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Visualizing Linear Models:

An R Bag of Tricks
Session 2: Multivariate Models

https://friendly.github.io/VisMLM-course/
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Today'’s topics

* Brief review of the GLM & MLM Y=X B+ &

(nxp)  (nxq) (gxp)  (mxp)

* Data ellipses Vi
= sufficient visual summaries §\/

* HE plot framework 1L
= H & E matrices/ellipses
= Discriminant/canonical views

[}

Example: Penguins data

oot GOTO0/ Azqgf,

* Checking assumptions

One-way MANOVA

* presponses, 1 “factor” (IV), g groups
Hot By =M= .. K
H,: at least one group centroid is different

* Assumptions:
® |ndependent groups, independent observations

= Responses are independent, multivariate normal w/in each group
= Pop. within-group covariance matrices are equal across groups

© Hy 5,=3,=..=3,
* (Z estimated by S =E/ df,)
* tested by e.g., Box’s test, heplots::boxM

" _>y|J (pxl)NN(ujl z)

One-way ANOVA vs. MANOVA

ANOVA

Do means differ?

(Assume equal within-
x group variances)

K1 Mo M3

Figure 8.1. The simple anova situation, when the differences among the populations are ““real.”

source: Cooley & Lohnes ((1971)

MANOVA %, How do centroids differ?
How many dimensions?

A (Assume equal within-

/ ' group variance-

covariance matrices)

X

Figure 8.2. The simple manova situation, when the differences among the populations are ‘“real.”




Response dimensions

Means on Y, and Y, are nearly
perfectly correlated

Means on Y, and Y, have a low
correlation

<Y

1

Only 1 dimension required to
understand the group effect

5
>
Yl

Two different aspects are reflected
in group means

GLM: the design matrix (X)

* In the full GLM, the design matrix (X) may consist of:

= A constant, 1, for the intercept (usually implicit)

® Quantitative regressors: age, income, education

® Transformed regressors: Vage, log(income)

= Polynomial terms: age?, age3, ...

= Categorical predictors (“factors”, class variables): treatment (control, drug A,
drug B), sex

® Interactions: treatment * sex, age * sex

Model formulae in R definey ~ X:

prestige
prestige
prestige
prestige

income + education # 2 main effects
income * education # + interaction
income + education + women + type # 4 main effects
education + poly(women, 2) + log(income)*type

Univariate linear model

* Model Y = X

(nx1) (1xq) (1xq)

V. = Pyt Bx,+Pox, e+ ﬁqxl.q +¢

* Sums of squares

data fit
SSTD[ = Z (yi,j - .)_/1 )2
ij

+ € X =(x,X,,...,X,)

X,
(nx1) (n<q)

matrix of predictors, factors, ...

residuals

+ z(yi,j _JA}i)Z
ij

= 5SS, +SS,

* Hypothesis tests
oSS, df, _ MS,
SS, /df,  MS,
t

How big is hypothesis variation
relative to error variation?

mean square is a
variance estimate

Least squares: SS; and SS;

In simple linear regression,
y,=b, +b xx, +e -

the intercept b, & slope b,

Average of Squared Errors = 1.00

are values that minimize o~ A ™

the SS; (or MS;)

SSE:Zef:Z(y[_);[)Z > o4

SS; is that value when b,=0

1.0
.89 0.2

.00

Slope = 0.00




Regression: Visualizing SS; = SS,, + SS¢

Total variance (SS;) = Regression variance (SS,) + Residual variance (SS)

Zi(yi_.)_})2 Z[()}[_J_/)z Ez(yz_j}i)z

F test: How much better is the fitted regression line (B = B) than the flat line (3 =0) ?

Response

ANOVA: Visualizing SS; =SS, + SS;

Total variance = Between group variance + Within group variance
(=) (7, =) Z, (v =)
i Vi = e iy 7V i Vi = Ve
Total Groups Error

1P| I AR 8

1 [T TP I
L4 3
L]
_2_ — ° -
L]
-3
Control ~ GroupA  Group B Control ~ Group A Group B Control  GroupA  Group B

F test: How much better is the groups model than the model ignoring groups?

Which means differ?

* In ANOVA, when a factor is significant, follow-
up to find which means differ
* Post-hoc tests:
® all-pairwise comparisons
= all treatments vs. control group
* Need to correct for multiple testing— control
family-wise error rate
= Bonferroni: o, = o,y / k [too conservative]
® Tukey pairwise: “honestly significant difference”
® many others: Dunnett’s test, Sidak, FDR, ...

Plotting multiple comparisons

HH: :mmcpTot() -the mean-mean multiple comparison plot shows multiple
comparisons or contrasts for any linear model

library(HH)

catalystm.Im <- Im(concent ~ catalyst, data=catalystm)
catalystm.mmc <-mmc(catalystm.Im, linfct = mcp(catalyst = "Tukey"))
mmcplot(catalystm.mmc)

multiple comparisons of means of concent
simultaneous 95% confidence limits, tukey method

. 569 T A
Construction:

e plot means, Yy, Vj on grid 8T8 ]
e rotate4se | e e — ac
* horizontal axis shows: -

——— H———— - B-C
Vi -y A N 0

+ SE determined by MC J 8 - 8 =0
method

* signif. comparisons A S oo
highlighted ‘ :




Contrasts: pla n ned comparisons The X matrix for a factor can be represented by a set of r-1

contrasts, combined with the unit vector

* Better to test specific, planned comparisons, rather than all-

pairwise 11 1 0
* A contrast is a weighted sum, L, of the means, with weights, X 1xn=(1,C) x|1 =10
¢, that sum to zero (= ——
1 -1 0 —1
L=cu=2¢y suchthat 2¢=0 Some special contrasts: cl c2 c3
e L= (u+u)— (s +4,) »c,=(11 -1 1) Deviation contrasts Helmert contrasts Polynomial contrasts
groups L= = 1y -c,=(1 -1 0 0)
' -3 1 1
L,= My — fy —-c,=(0 0 1 1) 1 0 O 3 0 O
0 1 0 -1 2 0 c_| V-1 3
* In words: average of b C-= c-= -
: ge of one subset of groups vs. another subset 0 0 1 1 -1 1 1 -1 -3
* Any r-1linearly independent contrasts - same overall test -1 -1 -1 -1 1 s 11
o .. . . lin quad cubic
A priori contrasts can be teSted W/O adJUStlng o each treatment vs control ordered treatments: each
or baseline [not vs all the rest [always quantitative treatment
orthogonal] orthogonal] levels [orthogonal]

Nested dichotomies

sing contrasts in R

* R has 4 basic functions for generating contrasts for a factor

® Dummy coding, aka “reference level”, “treatment” contrasts ° Orthogonal contrasts can aIways be generated as nested
= Deviation coding, aka “sum-to-zero” constraints dichotomies
= Polynomial contrasts for an ordered/quantitative factor . .
a . * They correspond to independent research questions
" Helmert contrasts for ordered factor comparisons
* Defaults are set separately for unordered and ordered factors * Sums of squares decompose the overall effect

* Define your own by assigning a matrix to contrasts (myfactor) <- cmat
* These affect the tests of coefficients, but not overall tests

SSp = SSc1 + SSep + e + Sy

¢, = mangles vs beets ¢, = globe mangles vs other cs = mono beets vs yellow
> contr.treatment (4) > contr.sum(4) > contr.poly(4)
2 34 [,11 [,2] [,3] -L -0 -C b | e W Treatment ¢ ¢ |
1 0 C3 C4 G5 Cg C1
1000 1 1 0 0 [1,] -0.6708 0.5 -0.2236 Brigadier mangels ) Z o = - n 0l
2100 2 0 1 0 [2,]1 -0.2236 -0.5 0.6708 Yellow globe mangels 7 rigadier mange H !
3010 3 0 0 1 [3,]1 0.2236 -0.5 -0.6708 York globe mangels g L -1 1 0 0 00
Orange globe mangels
4 00 1 4 =i =i =i [4,1] 0.6708 0.5 0.2236 Orange globe mangels ps| 1 -1 -1 0 0 0 0
Red intermediate mangels é ﬂ D . . . |
AT Red intermediate mangels u¢| 1 1 0 -1 0 0 0
> options ("contrasts") > contr.helmert (4) Mono rosa fodder beet , , a
Mono rosa fodder beet us/=-1 0 0 0 1 1 1
Scontrasts [,11 [,21 [,3] Mono blanc fodder beet ZIB
unordered ordered 1 -1 -1 1 T — /. Mono blanc fodder beet pg| -1 0 0 0 1 1 -1
" " " " lono bomba fodder bee |
SORIEER o BESERERE SOmEE BOLY 2 1 -1 -1 - Mono bomba fodder beet p7 -1 0 0 0 1 -2 0
Yellow daeno fodder beet
3 0 2 -1 = Yellow daeno fodder beet 7| -1 0. 0 0 -3 0 0
See: http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm 4 0 0 3




Multivariate linear model

* Model Y =X B+ &

(nxp)  (nxq) (gxp)  (mxp)

Y =¥
S =YaY,)

matrix of p responses

* Sums of squares & cross-products

SSP, = (\?’\? - ny—y) + &8
(pxp)

—SSP, +SSP, =H+E

How big is hypothesis variation
relative to error variation?

* Hypothesis tests
= Eigenvalues ), i=1:p of H E?!
= Wilks’ A, Pillai & Hotelling trace, Roy’s test
®= how many dimensions (aspects of responses)?

Ah, but there are up to s = min(p,
df,) dimensions of size

Word problems

Y.

Visualizing SSP; = SSP,, + SSP,

.| Total / = .| Between
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Data ellipsoids

The data ellipsoid is a sufficient visual summary for multivariate
location & scatter, just as (y,S) are sufficient for (K,Z)

Data _— Data ellipses
= Group1 ¢ } *
24 ® Group2 o
* [ )
»n o 2] g
E 8 ° L] AEJ & [}
g |° S
Q o a g
T - B
2 . . s .
ER u [ ]
n 24
2 u

T T T T T T T T
140 150 160 170 180 180 200 140 160 180 200
Basic math Basic math

Data ellipsoids: definitions

For a p-dimensional multivariate sample, Yy, , the sample mean
vector, y, and sample covariance matrix, S, are minimally sufficient
statistics under classical (gaussian) assumptions.

These can be represented visually by the p-dimensional data
ellipsoid, & of size (“radius”) c centered at y,

E(y,8)={y:(y-y)S'(y-y)<c’} o Dy(y)<c

— an ellipsoid centered at the means whose size & shape
reflects variances & covariances

We consider this a minimally sufficient visual summary of
multivariate location and scatter.




Data ellipsoids: properties

* Ellipsoid boundary: Mahalanobis Dy, (y;) ~
= p=2:shadows generalize univariate confidence intervals
= eccentricity: precision; visual estimate of correlation

759

} r~0.5 here

Mid Parent height

el ° ? t (0.40) Univariate: méan + 1s

(0.68) Bivariate: mean + 1s

61

61 63 65 67 69 71 73 75
Child height

The HE plot framework

* Hypothesis-Error (HE) plots
= Visualize multivariate tests in the MLM
® Linear hypotheses--- lower-dimensional ellipsoids
= Extension: HE plot matrices
* Canonical displays
® |ow-dimensional multivariate juicers
= shows data in the space of maximal effects
* Covariance ellipsoids
®= visualize tests of homogeneity of covariance matrices

* For all: robust methods are available or good
research projects!

HE plot framework: Trivial example

Two groups of middle-school students are taught algebra by instructors using
different methods, and then tested on:

* BM: basic math problems (7 ¥ 23 -2*9=7?)

e WP: word problems (“a train travels at 23 mph for 7 hours, but for 2 hours ...”)

Do the groups differ on (BM, WP) by a multivariate test?
If so, how ?7??

> data(mathscore, package="heplots")
> mod <- 1m(cbind(BM, WP) ~ group, data=mathscore)
> Anova(mod)

Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F) ‘/
group 1 0.86518  28.878 2 9 0.0001213 =***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1

Follow along

The R script (mathscore-ex.R) for this example is linked on the course page. Download
and open in R Studio to follow along.

+ Examples: &1
= Math scores: Simple demo of MLMs+ethsessasimple.R
o Math scores: HE plot examplés mathscore-ex.R || mghhscore-ex.html

> Penguins data: Multivariate EDA vignette HW: explore other
o Diabetes data: heplots and candisc examples vignette examples

The script was run with “knitr" (ctrl+shift+K) in R Studio to create the HTML output
(mathscore-ex.html)
The Code button there allows you do download the R code and comments

Math scores: HE plot examples
Michael Friendly Download Rmd

(R notebooks are a simple way to turn R scripts into finished documents)




Why do multivariate tests?

Why do multivariate tests?

Could do univariate ANOVAs (or t-tests) on each response variable (BM, WP)

> Anova(lm(WP ~ group, data=mathscore))
Anova Table (Type II tests)

> Anova(1lm(BM ~ group, data=mathscore))
Anova Table (Type II tests)

Response: WP

Sum Sq Df F value Pr(>F)
4408 1 10.4 0.009 **
4217 10

Response: BM

Sum Sq Df F value Pr(>F)
1302 1 4.24 0.066 . X
3071 10

group
Residuals

group
Residuals

From this, might conclude that:
e Groups don't differ on Basic Math score %
* Groups are significantly different on Word problems v/

Multivariate tests:

* Do not require correcting for multiple tests (e.g., Bonferroni)

* Combine evidence from multiple response variables (“pooling strength”)

¢ Show how the multivariate responses are jointly related to the predictors
* How many aspects (dimensions?)

v

Overall test is highly significant:
* Combines the evidence for all predictors
* Takes response correlations into account

v
v

> mod <- 1lm(cbind(BM, WP) ~ group, data=mathscore)

> Anova(mod)

Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df
28.878

group 1 0.86518

Visual test of significance (Roy’s test)
¢ The H ellipse projects outside the E ellipse iff the

effect is significant.

HE plot provides an interpretation:

* Group 1> Group 2 on Basic Math, but worse on Word

Problems

2

Pr(>F)

9 0.0001213

e Group 2 > Group 1 on Word Problems, but worse on

Basic Math

* BM & WP are + correlated w/in groups

Word problems

* kK

aroup
TGroUpR

T T
140 150 160 1 180 190
Basic math

HE plot framework: Visual overview

The data ellipsoid is a sufficient visual summary for multivariate
location & scatter, just as (y,S) are sufficient for (K,Z)

Data _— Data ellipses
= Groupl ¢ .
24 ® Group2 < |
. °
7] » o
g4 84 [
5° * - 5 °
3 | 2
a - S &
T 7 B
2 . . 2 |
E ] [ ]
] 24
g4 [ ]
MID 15‘0 15‘0 17‘0 15‘0 wln zn‘n 140 160 180 200
Basic math Basic math
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Discriminant
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Word problems

10

120

100

‘Word problems

/gl;oup

w0
Basic math

0

120

140

160

Basic math

180

200

20

Can1 (100%)

Visual
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Canonical scores Structure
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Data — Data ellipses — HE plot

Word problems

Word problems
Word problems
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Basic math Basic math i : : ! :
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Differences between group means are shown by the H ellipsoid— data ellipsoid
of the fitted values (w/ 1 df, degenerates to a line)

= Direction shows relation of groups to response variables

=  Size shows “how big is H relative to E”
Variation within groups is reflected in the E ellipsoid-- data ellipsoid of the
residuals

= Direction: residual (partial) correlation between BM & WP

= Size/shape: residual variance

The H ellipse

160

8 - Jittered fitted

o values
‘ (gp means)

T T T T T T T T T T T
140 160 180 200 140 150 180 170 180 190 200

Basic math Basic math

140

120
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The H ellipse is the data ellipse of the fitted values (group
means, here)

® The H matrix is the sum of squares and crossproducts of the fitted
values, corrected for the grand mean

H=(Y'V-nyy)

H & E in numbers

The E ellipse

0 0 0 & 0 2 w0 0w
Basic math Basic math Basic math

Word problems l
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Word problems
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The E ellipse is the data ellipse of the residuals

= What you get when you subtract the group means from all
observations, shifting them to the grand means.

= E matrix called the “within-group pooled covariance matrix”

E=(Y-Y)(VY-Y)=£€

The H and E matrices are calculated in the car::Anova() function and saved as the SSP
and SSPE components, used in the statistical tests.

> math.aov <- Anova(math.mod)
> (H <- math.aov$SSP)

$group
BM WP
BM 1302.1 -2395.8 S fit
WP -2395.8 4408.3 BN -
o 1 178.33 83.333
Direct calculation: H=(Y’Y—nﬁ’) 2 178.33 83.333
3 178.33 83.333
> fit <- fitted(math.mod) Toss B
> ybar <- colMeans(mathscore[,2:3]) 6 178.33 83.333
> n <- nrow(mathscore) 7 157.50 121.667
> crossprod(fit) - n*outer(ybar, ybar) 8 157.50 121.667
BM WP 9 157.50 121.667

BM 1302.1 -2395.8 10 157.50 121.667

11 157.50 121.667
U =250 .5 A4t 12 157.50 121.667




Discriminant analysis

H & E in numbe

> (E <- math.aov$SSPE)
BM WP

BM 3070.8 2808.3

WP 2808.3 4216.7

Direct calculation: E=(Y—\7)'(\A(—\7)=€’£

> resids
BM WP
> resids <- residuals(math.mod) 1 11.667 6.667
> crossprod(resids) 2 -8.333 -3.333
BM WP 3 1.667 -3.333
BM 3070.8 2808.3 T orser se.ter
WP 2808.3 4216.7 6 1.667 -13.333
i 7 2.500 -1.667
> cor(resids) 8 32.500 28.333
BM WP 9 -7.500 -31.667
BM 1.00 0.78 10 2.500 8.333
wP 0.78 1.00 11 -17.500 -11.667

12 -12.500 8.333

MANOVA and linear discriminant analysis (LDA) are intimately related and

differ mainly in perspective:

= MANOVA: Do means of groups on 2+ responses differ?

" LDA: Find weighted sums of responses that best discriminate groups
In both cases,

= Group differences are represented by the H matrix; residuals: E matrix

= Test statistics based on eigenvalues of HE!

= Discriminant weights are eigenvectors of HE

Efror

Word problems
w

‘Word problems

group

W W o w0 w2

w o m W L
Basic math Basic math

Canonical space

Discriminant analysis

* For 2 groups,
= the discriminant axis is the line joining the two group centroids,

= discriminant scores are the projections of observations on this line.
* MASS:lda() does this analysis

> (mod.lda <- MASS::Tda(group ~ ., mathscore))
Group means: Erer

BM WP
1178.3 83.33
2 157.5 121.67

Word problems
w

Coefficients of linear discriminants: group

w o

Word problems

BM/-0.08350 B
WP\_0.07527 Basic math

The canonical dimension is Canl = 0.075 WP - 0.083 BM, a contrast between the two tests

The HE plot view shows the data in data space

Easier to see effects by projecting scores to canonical space —
the best-discriminating axes.

For a 1 df effect, there is only one canonical dimension

= Arrows show the relative size & direction of discriminant weights

Canonical scores Structure

library(candisc)
mod.can <- candisc(math.mod)

iy E plot(mod.can)

WP

Cant (100%)

e

W W w w2
Basic math 1 2




* Data on 3 species of penguins, measured on 3 Antarctic
islands
® How does penguin “size” differ by species, island, ... ?

> library(palmerpengiuns)
> peng <- penguins %>% rename(...) %>% ... # clean up names, etc.
> peng[sample(1:333, 5), ]
# A tibble: 5 x 8
species island bi11_length bill_depth flipper_length body_mass sex year
<fct> <fct> <db1> <db1> <int> <int> <fct> <int>
1 Chinstrap Dream 58 17.8 181 3700 f 2007
2 Adelie Torgersen 39.6 17.2 196 3550 f 2008
3 Gentoo Biscoe 46.2 14.1 217 4375 f 2009
4 Chinstrap Dream 49 19.5 210 3950 m 2008
5 Gentoo Biscoe 50.4 15.7 222 5750 m 2009

GENTOO/ ADﬂ[E/

CNSTRAp/ , %

Bill depth

Penguins: Multivariate EDA

Boxplots by grouping variables (factors) are often useful for an initial overview
¢ Can show multiple variables, but hard for >1 factor.
¢ What is the pattern here?

bill_depth bill_length body_mass fipper_length

6000 -

50- 5000~ 210-
. species

B3 Adelie
200~ BS chinstiap
S cenoo

4000~

190

180~
3000~

Adelie  Chinstrap ~ Gentoo Adelie  Chinstrap ~ Gentoo Adelie  Chinstrap ~ Gentoo Adelie  Chinstrap ~ Gentoo
species

PCA & Biplots

Penguins: Multivariate EDA

Boxplots by grouping variables (factors) are often useful for an initial overview
* Need to reshape data from wide to long format

peng_long <- peng |> # convert wide to long format
tidyr::gather(Measure, Size, bill_length:body_mass)

ggplot(peng_long, aes(x=species, y=Size, fill=species)) +
geom_boxplot() +
facet_wrap(. ~ Measure, scales="free_y", nrow=1)

* For multivariate data, often want to view the data in
a low-D space that shows the most total variance

* PCA: finds weighted sums of variables which are:
= Uncorrelated
= Account for maximum variance
®= How many dimensions are necessary?
* A biplotis a 2D (or 3D) plot of the largest PCA
dimensions
= Vectors in this plot show the original data variables
= Points in this plot show the observations

* Data ellipses here show within group relations




PCA animation

PCA:
e PClis the direction along which points have max. variance
e Equivalently, the perp. deviations from the line have min. residual SS

PCA by springs

* Imagine each pt connected
to a possible PC1 line by
springs

* Force ~ deviation?

Forces balance, naturally seek
the min. residual SS position.

Voila, QED!
e Avisual proof

PCA

peng.pca <- prcomp (~ bill_length + bill_depth + flipper_length + body_mass,
data=peng,
na.action=na.omit,
scale. = TRUE)
screeplot(peng.pca, type = "line", lwd=3, cex=3,
main="Variances of PCA Components")

Variances of PCA Components

> summary (peng.pca)
Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 1.657 0.882 0.6072 0.328
Proportion of Variance 0.686 0.195 0.0922 0.027
Cumulative Proportion 0.686 0.881 0.9730 1.000

20 25

Variances
15

2D: 88.1% .
3D:97.3% 5

See: https://rpubs.com/friendly/penguin-biplots for details

Biplot

Penguins: MANOVA

library(ggbiplot)

ggbiplot(peng.pca, obs.scale = 1, var.scale = 1,
groups = pengS$species,
ellipse = TRUE, circle = TRUE) +
scale_color_discrete(name = 'Penguin Species')

Penguin Species Adelie —+ Chinstrap —+ Gentoo

PC1, PC2 ~ 88.1% of variance

e PC1: largely flipper length & body Adelig
mass: “penguin size”

*  PC2 (& PC1): relates to “bill shape”

Easy to characterize the species in terms
of these variables

PC2 (19 5% explained var.)

. . N 0
See: https://rpubs.com/friendly/penguin-biplots PC1 (68.6% explained var.)

Assume the goal is to determine whether/how the penguins differ in “size” by species
¢ A MLM tests all 4 size variables together: ~ species
e Could also use other factors: ~ species + sex + island

> peng.mod0 <-Tm(cbind(bil1_Tength, bill_depth, flipper_length, body_mass) ~ species,
data=peng)
> Anova(peng.mod0)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)
species 2 1.64 371 8 656 <2e-16

Signif. codes: 0 *? 0,001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * * 1

Yet, we are left to understand the nature of this effect wrt. the size variables.

See: https://rpubs.com/friendly/penguin-manova for details




Penguins: view data ellipses

Data ellipses in 2D provide a good start for pairwise relations

bill depth & length body mass & flipper length
e 5" |
g £ 8
o %" ¥
3 e g g
35 40 45 50 180 190 200 210 220
bill_length flipper_length
¢ group means negatively correlated e group means positively correlated
* within group correlation > 0 e within group correlation >0

HE plot details

* E ellipse reflects within-group error (co)variation
= Size: E / df, set to cover 68%, an analog of y + 1 std
= Shift to grand mean for direct comparison with H

* H ellipse reflects (co)variation of group means

= effect size scaling, uses H/df, to put this on the same scale as the E ellipse.
Analog of effect size in univariate designs.

= significance (“evidence”) scaling: uses H/A, df,.

* The H ellipse protrudes outside the E ellipse somewhere, iff an effect is
significant (Roy’s largest root test) at p < a

ize scaling H/df,

Penguins: HE plots

Orientation of the H ellipse reflects negative correlation of the species means: species
with larger bill depth have smaller bill length (bill “shape”?)
E ellipse: within species, larger bill length — larger bill depth

Effect size scaling:H /df, 3 - ificance scaling:H/ 2, df,

Error

Adelie “Chinstrap
. Lo

pih

AdelieEhinstrap
oy

pth

bill_dej
1
L
bill_dej

__Gentoo
.

Gentoo
.

species w -

~ Species
T

bill_length bill_length

heplot(peng.mod0, size=“effect") heplot(peng.mod0, size="evidence") .,

* Inlinear models, any effect of df, > 1 can be partitioned into
df,, separate 1 df tests of contrasts

= If orthogonal, H=H, +H, + ... H 4 -- accounts for total effect

= Tested as a linear hypothesis, e.g., x; = (X, + x3)/2 =0
= Each H, has rank=1, so appears as a line in HE plots
* Assume we want to compare the species as two contrasts:
= Do Adelie differ from Chinstrap?
= Do Gentoo penguins differ from the other two?

> contrasts(peng$species)<-matrix(c(1,-1, O, -1, -1, -2), 3,2)
> contrasts(peng$species)

[,11 [,2]
Adelie 1 -1
Chinstrap -1 -1
Gentoo 0 2




Contrasts

Other models

hyp <- list("A:C"="species1","AC:G"="species2") # give names to contrasts
heplot(peng.modo, fill=TRUE, fill.alpha=0.2,
hypotheses=hyp, size="effect")

Result is very clear:

e Adelie & Chinstrap differ only in bill
length

¢ Gentoo differ from other two — longer,
but less deep bills (bill shape)

Adelie
.

bill_depth

Both of these are large effects!

Together, they are the entire species
effect!

bill_length

peng.mod2 <-Im(cbind(bill_length, bill_depth, flipper_length, body_mass) ~ species + sex, data=peng)
Anova(peng.mod2)

Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(F)
species 2  1.65480 391.89 8 654 < 2.2e-16 ***
sex 1 0.64004 144.91 4 326 < 2.2e-16 ***
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heplot(peng.mod2, fill=TRUE, fill.alpha=0.2,
hypotheses=hyp)

Chinstrap
.

Adelie
.

18

pth

Effect of sex: male penguins have larger bills

bill_de|
7

Adding sex reduces E variances o J
—Effect of species now more pronounced

15

Each 1 df effect plots as a line

bill_length

Other HE plots

* 2D: can plot any pair of responses in data space
* pairs.mIm(): all pairwise 2D views
* heplot3d(): plots in 3D, can rotate, spin, zoom, ...

heplot(peng.modO, variables=3:4,
fill=TRUE, fill.alpha=0.2, size="effect")

5000
L

4500
L

Interpretation:

* major axis of the H ellipse measures
“penguin size”

¢ Gentoo are the Big Birds in this story!

body_mass

4000
!

3500
!

T T T T
190 200 210 220

flipper_length

HE Pairs plots

The pairs() method for mim objects gives all pairwise HE plots in a scatterplot matrix
format.

pairs(peng.modo0, size="effect",
fill=c(TRUE, FALSE))

Something new here:

¢ avg. bill depth is negatively correlated
with “size” variables — larger penguin
species have smaller bill depths
(curvature?)

« correlation of avg. bill depth with body
mass nearly -1

500

body_mass

270




heplot3d()

Canonical view

3D HE plots can show other features

heplot3d(peng.mod0, size="effect")

The H ellipsoid here is flat (2D), because /2{5;1 Species ™G
the species effect has 2 df [ 1o PP L T I\
| |

In this 3D view, the 3 species form a by‘” ;;ph ;
triangle, suggesting some further e ,
interpretation, not seen in 2D views : 16+ :
| 15! |

| [ - 5 ¢ A |

[ 189" 40 gi_iefigh - 50 :

|199 *Gentoo |

(8]
fhppeﬁiﬁlgm “‘.\"
220

* 4 response variables, but only s=min(q, dfh)=2 dimensions.
= Here, both dimensions are significant
= Canl accounts for 86.5% of between-species variance
= (Can 2 accounts for the rest: 13.5%

> Tibrary(candisc)
> (peng.can <- candisc(peng.mod0))

Canonical Discriminant Analysis for species:
CanRsq Eigenvalue Difference Percent Cumulative

1 0.938 15.03 12.7 86.5 86.5

2 0.700 2.34 12.7 13.5 100.0

Test of HO: The canonical correlations in the
current row and all that follow are zero

LR test stat approx F numDF denDF Pr(> F) v
1 0.0187 516 8 654 <2e-16
2 0.2997 255 3 328 <2e-16 v
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 “ ’ 1

Canonical view

The plot() method for candisc objects shows points for observations and vector for
variables

plot(peng.can, ellipse = TRUE .. ) #plot CAN scores with ellipses

Can1: largely body mass & . .
flipper length, that separate o S
Gentoo from (Adelie, Chinstrap) !
E\fss
1 ber_lengt

Can2: bill length distinguishes
Chinstrap from others.

Can2 (13.5%)

bill_length

Can1 (86.5%)

Canonical HE plot

heplot(peng.can, size="effect", fill=c(TRUE, FALSE))

Here is the entire effect of

species shown in one HE plot

In CAN space, residuals are

uncorrelated: E = circle ~ -
Adelie
~ 3
. £
Size of H shows the total effectof 2 | / body_mAegte
species 35 bill_depth : ; flipper_length
&
(]

Variable vectors show how the
groups are discriminated.

Chinstrap ~ SPecies bill_length
.

Can1 (86.5%)




Checking assumptions

Checking assumptions

* Assumptions in the MLM extend those in
univariate models
®= Linearity: Each y; is linearly related to all xs

= Constant variance matrices of residuals
S, =S,=---=8§, eiiledMVN((),Z)
® Residuals are multivariate normal
* |n addition, need to check
®= No multivariate outliers
®= No multicollinearity among predictors

* Linearity: plot each y; against each x
" quantitative x; : plot(y; ~ x;) + loess smooth
= factor: boxplots
* Constant variance
= visual: plot data ellipses for each group
* heplots:: covEllipses(data, group=, ..)
® univariate-- levene test: heplots::leveneTests()
" multivariate-Box M test: H,: 2, =%, = .=,
* res <- heplots::boxM(); plot(res)
* Multivariate outliers
= Mahalanobis D? (y;) ~ x?, : outlier if prob (x*, ) < .01
® Chisquare QQ plot : plot D? (y;) vs. x?, quantiles: cqplot()

Constant variance: Visual

Constant variance: Visual

heplots::covEllipses() plots the data ellipses for each group, for 2+ variables
Are the sizes and shapes & orientations = the same in all panels?

Approximately true, w/ some il length ﬂ I ﬂ
o (7 @’ ’

diffces
¢ Gentoo looks a bit smaller

e Adelie: lati ~ differ?
elie: correlations ~ differ <. o @} @
This might be good enough

covEllipses(peng|,3:6], ,A ipper_length ‘
group = pengSspecies, @ @ - @

variables=1:4, # all pairs

| @ @) z

This is easier to judge if all groups are centered at the grand mean in each panel

covEllipses(peng|,3:6], P\ N
o & E)
center=TRUE, = = &

fill=TRUE, fill.alpha=0.1,
pooled=FALSE)

N0

(

bill_depth

OF -

Q
2R

D

(
1

A\
)

(




Constant variance: statistical tests

Levene tests for each response variable separately:

> heplots::leveneTests(peng[,3:6], group=peng$species)
Levene's Tests for Homogeneity of Variance (center = median)

dfl df2 F value Pr(>F)

bi11_length 2 330 2.29 0.1033

bil1_depth 2 330 1.91 0.1494

flipper_length 2 330 0.44 0.6426

body_mass 2 330 5.13 0.0064 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ‘ ’ 1

Box’s M test: all responses together — equal variances & correlations !

> heplots::boxM(peng[,3:6], group = peng$species)
Box's M-test for Homogeneity of Covariance Matrices

data: peng[, 3:6]
Chi-Sq (approx.) = 75, df = 20, p-value = 3e-08

NB: Box’s M test is highly sensitive to small diffss; use oc = 0.001

61

Multivariate normality: z2 — D?

For MVN & outliers, Mahalanobis D? generalizes z scores
° 1variable: ;= (x;—X)/s ~ N(0,1) or, 27 ~ X%,
* 2variables, uncorrelated: squared distance from mean is
D2 =22 +2," ~ Xy
° pvariables: D2 = Mahalanobis squared distance of x; from centroid
D =(z;—2)'S (x; — ) ~ X%p)

Contours of constant D*2, r=-0.03 Contours of constant D*2, r=0.69

Chi-squared QQ plot

* QQplot of ordered distances, Dz(i) S xz(p) guantiles should plot
as a 45° line through origin if MVN

* Multivariate outliers: outside the envelope
* Here: both cases check out as OK: no outliers, MVN v’
heplots::cgplot(df, id.n=3)

Chi-square QQ plot, r=-0.03 Chi-square QQ plot, r= 0.69

Squared Mahalanobis Distance
Squared Mahalanobis Distance

lg Quantile ;é Quantile 63

uins: MVN & outliers

Are penguins normal?
Can you spot the outlier?
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nguins: MVN & outliers MVN: Numerical test

heplots::qulot(peng,mlm, Chi-Square QQ plot of residuals from peng.mim ° Shaper'Wllk teSt

id.n =3, conf=0.999) % ) = Originally for univariate normality: stats::shapiro.test()

30

= Multivariate version: rstatix::mshapiro_test()

25

Get D? values

a
with rstatix::mahalanobis_distance é ] 4 4T peng |> # A tibble: 1 x 2
Find z-scores 2w . ° select(bill_length : body_mass) |> Statlzgg p':;;#f
Select outliers (is.outlier==TRUE) é o rstatix::mshapiro_test() 1 0.978 0.0000484
peng |> o * Mardia test: multivariate skewness & kurtosis
group_by(species) |> i
mahalanobis_distance(bill_length:body_mass) |> T ; 1‘0 1'5 res <- MVN::mvn(data = peng[,c(3:6)], L vardia Sk Test Stml:;;tjt; p Eaggi Resuljg
i 53 > _n in ardia Skewness 5 < 0.
tibble::rownames_to_column() | 2 curile - mvnTest="mardia") 2 Mardia Kurtosis  -2.51  0.0118  NO
mutate(across(bill_length:body_mass, resSmultivariateNormality 3 MVN <NA> <NA> NO

fns=scale)) |>
filter(is.outlier == TRUE) |>
as.data.frame()

* But: these are overly-sensitive; MLM is relatively robust

rowname bill_Tength bill_depth flipper_length body_mass mahal.dist is.outlier
1 283 2.561 0.3225 -1.425 -0.6297 27.76 TRUE

* MLM just like univariate LM, but for multiple responses
= Simultaneous tests — no need for p-value adjustment
= Take correlations among responses into account
® Indicates # of dimensions of responses

* Data ellipses
" Summarize bivariate data to show means, variances, correlation
= MANOVA: shows how groups differ in these

* HE framework
= Visualize multivariate tests in the MLM

= Canonical displays show these results in the 2D (or 3D) space that
accounts for largest between-group variance.

* Checking assumptions: visual tests are often sufficient
® homogeneity of variances: heplots: :covEllipses()
= outliers & MVN: heplot::cqplot()




