

Visualizing Linear Models: An R Bag of Tricks Session 1: Getting Started

Michael Friendly SCS Short Course Oct-Nov, 2022

https://friendly.github.io/VisMLM-course/

Today's topics

- What you need for this course
- Why plot your data?
- Linear models review
- Data plots
- Model (effect) plots
- Diagnostic plots

What you need

- R, version >=3.6
 - Download from https://cran.r-project.org/
- RStudio IDE, highly recommended
 - https://www.rstudio.com/products/rstudio/
- R packages: see course web page
 - car
 - effects
 - heplots
 - candisc
 - visreg

R script to install packages: https://friendly.github.io/VisMLMcourse/R/install-vismlm-pkgs.r

Why plot your data?

Getting information from a table is like extracting sunlight from a cucumber. --- Farquhar & Farquhar, 1891

Information that is imperfectly acquired, is generally as imperfectly retained; and a man who has carefully investigated a printed table, finds, when done, that he has only a very faint and partial idea of what he has read; and that like a figure imprinted on sand, is soon totally erased and defaced.

--- William Playfair, The Commercial and Political Atlas (p. 3), 1786

Cucumbers

Table 7 Stevens et al. 2006, table 2: Determinants of authoritarian aggression

	Coefficient
Variable	(Standard Error)
Constant	.41 (.93)
Countries	
Argentina	1.31 (.33)**B,M
Chile	.93 (.32)**B,M
Colombia	.93 (.32)**B,M 1.46 (.32)**B,M
Mexico	.07 (.32)A,CH,CO,
Venezuela	.96 (.37)**B,M
Threat	
Retrospective egocentric	.20 (.13)
economic perceptions	The second second
Prospective egocentric	.22 (.12)*
economic perceptions	
Retrospective sociotropic	21 (.12)*
economic perceptions	
Prospective sociotropic	32 (.12)*
economic perceptions	(/
Ideological distance from	27 (.07)**
president	()
Ideology	
Ideology	.23 (.07)**
Individual Differences	()
Age	.00 (.01)
Female	03 (.21)
Education	.13 (.14)
Academic Sector	.15 (.29)
Business Sector	.31 (.25)
Government Sector	10 (.27)
R ²	.15
Adjusted R ²	.12
N	500

Results of a one model for authoritarian aggression

The information is overwhelmed by footnotes & significance **stars**

**p < .01, *p < .05, *p < .10 (twotailed)

*Coefficient is significantly different from Argentina's at p < .05;</p>

 B Coefficient is significantly different from Brazil's at p < .05;

 $^{\text{CH}}$ Coefficient is significantly different from Chile's at p < .05;

COCoefficient is significantly different from Colombia's at p < .05;</p>

^MCoefficient is significantly different from Mexico's at p < .05;

VCoefficient is significantly different from Venezuela's at p < .05.</p>

What's wrong with this picture?

5

Sunlight

coefplot(model)

Why didn't they say this in the first place?

NB: This is a presentation graph equivalent of the table

Shows standardized coefficient with 95% CI

Factors (Country, sector) are shown relative to the baseline category

Run, don't walk toward the sunlight

7

Graphs can give enlightenment

The greatest value of a picture is when it forces us to notice what we never expected to see.

-- John W. Tukey

Effect of one rotten point on regression

Dangers of numbers-only output

Student: You said to run descriptives and compute the correlation. What next?

Consultant: Did you plot your data?

X Mean: 54.26 Y Mean: 47.83 X SD : 16.76 Y SD : 26.93 Corr. : -0.06

With exactly the same stats, the data could be *any* of these plots

See how this in done in R: https://cran.r-project.org/web/packages/datasauRus/

10

Sometimes, don't need numbers at all

COVID transmission risk ~ Occupancy * Ventilation * Activity * Mask? * Contact.time

A complex 5-way table, whose message is clearly shown w/o numbers

A semi-graphic table shows the patterns in the data

There are 1+ unusual cells here. Can you see them?

If you do need tables— make them pretty

Several R packages make it easier to construct informative & pretty semi-graphic tables

Flipper lengths (mm) of the famous penguins of Palmer Station, Antarctica.

Perhaps too cute!

Distribution of variables shown

Presentation graph

Artwork by @allison_horst

produced using modelsummary::datasummary, https://vincentarelbundock.github.io/modelsummary/articles/datasummary.html

Visual table ideas: Heatmap shading

Heatmap shading: Shade the background of each cell according to some criterion

The trends in the US and Canada are made obvious

NB: Table rows are sorted by Jan. value, lending coherence

Background shading ~ value:

US & Canada are made to stand out.

Tech note: use white text on a darker background

Unemployment rate in selected countries

January-August 2020, sorted by the unemployment rate in January.

country	Jan [*]	Feb	Mar	Apr	May	Jun	Jul	Aug
Japan	2.4%	2.4%	2.5%	2.6%	2.9%	2.8%	2.9%	3.0%
Netherlands	3.0%	2.9%	2.9%	3.4%	3.6%	4.3%	4.5%	4.6%
Germany	3.4%	3.6%	3.8%	4.0%	4.2%	4.3%	4.4%	4.4%
Mexico	3.6%	3.6%	3.2%	4.8%	4.3%	5.4%	5.2%	5.0%
us	3.6%	3.5%	4.4%	14.7%	13.3%	11.1%	10.2%	8.4%
South Korea	4.0%	3.3%	3.8%	3.8%	4.5%	4.3%	4.2%	3.2%
Denmark	4.9%	4.9%	4.8%	4.9%	5.5%	6.0%	6.3%	6.1%
Belgium	5.1%	5.0%	5.0%	5.1%	5.0%	5.0%	5.0%	5.1%
Australia	5.3%	5.1%	5.2%	6.4%	7.1%	7.4%	7.5%	6.8%
Canada	5.5%	5.6%	7.8%	13.0%	13.7%	12.3%	10.9%	10.2%
Finland	6.8%	6.9%	7.0%	7.3%	7.5%	7.8%	8.0%	8.1%

Source: OECD - Get the data - Created with Datawrapper

13

Visual table ideas: Heatmap shading

As seen on TV ...

Covid rate ~ Age x Date x UK region

Better: incorporate geography, not just arrange regions alphabetically

bbc.co.uk/news

14

Visual table ideas: Sparklines

Sparklines: Mini graphics inserted into table cells or text

Linear models

Model:

$$\mathbf{y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \dots + \beta_{p} \mathbf{X}_{ip} + \varepsilon_{i}$$

- Xs: quantitative predictors, factors, interactions, ...
- Assumptions:
 - Linearity: Predictors (possibly transformed) are linearly related to the outcome, y. [This just means linear in the parameters.]
 - Specification: No important predictors have been omitted; only important ones included. [This is often key & overlooked.]
 - The "holy trinity":
 - Independence: the errors are uncorrelated
 - Homogeneity of variance: $Var(\epsilon_i) = \sigma^2 = constant$
 - Normality: ε, have a normal distribution

 $\varepsilon_i \sim_{iid} \mathcal{N}(0,\sigma^2)$

From: https://www.pluralsight.com/guides/tableau-playbook-sparklines

The General Linear Model

- "linear" models can include:
 - transformed predictors: \sqrt{age} , log(income)
 - polynomial terms: age², age³, poly(age, n)
 - categorical "factors", coded as dummy (0/1) variables
 - treated (Yes/No), Gender (M/F/non-binary)
 - interactions: effects of x₁ vary over levels of x₂
 - treated × age, treated × sex, (2 way)
 - treated × age × sex (3 way
- Linear model means linear in the parameters (β_i),

$$y = \beta_0 + \beta_1 \text{age} + \beta_2 \text{age}^2 + \beta_3 \log(\text{income}) + \beta_4 (\text{sex="F"}) + \beta_5 \text{age} \times (\text{sex="F"}) + \epsilon$$

In R, all handled by lm(y ~ ...)

Fitting linear models in R: lm()

- In R, lm() for everything
 - Regression models (X1, ... quantitative)

```
lm(y ~ X1, data=dat)  # si
lm(y ~ X1+X2+X3, data=dat)  # mu
lm(y ~ (X1+X2+X3)^2, data=dat)  # al
lm(log(y) ~ poly(X,3), data=dat)  # ar
```

- # simple linear regression
 # multiple linear regression
- # all two-way interactions
- # arbitrary transformations
- ANOVA/ANCOVA models (A, B, ... factors)

```
lm(y \sim A)
lm(y \sim A*B)
lm(y \sim X + A)
lm(y \sim (A+B+C)^2)
```

- # one way ANOVA
 # two way: A + B + A:B
 # one way ANCOVA
- # one way ANCOVA
- # 3-way ANOVA: A, B, C, A:B, A:C, B:C

17

Fitting linear models in R: lm()

- Multivariate models: 1m() with 2+ y vars
 - Multivariate regression

MANOVA/MANCOVA models

```
lm(cbind(y1, y2, y3) ~ A * B)  # 2-way MANOVA: A + B + A:B
lm(cbind(y1, y2, y3) ~ X + A)  # MANCOVA (equal slopes)
lm(cbind(y1, y2) ~ X + A + X:A)  # heterogeneous slopes
```

Generalized Linear Models: glm()

Transformations of y & other error distributions

- y ∈ (0/1): lived/died; success/fail; ...
- logit (log odds) model:
 - logit(y) = $log \frac{Pr(y=1)}{Pr(y=0)}$
 - Inear logit model: $logit(y) = \beta_0 + \beta_1 x_1 + \beta_2$ $x_2 + ...$

glm(better ~ age + treat, family=binomial, data=Arthritis)

Generalized Linear Models

Ordinal responses

- Improved ∈ ("None" < "Some" < "Marked")
- Models: Proportional odds, generalized logits, ...

library(MASS) polr(Improved ~ Sex + Treat + Age, data=Arthritis)

library(nnet) multinom(Improved ~ Sex + Treat + Age, data=Arthritis)

Model-based methods: Overview

- models in R are specified by a symbolic model formula, applied to a data.frame
 - mod<-lm(prestige ~ income + educ, data=Prestige)
 - mod<-glm(better ~ age + sex + treat, data=Arthritis, family=binomial)
 - mod<-MASS:polr(improved ~ age + sex + treat, data=Arthritis)
- result (mod) is a "model object", of class "lm", "glm", ...
- method functions:
 - plot(mod), plot(f(mod)), ...
 - summary(mod), coef(mod), predict(mod), ...

22

Plots for linear models

- Data plots:
 - plot response (y) vs. predictors, with smooth summaries
 - scatterplot matrix --- all pairs

Plots for linear models

- Model (effect) plots
 - plot predicted response (\hat{y}) vs. predictors, controlling for variables not shown.

Plots for linear models

- Diagnostic plots
 - N QQ plot: normality of residuals? outliers?
 - Influence plots: leverage & outliers
 - Spread-level plots (non-constant variance?)

R packages

- car
 - Enhanced scatterplots
 - Diagnostic plots
- effects
 - Plot fitted effects of one predictor, controlling all others
- visreq
 - similar to effect plots, simpler syntax
- Both effects & visreg handle nearly all formula-based models
 - Im(), glm(), gam(), rlm, nlme(), ...

26

Occupational Prestige data

- Data on prestige of 102 occupations and
 - average education (years)
 - average income (\$)
 - % women
 - type (Blue Collar, Professional, White Collar)

> car::some(Presti	ge, 6)						
	education	income	women	prestige	census	type	
architects	15.44	14163	2.69	78.1	2141	prof	
physicians	15.96	25308	10.56	87.2	3111	prof	
commercial.artists	11.09	6197	21.03	57.2	3314	prof	
tellers.cashiers	10.64	2448	91.76	42.3	4133	WC	
bakers	7.54	4199	33.30	38.9	8213	bc	
aircraft.workers	8.78	6573	5.78	43.7	8515	bc	

Follow along

The R script (prestige-ex.R) for this example is linked on the course page. Download and open in R Studio to follow along.

Prestige data prestige-ex.R | prestige-ex.html

o Penguin data penguins-lm-ex.R || penguins-lm-ex.html

The script was run with 'knitr' (ctrl+shift+K) in R Studio to create the HTML output (prestige-ex.html)

The **Code** button there allows you to download the R code and comments

Linear models example: Occupational Prestine Code data

Michael Friendly

(These show a simple way to turn R scripts into finished documents)

Informative scatterplots

Scatterplots are most useful when enhanced with annotations & statistical summaries

Data ellipse and regression line show the linear model, prestige ~ income

Point labels show possible outliers

Smoothed (loess) curve and CI show the trend

Boxplots show marginal distributions

Informative scatterplots

car::scatterplot() provides all these enhancements

Skewed distribution of income & nonlinear relation suggest need for a transformation

Arrow rule: move on the scale of powers in direction of the bulge

e.g.: $x \rightarrow sqrt(income)$ or log(income)

The same, with ggplot2

```
ggplot(data=Prestige,
    aes(x = income, y = prestige)) +
geom_point(size=2) +
geom_smooth(method = "lm", color = "red", se=FALSE, size=2) +
geom_smooth(method = "loess", color = "blue", size = 2, fill="blue", alpha=0.1) +
stat_ellipse(geom = "polygon", alpha = 0.2, color = "green3") +
geom_text(aes(label=ifelse(income>18000,  # select points to label (kludge!)
    as.character(row.names(Prestige)),")),
    hjust=1, vjust=0) +
theme_bw(base_size = 18)
```

You can do the same with ggplot2

Each layer needs a geom or stat

Try log(income)

```
scatterplot(prestige ~ income, data=Prestige,
    log = "x",  # plot on log scale
    pch = 16,
    regLine = list(col = "red", lwd=3),
    ...)
```

Income now ~ symmetric

Relation closer to linear

log(income): interpret as effect of a multiple E.g., using log2(income)

> coef(mod_log)
(Intercept) log2(income)
-139.9 14.9

2 * income -> prestige ↑ 14.9

Stratify by type?

```
scatterplot(prestige ~ income | type, data=Prestige,
     col = c("blue", "red", "darkgreen"),
    pch = 15:17,
    legend = list(coords="bottomright"),
    smooth=list(smoother=loessLine, var=FALSE, span=1, lwd=4))
```

Formula: $| type \rightarrow "given type"$

Different slopes: interaction of income * type

Provides another explanation of the non-linear relation

This may be a new finding!

ggplot2

```
ggplot(data=subset(Prestige, !is.na(type)),
    aes(x = income, y = prestige, color = type, shape=type)) +
geom_point(size=2) +
geom_smooth(method = "lm", se=FALSE, size=2) +
theme_bw(base_size = 18) +
theme(legend.position = c(0.87, 0.25))
```

Setting the color and shape aesthetics give different symbols and regression lines for each group

Scatterplot matrix

Fit a simple model

Fits very well

But this ignores:

- nonlinear relation with income: should use log(income)
- occupation type
- possible interaction of income*type

Fit a more complex model

```
> mod1 <- lm(prestige ~ education + women +</pre>
                                                                add interaction of log
               log(income)*type, data=Prestige)
> summary(mod1)
                                                                income by type
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                    -152.20589 23.24988 -6.547 3.54e-09 ***
(Intercept)
education
                       2.92817
                                  0.58828
                                            4.978 3.08e-06 ***
                       0.08829
                                  0.03234
                                            2.730 0.00761 **
log(income)
                      18.98191
                                  2.82853
                                            6.711 1.67e-09 ***
typeprof
                      85.26415
                                 30.45819
                                            2.799 0.00626 **
                      29.41334
                                 36.50749
                                            0.806 0.42255
typewc
                                           -2.643 0.00970 **
log(income):typeprof
                      -9.01239
                                 3.41020
log(income):typewc
                      -3.83343
                                  4.26034
                                           -0.900 0.37063
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                  Fits even better!
Multiple R-squared: (0.8751) Adjusted R-squared: 0.8654
F-statistic: 90.07 on / and 90 DF, p-value: < 2.2e-16
                                                                  But how to understand?
```

Coefs for type compare mean "wc" and "prof" to "bc" Coefs for log(income)*type compare "wc" and "prof" slopes with that of "bc" Coefficient plots

Plots of coefficients with CI often more informative than tables

```
arm::coefplot(mod0, col.pts="red", cex.pts=1.5)
arm::coefplot(mod1, add=TRUE, col.pts="blue", cex.pts=1.5)
```

This plots raw coefficients, and the Xs are on different scales, so effect of income doesn't appear significant.

Coefficient plots

Plots of coefficients with CI often more informative than tables, but care is needed

Compare 3 models:

```
mod0 <- lm(prestige ~ education + income + women, data=Prestige)</pre>
mod1 <- lm(prestige ~ education + women + income + type, data=Prestige)</pre>
mod2 <- lm(prestige ~ education + women + income * type, data=Prestige)</pre>
```

```
library(modelsummary)
modelplot(list("mod0" = mod0, "mod1" = mod1, "mod2" = mod2),
          coef_omit="Intercept", size=1.3, alpha=0.7) +
    labs(title="Raw coefficients")
```

Coefficient plots

Raw **b** coefficients are on different scales, so are not comparable

Effect of income appears to be NS

Instead, plot the standardized β coefficients.

- Get these by scaling the variables to mean=0, stddev=1
- · Re-fit the models to the standardized data

```
Prestige_std <- Prestige |> mutate(across(where(is.numeric), scale))

mod0_std <- Im(prestige ~ education + income + women, data=Prestige_std)
mod1_std <- Im(prestige ~ education + women + income + type, data=Prestige_std)
mod2_std <- Im(prestige ~ education + women + income * type, data=Prestige_std)</pre>
```

This reflects the results shown in tabular output

Effect of income is signif. in all 3 models

GGally::ggcoef_*() plots

The GGally package provides ggcoef_plot() and ggcoef_compare() for pretty plots It uses the broom package to extract information from models

The reference category is shown for factors, facilitating interpretation

Model (effect) plots

- We'd like to see plots of the predicted value (\hat{y}) of the response against predictors (x_i)
 - Ordinary plot of y vs. x_i doesn't allow for other correlations
 - → Must control (adjust) for other predictors (x_{-j}) not shown in a given plot
- Effect plots
 - Variables not shown (x_{-i}) are averaged over.
 - Slopes of lines reflect the partial coefficient in the model
 - Partial residuals can be shown also

For details, see vignette("predictor-effects-gallery", package="effects)

Model (effect) plots: education

library("effects")
mod1.e1 <- predictorEffect("education", mod1)
plot(mod1.e1)</pre>

This graph shows the partial slope for education, controlling for all others

For each ↑ year in education, fitted prestige ↑2.93 points, (other predictors held fixed)

Model (effect) plots

```
mod1.ela <- predictorEffect("education", mod1, residuals=TRUE)
plot(mod1.ela,
    residuals.pch=16, id=list(n=4, col="black"))</pre>
```

Partial residuals show the residual of prestige controlling for other predictors

Unusual points here would signal undue influence

Model (effect) plots: women

Model (effect) plots: income

```
plot(predictorEffect("income", mod1),
    lines=list(multiline=TRUE, lwd=3),
    key.args = list(x=.7, y=.35))
```

Income interacts with type in the model

The plot is curved because log(income) is in the model

Curvature reflects marginal effect of income for each occupation type

visreg plots: Air quality data

Daily air quality measurements in New York, May - Sep 1973

How does Ozone concentration vary with solar radiation, wind speed & temperature?

see: https://pbreheny.github.io/visreg/ for examples & details

Air quality: main effects model

```
> fit1 <- lm(Ozone ~ Solar.R + Wind + Temp, data=airquality)</pre>
> summary(fit1)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -64.3421
                        23.0547
                                  -2.79
                                          0.0062 **
Solar.R
              0.0598
                         0.0232
                                          0.0112 *
Wind
             -3.3336
                         0.6544
                                  -5.09 1.5e-06 ***
              1.6521
                         0.2535
                                   6.52 2.4e-09 ***
Temp
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 21.18 on 107 degrees of freedom
  (42 observations deleted due to missingness)
Multiple R-squared: 0.6059,
                                Adjusted R-squared: 0.5948
F-statistic: 54.83 on 3 and 107 DF, p-value: < 2.2e-16
```

visreg conditional plots

```
visreg(fit1, "Solar.R")
visreg(fit1, "Wind")
visreg(fit1, "Temp")
```

model summary =
predicted values (line) +
confidence band (uncertainty) +
partial residuals (objections)

Factor variables & interactions

```
# cut Temp into three ordered levels of equal range airquality$Heat <- cut(airquality$Temp, 3, labels=c("Cool","Mild","Hot"))
```

fit model with interaction of Wind * Heat

fit2 <- Im(Ozone ~ Solar.R + Wind*Heat, data=airquality) visreg(fit2, "Wind", by="Heat", layout=c(3,1), points=list(cex=1))

Factor variables & interactions

overlay=TRUE → superpose panels gg=TRUE → uses ggplot

This allows slope for Wind to vary with Heat e.g., Wind has no effect when Cool

This model still assumes linear effects of Heat & Wind

Non-linear effects

fit <- Im(Ozone ~ Solar.R + poly(Wind,2) + Temp, data=airquality) visreg(fit, "Wind") fit <- Im(Ozone ~ Solar.R + Wind + poly(Temp,2), data=airquality) visreg(fit, "Temp")

Response surface models (visreg2d)

Fit quadratics in both Wind & Temp and interaction Wind * Temp fitp <- Im(Ozone ~ Solar.R + poly(Wind,2) * poly(Temp,2), data=airquality)

visreg2d(fitp, "Wind", "Temp", plot.type="gg") +
 geom_contour(aes(z=z), color="black")

visreg2d(fitp, "Wind", "Temp", plot.type="persp")

54

Regression trees

Regression trees are a non-parametric alternative to linear models

- Essential ideas:
 - Find predictor and split value which minimizes SSE
 - fitted value in each subgroupmean
 - repeat, recursively, splitting by next best predictor
- Large literature
 - cost, complexity tradeoff
 - pruning methods
 - boosting, cross-validation
 - tree averaging

Prestige data: rpart tree

calculating regression trees

> rpart.rules(rmod) # print prediction rules prestige

24 when education < 10 & income < 3600

33 when education < 10 & income is 3600 to 6078

41 when education is 10 to 12 & income < 6078

46 when education < 12 & income >= 6078

63 when education is 12 to 14 73 when education >= 14

> library(rpart)

Only education & income are involved in this simple model. Other controls allow setting classification details

Prestige data: rpart tree

rpart.plot(rmod, prefix="prestige=")

Diagnostic plots

- The linear model, $y=X\beta+\epsilon$ assumes:
 - Residuals, ε_i are normally distributed, $\varepsilon_i \sim N(0,\sigma^2)$
 - (Normality not required for Xs)
 - Constant variance, $Var(\varepsilon_i) = \sigma^2$
 - Observations y_i are statistically independent
- Violations → inferences may not be valid
- A variety of plots can diagnose all these problems
- Other methods (boxCox, boxTidwell) diagnose the need for transformations of y or Xs.

The "regression quartet"

In R, plotting a 1m model object \rightarrow the "regression quartet" of plots

plot(mod1, lwd=2, cex.lab=1.4)

1 Residuals: should be flat vs. fitted values

2 Q-Q plot: should follow the 45° line ✓

- 3 Scale-location: should be flat if constant variance ✓
- 4 Resids vs. leverage: can show influential observations

Unusual data: Leverage & Influence

- "Unusual" observations can have dramatic effects on least-squares estimates in linear models
- Three archetypal cases:
 - Typical X (low leverage), bad fit -- Not much harm
 - Unusual X (high leverage), good fit -- Not much harm
 - Unusual X (high leverage), bad fit -- BAD, BAD, BAD
- Influential observations: unusual in both X & Y
- Heuristic formula:

Influence = X leverage x Y residual

Influence plots

Influence (Cook's D) measures impact of individual obs. on coefficients, fitted values

Model diagnosis: Influence in regression

Multiple regression model: prestige ~ income + education

Influence plots can show:

- model residual
- leverage (potential impact)
- influence ~ residual x leverage (Cook D statistic)
- contour map of influence

62

Spread-level plots

- To diagnose non-constant variance, plot:
 - log |Std. residual| vs. log (x)
 - log (IQR) vs log (median) [for grouped data]
- If \approx linear w/slope b, transform $y \rightarrow y^{(1-b)}$

Artificial data, generated so σ ~ x

- $b \approx 1 \rightarrow power = 0$
- → analyze log(y)

Spread-level plot: baseball data

Data on salary and batter performance from 1987 season

Suggested power transformation: 0.2609

Box Cox transformation

- Box & Cox proposed to transform y to a power, $y \rightarrow y^{(\lambda)}$ to minimize the residual SS (or maximize the likelihood)
 - Makes $y^{(\lambda)}$ more nearly normal
 - Makes y^(λ) more nearly linear in with X

Formula for $y^{(\lambda)}$

- $y^{(0)} : \log_{2}(y)$
- λ < 0: flip sign to keep same order

$$y_i^{(\lambda)} = egin{cases} rac{y_i^{\lambda} - 1}{\lambda} & ext{if } \lambda
eq 0, \ \ln{(y_i)} & ext{if } \lambda = 0, \end{cases}$$

Power(p)	Transformation	Name
2	Y^2	Square
1	Y (No transformation)	Original Data
½ "0"	√ Y	Square root
"0"	log Y or log 10 (Y)	Logarithm
-1/2	-1 / √ Y	Reciprocal Root
-1 -2	-1 / Y	Reciprocal
-2	-1 / Y^2	Reciprocal Square

Example: Cars93 data

How does gas mileage (MPG.city) depend on vehicle weight?

```
> cars.mod <- lm(MPG.city ~ Weight, Cars93)</pre>
> coef(cars.mod)
(Intercept)
                  Weight
   47.04835
                -0.00803
```

Relationship clearly non-linear

Tukey arrow rule: transform Y (or X) as arrow thru the curve bulges $y \rightarrow \sqrt{y}$, log(y), 1/y $x \rightarrow \sqrt{x}$, log(x), 1/x

65

67

MASSextra package

- > library(MASSExtra)
- > box cox(cars.mod)

plot log likelihood vs. lambda

> lamba(cars.mod)

[1] -1.26

The plot of – log(L) ~ RSS shows the minimum & CI

plot (bc(MPG.city, lamba(cars.mod))

performance package

library(performance) check model(mod0)

This package gives all the standard plots plus some others

Captions indicate what should be seen for a good model

Summary

- Tables are for look-up; graphs can give insight
- "Linear" models include so much more than ANOVA & regression
- Data plots are more effective when enhanced
 - data ellipses → strength & precision of correlation
 - regression lines and smoothed curves
 - point identification → noteworthy observations
- Effect plots show informative views of models
 - Visualize conditional effects, holding others constant
- Diagnostic plots can reveal influential observations and need for transformations.

