•••	2
Factor Estima	???	•••	•••	3
	???	•••	•••	
	???	•••	•••	n

ID	Computer Anxiety
1	•••
2	•••
3	•••
•••	•••
n	•••

Score ation

Factor Scores Explained

Visualizations for Regular SEMs

Reccomended plots & flexplavaan package

Reccomendations

- Hallgren et al. (2019) were the first to suggest using data viz in an SEM context. They suggest a couple of plots:
- 1. Latent Variable Scatterplots

Figure 2, top panel from "Beyond path diagrams: Enhancing applied structural equation modeling research through data visualization", p. 77

Cope (Y) Estimate

9

Latent Drinking

2. Mediation effect plots

Latent Rumination (M) Estimate

Figure 5a from "Beyond path diagrams: Enhancing applied structural equation modeling research through data visualization", p. 80

Reccomendations

• Fife et al. (2021) go a step further by creating several brand new plots to visualize latent variables! In their (fictional) data, their latent variables are Force and Jedi

Measurement Plot

Measurement plots are scatterplots between latent and manifest variables with fitted lines

Figure 10 from "Seeing the Impossible: Visualizing Latent Variable Models With Flexplavaan", p. 1465

Measurement Plot

Measurement plots are scatterplots between latent and manifest variables with fitted lines

force_history exam one 2. 0 Force exam three exam two

Blue lines are loess lines representing observed relationships

Figure 10 from "Seeing the Impossible: Visualizing Latent Variable Models With Flexplavaan", p. 1465

Red lines are modelimplied linear trend lines

Structural ("Crosshair") Plot

"Crosshair" plots are scattertplots with extra goodies! :)

Figure 11 from "Seeing the Impossible: Visualizing Latent Variable Models With Flexplavaan", p. 1465

Structural ("Crosshair") Plot

Figure 11 from "Seeing the Impossible: Visualizing Latent Variable Models With Flexplavaan", p. 1465

flexplavaan Package

- Fife et al. (2021) not only pioneered several data viz methods for latent vars., but they also created an R package to help!
- Flexplavaan = flexplot (easy model plotting) + *lavaan* (latent var. modeling) • Flexplavaan takes SEM models (specified with *lavaan* syntax) and allows one to create beautiful plots!

Dennis Fife, author of flexplavaan

Source: https://www.amazon.com/stores/author/B014PYL9OC

Special Cases

Visualizing nonlinear SEMs!

Not all SEMs are alike...

- Regular SEMs assume that relationships between variables are *linear* in nature. • If data are *nonlinear*, need to use another estimation method!
- Pek et al. (2009) devized a semiparametric (SEMM) approach to estimate and visualize nonlinear relationships among latent variables!

Non-linearity

Source: https://rahsoft.com/2021/04/23/nonlinearity-and-its-effects-in-rf-system/

Marginal Desnity Plot

Marginal Desnity Plots are 3 plots in one! They heavily draw on the model (the SEMM).

Marginal Desnity Plot

Positive Emotions

Marginal Desnity Plots are 3 plots in one! They heavily draw on the model (the SEMM).

Density Plots (1 per latent variable)

Marginal Mixture Density Plot

Marginal Density Plots showing effects across levels of a the latent predictor.

Marginal Mixture Density Plot

Marginal Density Plots showing effects across levels of a the latent predictor.

6 density plots! (3 per latent variable)

Software **Demo!**

Generating plots in R with Guided Example

SEM Guiding Example

- Statistics anxiety and computer anxiety tend to negatively affect students' ability to understand statistics and run statistical analyses with software.
- Situation: A researcher wants to understand:
- 1. How statistics anxiety is related to its (STARS) indicators,
- 2. How computer anxiety is related to its (CARS) indicators, and
- 3. How computer and stats anxiety are related to each other!

Source: <u>http://www.mtllabfsu.com/lab-news/new-open-access-article-about-math-anxiety-published</u>

SEM Guiding Example

• 2 Latent Variables:

- 1. Statistics Anxiety (measured by STARS)
- 2. Computer anxiety (measured by CARS)
- **10 Manifest Variables:** 5 STARS and 5 CARS items
- Sample: 500 Introductory Statistics Students Learning R. (Data is fictional!)

Demo Time!

(Note: All R Code & Output can be found <u>here</u>)

References

- Fife, D. A., Brunwasser, S. M., & Markle, E. C. (2023). Seeing the impossible: Visualizing latent variable models with flexplavaan. Psychological Methods, 28(6), 1456-1477. https://doi.org/10.1037/met0000468
- Hallgren, K. A., McCabe, C. J., King, K. M., & Atkins, D. C. (2019). Bayond path diagrams: Enhancing applied structural equation modeling research through data visualization. Addictive Behaviours, 94, 74-82. https://doi.org/10.1016/j.addbeh.2018.08.030
- Pek, J., Sterba, S. K., Kok, B. E., & Bauer, D. J. (2009). Estimating and visualizing nonlinear relations among latent variables: A semiparametric approach. Multivariate Behavioural Research, 44, 407-436. https://doi.org/10.1080/00273170903103290

Thankyou!:)

SCAN ME!

