Visualizing Uncertainty

Outline

Introduction to uncertainty visualization

Cognitive Theories Behind Uncertainty Visualization

12-Step Strategy

What is visualizing uncertainty?

Visualizing uncertainty refers to the process of representing uncertain, incomplete, or probabilistic information using graphs, charts, colours, symbols, or other visual methods

Why is visualizing uncertainty important?

- ➤ Enhances understanding and decision-making in the presence of ambiguity or variability
- ➤ Effectively communicating uncertainty is necessary for establishing scientific transparency
- > Understanding and managing uncertainty is critical in many fields:
 - Science & Engineering
 - Medicine
 - Š Finance & Economics
 - Everyday Life

Literature review

Frans, N., Hummelen, B., Albers, C. J., & Paap, M. C. (2023). Visualizing Uncertainty to Promote Clinicians' Understanding of Measurement Error. *Assessment*, 30(8), 2449-2460.

Correll, M., & Gleicher, M. (2014). Error bars considered harmful: Exploring alternate encodings for mean and error. *IEEE Transactions On Visualization And Computer Graphics*, 20(12), 2142-2151.

Belia, S., Fidler, F., Williams, J., & Cumming, G. (2005). Researchers misunderstand confidence intervals and standard error bars. Psychological Methods, 10(4), 389–396

Figure 1. Five Formats Used in This Study: Text, Error Bar, Violin Plot, Diamond Plot, Quantile Dot Plot.

(d) Violin plot: the width of the colored region corresponds to the probability density function of a t-distribution.

Uncertainty visualization theories

1. Frequency Framing

- People understand uncertainty better when expressed as frequencies
 - (e.g., "1 in 8") rather than (e.g., "12.5%")

➤ Icon arrays and quantile dot plots effectively communicate uncertainty, reducing common biases like denominator neglect.

2. Attribute Substitution & Deterministic Construal Error

- ➤ People replace complex uncertainty information with simpler, deterministic interpretations.
 - Example: When given confidence intervals in weather forecasts, people misinterpret them as high and low-temperature bounds.

3. Visual Boundaries = Cognitive Categories

Boundaries lead people to believe that data inside and outside the boundaries are categorically different

Visual Boundaries = Cognitive Categories

- Readers cannot ascertain that there's a distribution of uncertainty in the path
- > By plotting a hard boundary, readers assume that the value of boundary is meaningful.
- However, the boundaries are often not well considered.
 - Why is the boundary located at 60%?
 Why not 70%, or 95%?

Ensemble Display

Error bars

- Uncertainty can be visualized by using error bars because they show a range of values.
- ➤ It's useful to compare multiple estimates, because you can see overlap between categories.
- But what do these error bars represent?

You must specify what quantity and/or confidence level the error bars represent.

Misconception in Error Bars: Determinist Construal Errors

- Do error bars delineate the range of possible parameter estimate?
 - No, but readers might think the estimate could never fall outside the error bars. This misperception are called *deterministic construal* errors.
- To better visualize uncertainty, we want to minimize the risk of deterministic construal errors.

An Alternative: Graded Error Bars

Error bars combined with **bar plots** are commonly used

Limitation: It hides the characteristics of data

Alternatives: box plots, violin plots

4. Visual Semiotics of Uncertainty

Metaphoric associations with uncertainty; Intuitive ways to communicate uncertainty

They can restrict viewers from making overly precise judgements when uncertainty is high.

Colour hue

Colour value

Transparency

Texture

Consider your purposes

For task requiring readers to look up specific values, metaphoric uncertainty can produce worse performance

12-Step Strategy for Uncertainty Visualization Design

12-Step Strategy for Uncertainty Visualisation. Based on the Uncertainty Visualization Development Strategy (UVDS) by AnnaLiesa S. Lapinsky (2009). Created by Jana Kleineberg.

Thank you!

References

Belia, S., Fidler, F., Williams, J., & Cumming, G. (2005). Researchers misunderstand confidence intervals and standard error bars. Psychological Methods, 10(4), 389–396.

https://doi.org/10.1037/1082-989X.10.4.389

Correll, M., Gleicher, M., "Error bars considered harmful: Exploring alternate encodings for mean and error", IEEE transactions on visualization and computer graphics, vol. 20, no. 12, pp. 2142–2151, 2014

Frans, N., Hummelen, B., Albers, C. J., & Paap, M. C. (2023). Visualizing Uncertainty to Promote Clinicians' Understanding of Measurement Error. Assessment, 30(8), 2449-2460.

Hintze, J. L., & Nelson, R. D. (1998). Violin Plots: A Box Plot-Density Trace Synergism. The American Statistician, 52(2), 181–184. https://doi.org/10.1080/00031305.1998.10480559

Levontin, P., & Walton, J. L. (2020). Visualising uncertainty: a short introduction. AU4DM Network.

Le Liu, Padilla, L., Creem-Regehr, S. H., & House, D. H. (2019). Visualizing Uncertain Tropical Cyclone Predictions using Representative Samples from Ensembles of Forecast Tracks.

IEEE Transactions on Visualization and Computer Graphics, 25(1), 882–891. https://doi.org/10.1109/TVCG.2018.2865193

Padilla, L. M., Kay, M., & Hullman, J. (2020). Uncertainty Visualization. Annual Review of Statistics and Its Application, 7(1), 1-25. https://doi.org/10.1146/annurev-statistics-031219-041301

Weissgerber, T. L., Milic, N. M., Winham, S. J., & Garovic, V. D. (2015). Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biology, 13(4), e1002128–e1002128. https://doi.org/10.1371/journal.pbio.1002128

Wilke, C. O. (2019). Chapter 16: Uncertainty Visualization. In Fundamentals of Data Visualization. O'Reilly Media. Available Online