

DEFINING DATA SONIFICATION

"The use of non-speech audio to convey information."

"The transformation of data relations into perceived relations in an acoustic signal for the purposes of facilitating communication or interpretation"

Kramer et al., 1999

WHY USE DATA SONIFICATION?

- Omnidirectional hearing
- Monitoring multiple streams of information
- Detecting pattern deviations
- Engagement

Is data sonification trying to replace data visualization? No

Bornmann, 2024; Naatanen et al., 2007; Qi et al., 2007; Daye & de Campo, 2006; Hermann et al., 2011

3

FUNCTIONS OF DATA SONIFICATIONS

Data Exploration

Alerts

Status Monitoring

Art & Entertainment

- Analysis
- Communication
- Briefly communicates simple information
- Dynamic information
- Can be higher complexity
- Systematic musical compositions

Hermann et al., 2011

APPROACHES TO DATA SONIFICATION: AUDIFICATION

Turn periodic data into sound waves

... This doesn't always sound great.

Hermann et al., 2011

5

APPROACHES TO DATA SONIFICATION: PARAMETER MAPPING

Turn data dimensions into acoustic dimensions

Pitch

Loudness

Spatialization

Duration

Tempo

Timbre and Instrumentation

Dubus & Bresin, 2013; Hermann et al., 2011

APPROACHES TO DATA SONIFICATION: MODEL-BASED SONIFICATION

Making use of dynamic models which mathematically describe the evolution of a system in time

Hermann et al., 2011

- Objective and systematic mapping or transformations
- 2. Reproducible
- 3. Adherent to principles of auditory perception

BEST PRACTICES

Hermann, 2008

Pitch

- Most used dimension
- We can detect small pitch changes
- Consider perception of polarity

Polarity: How a change in a data dimension is mapped onto a change in pitch

AUDITORY DIMENSIONS

WHAT TO CONSIDER WHEN MAPPING DATA

Flowers, 2005; Hermann et al., 2011

11

Loudness

- Use to signal a critical event
- Do not use to communicate continuous quantitative information

Why? Poor loudness discrimination & low fidelity of output

AUDITORY DIMENSIONS

WHAT TO CONSIDER WHEN MAPPING DATA

Flowers, 2005; Hermann et al., 2011¹²

Tempo

- Good perception of changes in rhythm
- Not recommended often

Consider tempo as time!

AUDITORY DIMENSIONS

WHAT TO CONSIDER WHEN MAPPING DATA

Flowers, 2005; Hermann et al., 2011

13

Timbre

- Good for discrimination between data streams or points
- Choose distinct timbres

Caution: research is limited!

AUDITORY DIMENSIONS

WHAT TO CONSIDER WHEN MAPPING DATA

Flowers, 2005; Hermann et al., 2011¹⁴

BARRIERS

- Lack of standardized guidelines
- Lack of effectiveness research
- Issues with individual differences and training
- Lack of software

Hermann et al., 2011, Worral, 2019

REFERENCES

- Bornmann, L. (2024). The sound of science. *EMBO Reports*, 25(9), 3743-3747. https://doi.org/10.1038/s44319-024-00230-6
- Dayé, C., & de Campo, A. (2006). Sounds sequential: Sonification in the social sciences. *Interdisciplinary Science Reviews*, 31(4), 349-364. https://doi.org/10.1179/030801806X143286
- Dubus, G., & Bresin, R. (2013). A Systematic Review of Mapping Strategies for the Sonification of Physical Quantities. PLOS ONE, 8(12), e82491. https://doi.org/10.1371/journal.pone.0082491
- Flowers, J. H. (2005). Thirteen Years of Reflection on Auditory Graphing: Promises, Pitfalls, and Potential New Directions. Faculty Publications, Department of Psychology, 430.
- Hermann, T., Hunt, A.,, Neuhoff, J. G. (2011). *The Sonification Handbook*. Berlin: Logos Verlag. Hermann, T. (2008). *TAXONOMY AND DEFINITIONS FOR SONIFICATION AND AUDITORY DISPLAY*. Proceedings of the 14th International Conference on Auditory Display, Paris, France.
- Kramer, G., Walker, B., Bonebright, T., Cook, P., Flowers, J. H., Miner, N., & Neuhoff, J. (1999). Sonification Report: Status of the Field and Research Agenda. Report prepared for the National Science Foundation by members of the International Community for Auditory Display. Santa Fe, NM: International Community for Auditory Display (ICAD).
- Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. *Clinical Neurophysiology*, *118*(12), 2544–2590. https://doi.org/10.1016/j.clinph.2007.04.026

19

REFERENCES

- Qi, L., Vargas Martin, M., Kapralos, B., Green, M., García-Ruiz, M. (2007). Toward Sound-Assisted Intrusion Detection Systems. In: Meersman, R., Tari, Z. (eds) On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS. OTM 2007. https://doi.org/10.1007/978-3-540-76843-2_36
- Speeth, S. D. (1961). Seismometer sounds. *Journal of the Acoustical Society of America*, 33, 909-916. https://doi.org/10.1121/1.1908843
- Tucker Brown, J., Harrison, C. M., Zanella, A., & Trayford, J. (2022). Evaluating the efficacy of sonification for signal detection in univariate, evenly sampled light curves using astronify. *Monthly Notices of the Royal Astronomical Society*, 516(4), 5674-5683. https://doi.org/10.1093/mnras/stac2590
- Worrall, D. (2019). Sonification Design: From Data to Intelligible Soundfields (1st ed. 2019 edition). Springer. Zanella, A., Harrison, C. M., Lenzi, S., Cooke, J., Damsma, P., & Fleming, S. W. (2022). Sonification and sound design for astronomy research, education and public engagement. Nature Astronomy, 6(11), 1241–1248. https://doi.org/10.1038/s41550-022-01721-z