

Visualizing Linear Models: An R Bag of Tricks Session 2: Multivariate Models

Michael Friendly SCS Short Course Oct-Nov 2021

https://friendly.github.io/VisMLM-course/

One-way MANOVA

p responses, 1 "factor" (IV), g groups

$$H_o$$
: $\underline{\boldsymbol{\mu}}_1 = \underline{\boldsymbol{\mu}}_2 = ... \ \underline{\boldsymbol{\mu}}_g$

H₁: at least one group centroid is different

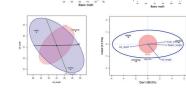
- Assumptions:
 - Independent groups, independent observations
 - Responses are independent, multivariate normal w/in each group
 - Pop. within-group covariance matrices are equal across groups
 - H_0 : $\Sigma_1 = \Sigma_2 = ... = \Sigma_g$
 - (Σ estimated by $S = E / df_e$)
 - tested by e.g., Box's test, heplots::boxM
 - $^{\blacksquare}$ \rightarrow $y_{_{ij}\;(\text{p}\,\times\,1)}$ $^{\sim}$ N ($\mu_{_{\! j}},\,\Sigma)$

Today's topics

Brief review of the GLM & MLM

$$\mathbf{Y} = \mathbf{X} \mathbf{B} + \mathcal{E}_{(n \times p)} \mathbf{B} + (n \times p) \mathbf{B}$$

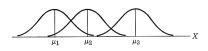
- Data ellipses
 - sufficient visual summaries
- HE plot framework
 - H & E matrices/ellipses
 - Discriminant/canonical views
- Example: Penguins data



Checking assumptions

One-way ANOVA vs. MANOVA

ANOVA



Do means differ?

(Assume equal withingroup variances)

Figure 8.1. The simple anova situation, when the differences among the populations are "real." source: Cooley & Lohnes ((1971)

MANOVA X_2

How do centroids differ? How many dimensions?

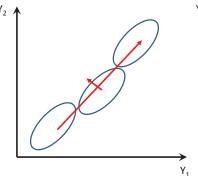
(Assume equal withingroup variancecovariance matrices)

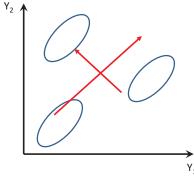
Figure 8.2. The simple manova situation, when the differences among the populations are "real."

Response dimensions

Means on Y₁ and Y₂ are nearly perfectly correlated

Means on Y₁ and Y₂ have a low correlation





Only 1 dimension required to understand the group effect

Two different aspects are reflected in group means

GLM: the design matrix (X)

- In the full GLM, the design matrix (X) may consist of:
 - A constant, 1, for the intercept (usually implicit)
 - Quantitative regressors: age, income, education
 - Transformed regressors: Vage, log(income)
 - Polynomial terms: age², age³, ...
 - Categorical predictors ("factors", class variables): treatment (control, drug A, drug B), sex
 - Interactions: treatment * sex, age * sex

Model formulae in R define y ~ X:

Least squares: SS_T and SS_F

Univariate linear model

• Model
$$\mathbf{y} = \mathbf{X} \mathbf{\beta} + \boldsymbol{\epsilon}_{(n \times 1)}$$

$$\mathbf{X}_{(n\times q)} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_q)$$

matrix of predictors, factors, ...

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_q x_{iq} + \epsilon_i$$

Sums of squares

 $SS_{\text{Tot}} = \sum_{i,j} (y_{i,j} - \overline{y}_i)^2 + \sum_{i,j} (y_{i,j} - \hat{y}_i)^2$ $= SS_H + SS_F$

Hypothesis tests

$$F = \frac{SS_H / df_H}{SS_E / df_E} = \frac{MS_H}{MS_E}$$

How big is hypothesis variation relative to error variation?

mean square is a variance estimate

SS_T is that value when $b_1=0$

b ₁	MS _E
.00	1.0
.89	0.2

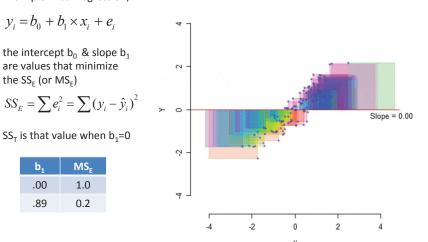
In simple linear regression,

the intercept b₀ & slope b₁ are values that minimize

 $y_i = b_0 + b_1 \times x_i + e_i$

the SS_F (or MS_F)

Average of Squared Errors = 1.00



Regression: Visualizing $SS_T = SS_H + SS_E$

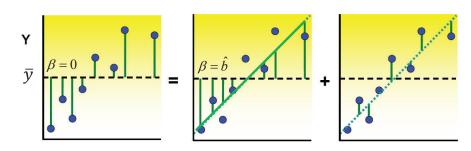
Total variance (SS_T)

= Regression variance (SS_H) + Residual variance (SS_F)

$$\Sigma_i (y_i - \overline{y})^2$$

$$\sum_{i} (\hat{y}_{i} - \overline{y})^{2}$$

$$\Sigma_i (y_i - \hat{y}_i)^2$$

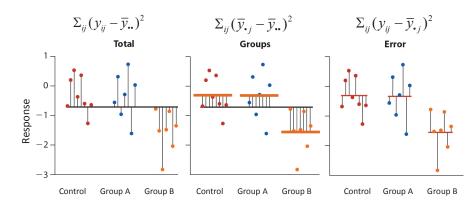


F test: How much better is the fitted regression line ($\beta = \delta$) than the flat line ($\beta = 0$)?

ANOVA: Visualizing $SS_T = SS_H + SS_E$

Total variance

Between group variance + Within group variance



F test: How much better is the groups model than the model ignoring groups?

10

Which means differ?

- In ANOVA, when a factor is significant, followup to find which means differ
- Post-hoc tests:
 - all-pairwise comparisons
 - all treatments vs. control group
- Need to correct for multiple testing—control family-wise error rate
 - Bonferroni: $\alpha_i = \alpha_{FW} / k$ [too conservative]
 - Tukey pairwise: "honestly significant difference"
 - many others: Dunnett's test, Sidak, FDR, ...

Plotting multiple comparisons

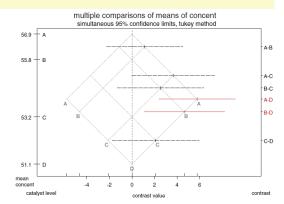
HH::mmcplot() – the mean-mean multiple comparison plot shows multiple comparisons or contrasts for any linear model

library(HH

mmcplot(catalystm.mmc)

Construction:

- rotate 45°
- horizontal axis shows:
 v. v.
- SE determined by MC method
- signif. comparisons highlighted



1.4

Contrasts: planned comparisons

- Better to test specific, planned comparisons, rather than allpairwise
- A contrast is a weighted sum, L, of the means, with weights, c, that sum to zero

$$L = c' \mu = \sum c_i \mu_i$$
 such that $\sum c_i = 0$

- In words: average of one subset of groups vs. another subset
- Any r-1 linearly independent contrasts → same overall test
- A priori contrasts can be tested w/o adjusting α

The **X** matrix for a factor can be represented by a set of r-1 contrasts, combined with the unit vector

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \\ & & & c1 & c2 & c3 \end{pmatrix}$$

Some special contrasts:

Deviation contrasts

Helmert contrasts

Polynomial contrasts

$$\mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} -3 & 1 & -1 \\ -1 & -1 & 3 \\ 1 & -1 & -3 \\ 3 & 1 & 1 \end{pmatrix}$$

each treatment vs control or baseline [not orthogonal]

dichotomies

ordered treatments: each vs all the rest [always orthogonal]

Nested dichotomies

lin quad cubic

quantitative treatment levels [orthogonal] 14

Using contrasts in R

- R has 4 basic functions for generating contrasts for a factor
 - Dummy coding, aka "reference level", "treatment" contrasts
 - Deviation coding, aka "sum-to-zero" constraints
 - Polynomial contrasts for an ordered/quantitative factor
 - Helmert contrasts for ordered factor comparisons
- Defaults are set separately for unordered and ordered factors
- Define your own by assigning a matrix to contrasts (myfactor) <- cmat
- These affect the tests of coefficients, but not overall tests

ordered

> contr.treatment(4)	> contr.sum(4)
2 3 4	[,1] [,2] [,3]
1 0 0 0	1 1 0 0
2 1 0 0	2 0 1 0
3 0 1 0	3 0 0 1
4 0 0 1	4 -1 -1 -1

> contr.poly(4) .L .Q [1,] -0.6708 0.5 -0.2236 [2,] -0.2236 -0.5 0.6708 [3,] 0.2236 -0.5 -0.6708 [4,] 0.6708 0.5 0.2236

> contr.helmert(4) [,1] [,2] [,3] -1 -1

Brigadier mangels Yellow globe mangels Orange globe mangels Red intermediate mangels Mono rosa fodder beet Mono blanc fodder beet Mono bomba fodder beet Yellow daeno fodder beet

They correspond to independent research questions

- Sums of squares decompose the overall effect

 c_2 = globe mangles vs other

$$SS_A = SS_{c1} + SS_{c2} + ... + SS_{c(r-1)}$$

Orthogonal contrasts can always be generated as nested

c_e = mono beets vs yellow

Treatment c1 c2 c3 c4 c5 c6 c7 Brigadier mangels York globe mangels Orange globe mangels Red intermediate mangels μ_4 Mono rosa fodder beet Mono blanc fodder beet Mono bomba fodder beet μ_7 -1 0 0 0 1 -2 0 Yellow daeno fodder beet μ_7 -1 0. 0 0 -3 0 0

See: http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm

> options("contrasts")

contr.treatment"

unordered

Multivariate linear model

Model

$$(\mathbf{Y}_{(n \times p)} = \mathbf{X}_{(n \times q)} \mathbf{B} + \mathcal{E}_{(n \times p)}$$

$$\mathbf{Y}_{(n \times p)} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_p)$$
matrix of p responses

Sums of squares & cross-products

$$\mathbf{SSP}_{T} = (\hat{\mathbf{Y}}'\hat{\mathbf{Y}} - n\overline{\mathbf{y}}\overline{\mathbf{y}}') + \mathcal{E}'\mathcal{E}$$
$$= \mathbf{SSP}_{H} + \mathbf{SSP}_{E} = \mathbf{H} + \mathbf{E}$$

Hypothesis tests

Eigenvalues λ_i, i=1:p of H E⁻¹

Wilks' Λ, Pillai & Hotelling trace, Roy's test

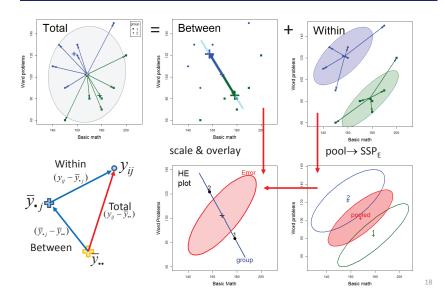
how many dimensions (aspects of responses)?

How big is hypothesis variation relative to error variation?

Ah, but there are up to $s = min(p, df_h)$ dimensions of size

17

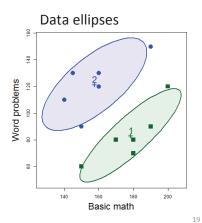
Visualizing $SSP_T = SSP_H + SSP_E$



Data ellipsoids

The data ellipsoid is a sufficient visual summary for multivariate location & scatter, just as (\bar{y}, \mathbf{S}) are sufficient for (μ, Σ)





Data ellipsoids: definitions

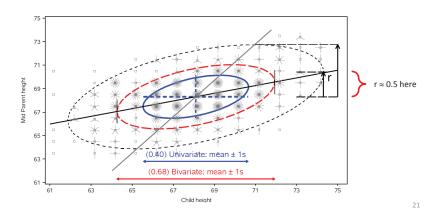
- For a p-dimensional multivariate sample, $\mathbf{Y}_{N\times p}$, the sample mean vector, $\overline{\mathbf{y}}$, and sample covariance matrix, \mathbf{S} , are minimally sufficient statistics under classical (gaussian) assumptions.
- These can be represented visually by the p-dimensional data ellipsoid, \mathcal{E}_c of size ("radius") c centered at $\bar{\mathbf{y}}$,

$$\mathcal{E}_c(\overline{\mathbf{y}},\mathbf{S}) := \{\mathbf{y} : (\mathbf{y} - \overline{\mathbf{y}})^T \, \mathbf{S}^{-1} (\mathbf{y} - \overline{\mathbf{y}}) \le c^2 \} \qquad \text{or,} \quad \mathsf{D}_\mathsf{M}^2 \, (\mathbf{y}) \le c^2$$

- → an ellipsoid centered at the means whose size & shape reflects variances & covariances
- We consider this a minimally sufficient visual summary of multivariate location and scatter.

Data ellipsoids: properties

- Ellipsoid boundary: Mahalanobis $D_M^2(y_i) \sim \chi_n^2$
 - p=2: shadows generalize univariate confidence intervals
 - eccentricity: precision; visual estimate of correlation



The HE plot framework

- Hypothesis-Error (HE) plots
 - Visualize multivariate tests in the MLM
 - Linear hypotheses--- lower-dimensional ellipsoids
 - Extension: HE plot matrices
- Canonical displays
 - low-dimensional multivariate juicers
 - shows data in the space of maximal effects
- Covariance ellipsoids
 - visualize tests of homogeneity of covariance matrices
- For all: robust methods are available or good research projects!

22

HE plot framework: Trivial example

Two groups of middle-school students are taught algebra by instructors using different methods, and then tested on:

- **BM**: basic math problems (7 * 23 2 * 9 = ?)
- WP: word problems ("a train travels at 23 mph for 7 hours, but for 2 hours ...")

Do the groups differ on (BM, WP) by a multivariate test? If so, how ???

Follow along

The R script (mathscore-ex.R) for this example is linked on the course page. Download and open in R Studio to follow along.

The script was run with `knitr` (ctrl+shift+K) in R Studio to create the HTML output (mathscore-ex.html)

The **Code** button there allows you do download the R code and comments

(R notebooks are a simple way to turn R scripts into finished documents)

Why do multivariate tests?

Could do univariate ANOVAs (or t-tests) on each response variable (BM, WP)

```
> Anova(lm(WP ~ group, data=mathscore))
Anova Table (Type II tests)

Response: WP
Sum Sq Df F value Pr(>F)
group
4408 1 10.4 0.009 **
Residuals 4217 10
```

From this, might conclude that:

- Groups don't differ on Basic Math score *
- Groups are significantly different on Word problems ✓

Multivariate tests:

- Do not require correcting for multiple tests (e.g., Bonferroni)
- Combine evidence from multiple response variables ("pooling strength")
- · Show how the multivariate responses are jointly related to the predictors
 - How many aspects (dimensions?)

25

Why do multivariate tests?

Overall test is highly significant:

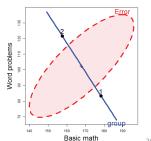
- Combines the evidence for all predictors
- Takes response correlations into account

Visual test of significance (Roy's test)

 The H ellipse projects outside the E ellipse iff the effect is significant.

HE plot provides an interpretation:

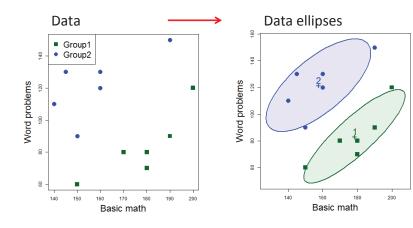
- Group 1 > Group 2 on Basic Math, but worse on Word Problems
- Group 2 > Group 1 on Word Problems, but worse on Basic Math
- BM & WP are + correlated w/in groups

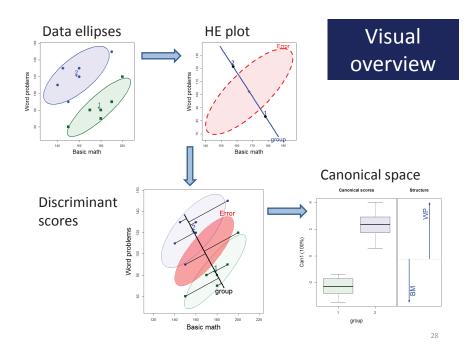


26

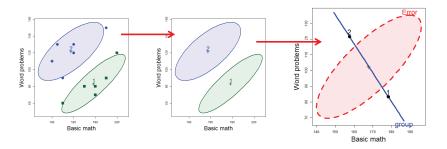
HE plot framework: Visual overview

The data ellipsoid is a sufficient visual summary for multivariate location & scatter, just as $(\bar{\nu}, \mathbf{S})$ are sufficient for $(\mu, \mathbf{\Sigma})$





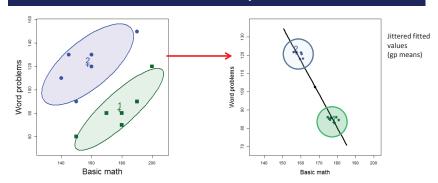
$Data \rightarrow Data \ ellipses \rightarrow HE \ plot$



- Differences between group means are shown by the H ellipsoid
 – data ellipsoid
 of the fitted values (w/ 1 df, degenerates to a line)
 - Direction shows relation of groups to response variables
 - Size shows "how big is H relative to E"
- Variation within groups is reflected in the E ellipsoid-- data ellipsoid of the residuals
 - Direction: residual (partial) correlation between BM & WP
 - Size/shape: residual variance

29

The H ellipse

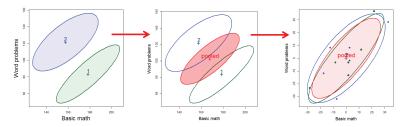


- The H ellipse is the data ellipse of the fitted values (group means, here)
 - The H matrix is the sum of squares and crossproducts of the fitted values, corrected for the grand mean

$$\mathbf{H} = \left(\hat{\mathbf{Y}}'\hat{\mathbf{Y}} - n\overline{\mathbf{y}}\overline{\mathbf{y}}'\right)$$

30

The E ellipse



- The **E** ellipse is the data ellipse of the residuals
 - What you get when you subtract the group means from all observations, shifting them to the grand means.
 - E matrix called the "within-group **pooled** covariance matrix"

$$\mathbf{E} = \left(\hat{\mathbf{Y}} - \overline{\mathbf{Y}}\right)' \left(\hat{\mathbf{Y}} - \overline{\mathbf{Y}}\right) = \mathcal{E}' \mathcal{E}$$

H & E in numbers

The **H** and **E** matrices are calculated in the car::Anova() function and saved as the SSP and SSPE components, used in the statistical tests.

Direct calculation: $\mathbf{H} = (\hat{\mathbf{Y}}'\hat{\mathbf{Y}} - n\overline{\mathbf{y}}\overline{\mathbf{y}}')$

H & E in numbers

```
> (E <- math.aov$SSPE)

BM WP

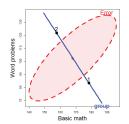
BM 3070.8 2808.3

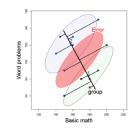
WP 2808.3 4216.7
```

Direct calculation: $\mathbf{E} = (\hat{\mathbf{Y}} - \overline{\mathbf{Y}})'(\hat{\mathbf{Y}} - \overline{\mathbf{Y}}) = \mathcal{E}'\mathcal{E}$

Discriminant analysis

- MANOVA and linear discriminant analysis (LDA) are intimately related and differ mainly in perspective:
 - MANOVA: Do means of groups on 2+ responses differ?
 - LDA: Find weighted sums of responses that best discriminate groups
- In both cases,
 - Group differences are represented by the **H** matrix; residuals: **E** matrix
 - Test statistics based on eigenvalues of HE⁻¹
 - Discriminant weights are eigenvectors of HE⁻¹





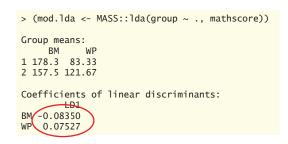
33

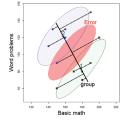
Discriminant analysis

• For 2 groups,

WP 0.78 1.00

- the discriminant axis is the line joining the two group centroids,
- discriminant scores are the projections of observations on this line.
- MASS:lda() does this analysis

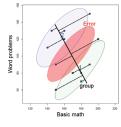


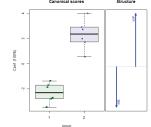


The canonical dimension is Can1 = 0.075 WP - 0.083 BM, a contrast between the two tests

Canonical space

- The HE plot view shows the data in data space
- Easier to see effects by projecting scores to canonical space the best-discriminating axes.
- For a 1 df effect, there is only one canonical dimension
 - Arrows show the relative size & direction of discriminant weights

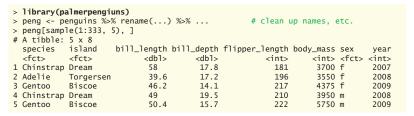


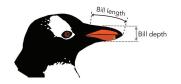


library(candisc)
mod.can <- candisc(math.mod)
plot(mod.can)</pre>

Penguin data

Data on 3 species of penguins, measured on 3 Antarctic islands

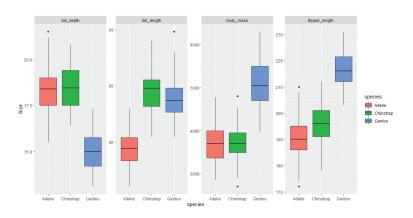




Penguins: Multivariate EDA

Boxplots by grouping variables (factors) are often useful for an initial overview

- Can show multiple variables, but hard for >1 factor.
- What is the pattern here?

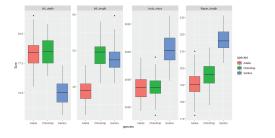


38

Penguins: Multivariate EDA

Boxplots by grouping variables (factors) are often useful for an initial overview

· Need to reshape data from wide to long format



PCA & Biplots

- For multivariate data, often want to view the data in a low-D space that shows the most total variance
- PCA: finds weighted sums of variables which are:
 - Uncorrelated
 - Account for maximum variance
 - How many dimensions are necessary?
- A biplot is a 2D (or 3D) plot of the largest PCA dimensions
 - Vectors in this plot show the original data variables
 - Points in this plot show the observations
 - Data ellipses here show within group relations

PCA animation

PCA:

- PC1 is the direction along which points have max. variance
- Equivalently, the perp. deviations from the line have min. residual SS

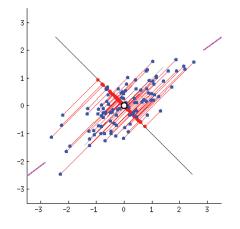
PCA by springs

- · Imagine each pt connected to a possible PC1 line by springs
- Force ~ deviation2

Forces balance, naturally seek the min. residual SS position.

Voila, QED!

· A visual proof



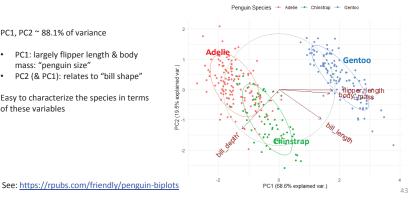
Biplot

```
library(ggbiplot)
ggbiplot(peng.pca, obs.scale = 1, var.scale = 1,
     groups = peng$species,
     ellipse = TRUE, circle = TRUE) +
     scale_color_discrete(name = 'Penguin Species')
```

PC1, PC2 ~ 88.1% of variance

- PC1: largely flipper length & body mass: "penguin size"
- PC2 (& PC1): relates to "bill shape"

Easy to characterize the species in terms of these variables



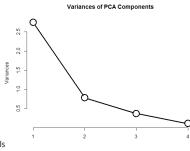
PCA

```
peng.pca <- prcomp (~ bill length + bill depth + flipper length + body mass,
          data=peng,
          na.action=na.omit,
          scale. = TRUE)
screeplot(peng.pca, type = "line", lwd=3, cex=3,
                   main="Variances of PCA Components")
```

> summary(peng.pca) Importance of components: Standard deviation 1.657 0.882 0.6072 0.328 Proportion of Variance 0.686 0.195 0.0922 0.027 Cumulative Proportion 0.686 0.881 0.9730 1.000

2D: 88.1 % 3D: 97.3 %

See: https://rpubs.com/friendly/penguin-biplots for details



Penguins: MANOVA

Assume the goal is to determine whether/how the penguins differ in "size" by species

- A MLM tests all 4 size variables together: ~ species
- Could also use other factors: ~ species + sex + island

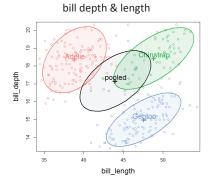
```
> peng.mod0 <-lm(cbind(bill_length, bill_depth, flipper_length, body_mass) ~ species,
                data=peng)
> Anova(peng.mod0)
Type II MANOVA Tests: Pillai test statistic
       Df test stat approx F num Df den Df Pr(>F)
species 2 1.64 371 8 656 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Yet, we are left to understand the nature of this effect wrt. the size variables.

See: https://rpubs.com/friendly/penguin-manova for details

Penguins: view data ellipses

Data ellipses in 2D provide a good start for pairwise relations



Secure Control of the Control of the

body mass & flipper length

- group means negatively correlated
- within group correlation > 0
- group means positively correlated

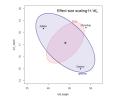
flipper length

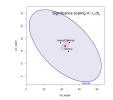
• within group correlation > 0

45

HE plot details

- E ellipse reflects within-group error (co)variation
 - Size: **E** / df_e set to cover 68%, an analog of $\overline{y} \pm 1$ std
 - Shift to grand mean for direct comparison with H
- H ellipse reflects (co)variation of group means
 - effect size scaling, uses H/df_e to put this on the same scale as the E ellipse.
 Analog of effect size in univariate designs.
 - **significance** ("evidence") scaling: uses H/λ_{α} df_e.
 - The H ellipse protrudes outside the E ellipse somewhere, iff an effect is significant (Roy's largest root test) at p < α



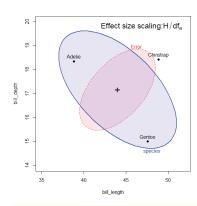


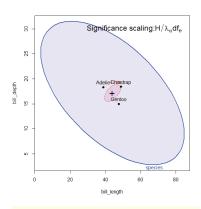
4

Penguins: HE plots

Orientation of the **H** ellipse reflects negative correlation of the species means: species with larger bill depth have smaller bill length (bill "shape"?)

E ellipse: within species, larger bill length \rightarrow larger bill depth





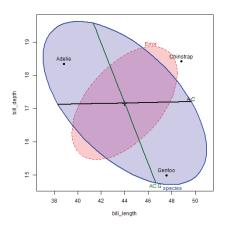
heplot(peng.mod0, size="effect")

heplot(peng.mod0, size="evidence")

Contrasts

- In linear models, any effect of df_h > 1 can be partitioned into df_h separate 1 df tests of contrasts
 - If orthogonal, **H** = **H**₁ + **H**₂ + ... **H**_{dfh} -- accounts for total effect
 - Tested as a linear hypothesis, e.g., $x_1 (x_2 + x_3)/2 = 0$
 - Each H_i has rank=1, so appears as a line in HE plots
- Assume we want to compare the species as two contrasts:
 - Do Adelie differ from Chinstrap?
 - Do Gentoo penguins differ from the other two?

Contrasts



Result is very clear:

- Adelie & Chinstrap differ only in bill length
- Gentoo differ from other two longer, but less deep bills (bill shape)

Both of these are large effects!

Together, they are the entire species effect!

49

Other models

peng.mod2 <-lm(cbind(bill_length, bill_depth, flipper_length, body_mass) ~ species + sex, data=peng)
Anova(peng.mod2)

Type II MANOVA Tests: Pillai test statistic Df test stat approx F num Df den Df Pr(>F) Species 2 1.65480 391.89 8 654 < 2.2e-16 *** sex 1 0.64004 144.91 4 326 < 2.2e-16 ***

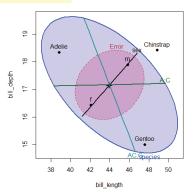
heplot(peng.mod2, fill=TRUE, fill.alpha=0.2, hypotheses=hyp)

Effect of sex: male penguins have larger bills

Adding sex reduces **E** variances

→Effect of species now more pronounced

Each 1 df effect plots as a line



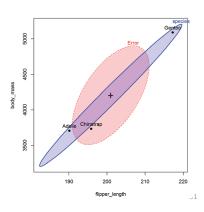
Other HE plots

- 2D: can plot any pair of responses in data space
- pairs.mlm(): all pairwise 2D views
- heplot3d(): plots in 3D, can rotate, spin, zoom, ...

heplot(peng.mod0, variables=3:4, fill=TRUE, fill.alpha=0.2, size="effect")

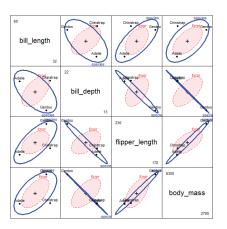
Interpretation:

- major axis of the H ellipse measures "penguin size"
- Gentoo are the Big Birds in this story!



HE Pairs plots

The pairs() method for mlm objects gives all pairwise HE plots in a scatterplot matrix format.



Something new here:

- avg. bill depth is negatively correlated with "size" variables – larger penguin species have smaller bill depths (curvature?)
- correlation of avg. bill depth with body mass nearly -1

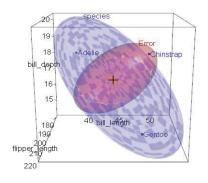
heplot3d()

3D HE plots can show other features

heplot3d(peng.mod0, size="effect")

The H ellipsoid here is flat (2D), because the species effect has 2 df

In this 3D view, the 3 species form a triangle, suggesting some further interpretation, not seen in 2D views



Canonical view

- 4 response variables, but only s=min(q, dfh)=2 dimensions.
 - Here, both dimensions are significant
 - Can1 accounts for 86.5% of between-species variance
 - Can 2 accounts for the rest: 13.5%

```
> library(candisc)
> (peng.can <- candisc(peng.mod0))</pre>
Canonical Discriminant Analysis for species:
  CanRsq Eigenvalue Difference Percent Cumulative
1 0.938
             15.03
                         12.7
                                 86.5
2 0.700
                         12.7
              2.34
                                 13.5
                                           100.0
Test of HO: The canonical correlations in the
current row and all that follow are zero
 LR test stat approx F numDF denDF Pr(> F)
                   516
                           8 654 <2e-16 ***
                           3 328 <2e-16 ***
       0.2997
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

53

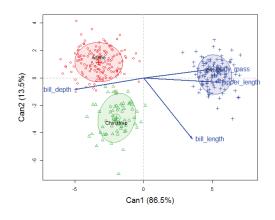
Canonical view

The plot() method for candisc objects shows points for observations and vector for variables

plot(peng.can, ellipse = TRUE ...) #plot CAN scores with ellipses

Can1: largely body mass & flipper length, that separate Gentoo from (Adelie, Chinstrap)

Can2: bill length distinguishes Chinstrap from others.



Canonical HE plot

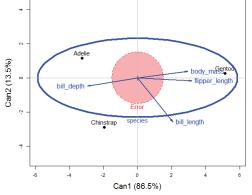
heplot(peng.can, size="effect", fill=c(TRUE, FALSE))

Here is the entire effect of species shown in one HE plot

In CAN space, residuals are uncorrelated: **E** = circle

Size of ${\bf H}$ shows the total effect of species

Variable vectors show how the groups are discriminated.



54

Checking assumptions

- Assumptions in the MLM extend those in univariate models
 - Linearity: Each y_i is linearly related to all xs
 - Constant variance matrices of residuals

$$\mathbf{S}_i = \mathbf{S}_2 = \cdots = \mathbf{S}_g$$

- In addition, need to check
 - No multivariate outliers
 - No multicollinearity among predictors

Checking assumptions

- Linearity: plot each y_i against each x_i
 - quantitative \mathbf{x}_i : plot($\mathbf{y}_i \sim \mathbf{x}_i$) + loess smooth
 - factor: boxplots
- Constant variance
 - visual: plot data ellipses for each group
 - heplots:: covEllipses(data, group=, ...)
 - univariate-- levene test: heplots::leveneTests()
 - multivariate Box M test: H_0 : $\Sigma_1 = \Sigma_2 = ... = \Sigma_g$
 - res <- heplots::boxM(); plot(res)
- Multivariate outliers
 - Mahalanobis $D^2(\mathbf{y}_i) \sim \chi^2_p$: outlier if prob $(\chi^2_p) < .01$
 - Chisquare QQ plot : plot D² (y_i) vs. χ²_n quantiles: cqplot()

57

58

Constant variance: Visual

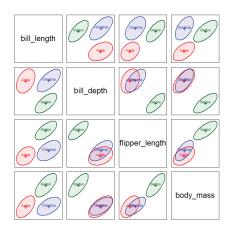
heplots::covEllipses() plots the data ellipses for each group, for 2+ variables Are the sizes and shapes & orientations \cong the same in all panels?

Approximately true, w/ some diffces

- · Gentoo looks a bit smaller
- Adelie: correlations ~ differ?

This might be good enough

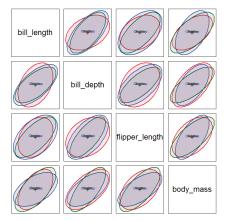
covEllipses(peng[,3:6], group = peng\$species, variables=1:4, # all pairs fill=TRUE, fill.alpha=0.1, pooled=FALSE)



Constant variance: Visual

This is easier to judge if all groups are centered at the grand mean in each panel

covEllipses(peng[,3:6], group = peng\$species, variables=1:4, center=TRUE. fill=TRUE, fill.alpha=0.1, pooled=FALSE)



Constant variance: statistical tests

Levene tests for each response variable separately:

Box's M test: all responses together – equal variances & correlations!

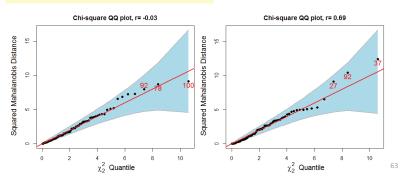
NB: Box's M test is highly sensitive to small diff^{ces}; use α = 0.001

61

Chi-squared QQ plot

- QQ plot of ordered distances, $D^2_{(i)}$ vs $\chi^2_{(p)}$ quantiles should plot as a 45° line through origin if MVN
- Multivariate outliers: outside the envelope
- Here: both cases check out as OK: no outliers, MVN ✓

heplots::cqplot(df, id.n=3)



Multivariate normality: $z^2 \rightarrow D^2$

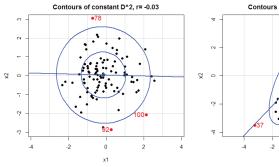
For MVN & outliers, Mahalanobis D² generalizes z scores

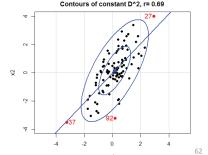
- 1 variable: $z_i = (x_i \overline{x})/s \sim N(0,1)$ or, $z_i^2 \sim \chi^2_{(1)}$
- 2 variables, uncorrelated: squared distance from mean is

$$D_i^2 = z_{i1}^2 + z_{i2}^2 \sim \chi^2_{(2)}$$

• p variables: D_i^2 = Mahalanobis squared distance of x_i from centroid

$$D_i^2 = (x_i - \bar{x})^{\mathsf{T}} S^{-1} (x_i - \bar{x}) \sim \chi_{(p)}^2$$





Penguins: MVN & outliers

Penguins: MVN & outliers

```
id.n = 3, conf=0.999)
```

heplots::cqplot(peng.mlm,

Get D² values with rstatix::mahalanobis_distance Find z-scores Select outliers (is.outlier==TRUE)

```
Chi-Square QQ plot of residuals from peng.mlm
```

66

Summary

- MLM just like univariate LM, but for multiple responses
 - Simultaneous tests no need for p-value adjustment
 - Take correlations among responses into account
 - Indicates # of dimensions of responses
- Data ellipses
 - Summarize bivariate data to show means, variances, correlation
 - MANOVA: shows how groups differ in these
- HE framework
 - Visualize multivariate tests in the MLM
 - Canonical displays show these results in the 2D (or 3D) space that accounts for largest between-group variance.
- Checking assumptions: visual tests are often sufficient
 - homogeneity of variances: heplots::covEllipses()
 - outliers & MVN: heplot::cqplot()

MVN: Numerical tests

- Shapiro-Wilk test
 - Originally for univariate normality: stats::shapiro.test()
 - Multivariate version: rstatix::mshapiro_test()

```
peng |>
  select(bill_length : body_mass) |>
  rstatix::mshapiro_test()
```

#	A tibble: statistic	
1	<db1></db1>	

Mardia test: multivariate skewness & kurtosis

```
res <- MVN::mvn(data = peng[,c(3:6)],
mvnTest="mardia")
res$multivariateNormality
```

	Test	Statistic	p value	Result
1 Mardia	Skewness	127.42	< 0.001	NC
2 Mardia	Kurtosis	-2.51	0.0118	NC
3	MVN	<na></na>	<na></na>	NC

But: these are overly-sensitive; MLM is relatively robust