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Today’s topics

* Brief review of the GLM & MLM Y =X B+ E

(nxp)  (nxq)(gxp) (nxp)
° Data ellipses ;-
= sufficient visual summaries -

* HE plot framework

= H & E matrices/ellipses
= Discriminant/canonical views

* Example: Penguins data

Basic math
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* Checking assumptions



One-way MANOVA

* presponses, 1 “factor” (1V), g groups

Hot Wy LI, Ll Wy
H,: at least one group centroid is different

* Assumptions:

" |ndependent groups, independent observations
= Responses are independent, multivariate normal w/in each group
" Pop. within-group covariance matrices are equal across groups

* Hp: I;=3,=..=3,

* (Z estimated by S =E/ df,)

* tested by e.g., Box’s test, heplots::boxM

" > Viexy N(w )



One-way ANOVA vs. MANOVA

ANOVA
Do means differ?

(Assume equal within-

¥ group variances)

M1 M2 K3

Figure 8.1. The simple anova situation, when the differences among the populations are *‘ real.”

source: Cooley & Lohnes ((1971)

MANOVA  , How do centroids differ?
How many dimensions?

(Assume equal within-
group variance-
covariance matrices)

X3

Figure 8.2. The simple manova situation, when the differences among the populations are “'real.”



Response dimensions

Means on Y, and Y, are nearly
perfectly correlated

Y, A

Means on Y, and Y, have a low
correlation

Y, A

Only 1 dimension required to
understand the group effect

\4
\ 4

-<
[ERY

<
=

Two different aspects are reflected
in group means



GLM: the design matrix (X)

* In the full GLM, the design matrix (X) may consist of:

A constant, 1, for the intercept (usually implicit)
Quantitative regressors: age, income, education
Transformed regressors: Vage, log(income)
Polynomial terms: age?, age3, ...

Categorical predictors (“factors”, class variables): treatment (control, drug A,
drug B), sex

Interactions: treatment * sex, age * sex

Model formulae in R definey ~ X:

prestige ~ income + education # 2 main effects
prestige ~ income * education # + interaction
prestige ~ income + education + women + type # 4 main effects
prestige ~ education + poly(women, 2) + log(income)*type



Univariate linear model

° Yy = xX B + O X =(X,X,,...,X,)
MOdeI (nxl) (an) (lxq) (n><l) (nxq) q
matrix of predictors, factors, ...
i = B+ Bx,+ Bx, +"'+:quiq +Q

* Sums of squares

data fit residuals
SSTot = Z(yi,j _.)—/i)z + Z(yi,j _);i)z
i,j i,j
= SS,+SS,

* Hypothesis tests
- _SS,1df, _MS,

SS./df, MS,

1

mean square is a
variance estimate

How big is hypothesis variation
relative to error variation?




Least squares: SS; and SS¢

In simple linear regression,

y,=b,+b xx, +e

the intercept b, & slope b,
are values that minimize
the SS; (or MS;)

$S,=>e=> (n-5)

SS; is that value when b,=0

.00 1.0
.89 0.2

Average of Squared Errors = 1.00

Slope = 0.00




Regression: Visualizing SS; =SS, + SS¢

Total variance (SS;)

%=y Zi(j}i_.)_/)z zi(yi_j}i)z

Regression variance (SS,;) + Residual variance (SS;)

F test: How much better is the fitted regression line (B = bp than the flat line (3 =0) ?



ANOVA: Visualizing SS; =SS, + SS;

Total variance = Between group variance + Within group variance
2, (v =Y. (3., =.) (v =)
zjyzj y.. ij y.] y.. Ij yz] y.]
Total Groups Error

A
STTTe

c

SR I J JJP _ I HH ]

Q °

(%]

Q L

x 5| a R B
] &

—3
Control  GroupA  GroupB Control  Group A  GroupB Control Group A  GroupB

F test: How much better is the groups model than the model ignoring groups?
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Which means differ?

° In ANOVA, when a factor is significant, follow-
up to find which means differ
* Post-hoc tests:
= all-pairwise comparisons
= all treatments vs. control group
* Need to correct for multiple testing— control
family-wise error rate
= Bonferroni: & =@, / k [too conservative]
® Tukey pairwise: “honestly significant difference”
" many others: Dunnett’s test, Sidak, FDR, ...

11



Plotting multiple comparisons

HH: :mmcplot() -the mean-mean multiple comparison plot shows multiple
comparisons or contrasts for any linear model

library(HH)

catalystm.Im <- Im(concent ~ catalyst, data=catalystm)
catalystm.mmc <-mmc(catalystm.Im, linfct = mcp(catalyst = "Tukey"))
mmcplot(catalystm.mmc)

multiple comparisons of means of concent
simultaneous 95% confidence limits, tukey method

. 569 |
Construction: A
——————— e -A-B
* plot means, yy yyon grid e e,
* rotate 45° B o e FA-C
* horizontal axis shows: S B 'B-C
Yy - V}’ A . . ' o * A-D
* SE determined by MC S 6 " 3 &P
method . o o
* signif. comparisons - ;__;___';E ________ oD
highlighted
511 | D D
| | | | | |
mean I I I I I I
concent -4 -2 ] 2 4 6
catalyst level contrast

contrast value



Contrasts: planned comparisons

Better to test specific, planned comparisons, rather than all-
pairwise

A contrast is a weighted sum, L, of the means, with weights,
¢, that sum to zero

L=cu=%cp suchthat Zc,=0

r=a L= (m+mw)- (g +u,) —c =11 -1 -1
groups L, = 1 — 11, —>c,=(1 -1 0 0)
L, = Hy — Hy —>c,=(0 0 1 1)

In words: average of one subset of groups vs. another subset
Any r-1 linearly independent contrasts - same overall test
A priori contrasts can be tested w/o adjusting

13



The X matrix for a factor can be represented by a set of r-1
contrasts, combined with the unit vector

X(rxr)=(1'c)

Some special contrasts:

Deviation contrasts

1 0 O
O 1 O
C =
O 0 1
-1 -1 -1

each treatment vs control
or baseline [not
orthogonal]

1 1 0
1 -1 0
-1 0 1
-1 0 -1
cl c2 c3

Helmert contrasts

—1
—1

—1
—1

1
—1

ordered treatments: each
vs all the rest [always

orthogonal]

Polynomial contrasts

-3 1 -1
-1 -1 3
C =
1 -1 -3
3 1 1

lin guad cubic

guantitative treatment
levels [orthogonal]



Using contrasts in R

* R has 4 basic functions for generating contrasts for a factor
" Dummy coding, aka “reference level”, “treatment” contrasts
® Deviation coding, aka “sum-to-zero” constraints
= Polynomial contrasts for an ordered/quantitative factor
= Helmert contrasts for ordered factor comparisons
* Defaults are set separately for unordered and ordered factors
* Define your own by assigning a matrixto contrasts (myfactor)<- cmat

* These affect the tests of coefficients, but not overall tests

> contr.treatment (4) > contr.sum(4) > contr.poly(4)

2 3 4 [,11 [,2]1 [,3] .L .Q .C
10 1 1 0 0 [1,] -0.6708 0.5 -0.2236
21 00 2 0 1 0 [2,] -0.2236 -0.5 0.6708
3010 3 0 0 1 [3,] 0.2236 -0.5 -0.6708
4 0 01 4 -1 -1 -1 [4,] 0.6708 0.5 0.2236
> options ("contrasts") > contr.helmert (4)
Scontrasts [,1]1 [,2]1 [,3]

unordered ordered 1 -1 _q 1
contr.treatment contr.poly 5 1 1 1
3 0 2 -1

See: http://www.ats.ucla.edu/stat/r/library/contrast coding.htm 4 0 0 3

15
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Nested dichotomies

* Orthogonal contrasts can always be generated as nested
dichotomies

* They correspond to independent research questions
* Sums of squares decompose the overall effect
SSp =SS + 85, + ... + 55,4

c, = mangles vs beets c, = globe mangles vs other c; = mono beets vs yellow
/Cl /62 “ /64 °o% T Treatment €L C C3 C4 C5 Cg OCr
Brigadier mangels / Briad l 'l 0 1 0 o0 o
rigadier mangels
Yellow globe mangels / " g% £ s il
York globe mangels pp| 1 -1 1 0 0 0 0
Orange globe mangels /
/ 7 Orange globe mangels ps| 1 -1 -1 0 0 0 0
Red intermediate mangels ‘N . . _
ATV Red intermediate mangels pu¢| 1 1 0 -1 0 0 0
Mono rosa fodder beet ‘/
/ / Mono rosa fodder beet psi-1 0 0 0 1 1 1
Mono blanc fodder beet / %
Mono blanc fodder beet g/ -1 0 0 0 1 1 -1
Mono bomba fodder beet /A
Mono bomba fodder beet u7 -1 0 0 0 1 -2 0
Yellow daeno fodder beet
Yellow daeno fodder beet pu7| -1 0. 0 0 -3 0 0




Multivariate linear model

°* Model Y =X B+ E

(nxp)  (nxq)(gxp) (nxp)

matrix of p responses

* Sums of squares & cross-products

SSP, = (V¥ —nyy') + B
(pxp)

=SSP, +SSP, =H+E

* Hypothesis tests
= Eigenvalues A, i=1:p of HE?
= Wilks’ A, Pillai & Hotelling trace, Roy’s test
"= how many dimensions (aspects of responses)?

How big is hypothesis variation
relative to error variation?

Ah, but there are up to s = min(p,
df,) dimensions of size

17



Visualizing SSP; = SSP, + SSP_

Word problems
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I .2
= + ¥ ]
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2 od
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Basic math
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Word problems
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Data ellipsoids

The data ellipsoid is a sufficient visual summary for multivariate
location & scatter, just as (y,S) are sufficient for (4,Z)

Data
@
" Group1
s 4 ® Group2
° ®
0 -
E = L [ |
@
o]
9 ®
Q .
T 7
g o o
2 - | |
[
2 [
I I T T T T T
140 150 160 170 180 180 200
Basic math

Word problems
a0 100 120 140 160
|

60

Data ellipses

I I I I
140 160 180 200

Basic math
19



Data ellipsoids: definitions

For a p-dimensional multivariate sample, Yy, , the sample mean
vector, y, and sample covariance matrix, S, are minimally sufficient
statistics under classical (gaussian) assumptions.

These can be represented visually by the p-dimensional data
ellipsoid, E of size (“radius”) c centered at v,

E(y,S)={y:(y-y)S'(y-y)<c®} o Dy2(y)<c?

— an ellipsoid centered at the means whose size & shape
reflects variances & covariances

We consider this a minimally sufficient visual summary of
multivariate location and scatter.

20



Data ellipsoids: properties

* Ellipsoid boundary: Mahalanobis Dy,* (y;) ~ x,°
= p=2:shadows generalize univariate confidence intervals

= eccentricity: precision; visual estimate of correlation

75 4

} r~ 0.5 here

Mid Parent height

o P i (0.40) Univariate: méan + 1s

63 .

(0.68) Bivariate: mean = 1s

61 - T T T T T L) L) L)
61 63 65 67 69 71 73 75

Child height
21



The HE plot framework

* Hypothesis-Error (HE) plots
= Visualize multivariate tests in the MLM
" Linear hypotheses--- lower-dimensional ellipsoids
= Extension: HE plot matrices
* Canonical displays
" low-dimensional multivariate juicers
® shows data in the space of maximal effects
* Covariance ellipsoids
= visualize tests of homogeneity of covariance matrices

* For all: robust methods are available or good
research projects!

22



HE plot framework: Trivial example

Two groups of middle-school students are taught algebra by instructors using

different methods, and then tested on:
* BM: basic math problems (7 *23-2*9=7)

 WP: word problems (“a train travels at 23 mph for 7 hours, but for 2 hours ...”)

Do the groups differ on (BM, WP) by a multivariate test?
If so, how ?7??

> data(mathscore, package="heplots")
> mod <- Im(cbind(BM W) ~ group, data=mmthscore)
> Anova(nod)

Type I1 MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr (>F)

group 1 0.86518 28.878 2 9 0.0001213 ***

Signif. codes: 0 &***¢ 0.001 4**¢ 0.01 a*¢ 0.05 a.¢ 0.1 &4 ¢ 1

v

23



Follow along

The R script (mathscore-ex.R) for this example is linked on the course page. Download
and open in R Studio to follow along.

* Examples: &
= Math scores: Simple demo of MLssssshesesasimple.R

HW: explore other

o Penguins data: Multivariate EDA vig
= Diabetes data: heplots and candisc examples vignette < examples

The script was run with “knitr’ (ctrl+shift+K) in R Studio to create the HTML output
(mathscore-ex.html)
The Code button there allows you do download the R code and comments

—

Math scores: HE plot examples
Michael Friendly Rownload Rmd

(R notebooks are a simple way to turn R scripts into finished documents)

24



Why do multivariate tests?

Could do univariate ANOVAs (or t-tests) on each response variable (BM, WP)

> Anova(Im(BM ~ group, data=mathscore)) > Anova(lm(WP ~ group, data=mathscore))
Anova Table (Type II tests) Anova Table (Type II tests)
Response: BM Response: WP

Sum Sq Df F value Pr(>F) Sum Sq Df F value Pr(>F) \//
group 1302 1 4.24 0.066 . X group 4408 1 10.4 0.009 *=*
Residuals 3071 10 Residuals 4217 10

From this, might conclude that:
e Groups don’t differ on Basic Math score %
* Groups are significantly different on Word problems v/

Multivariate tests:

* Do not require correcting for multiple tests (e.g., Bonferroni)

 Combine evidence from multiple response variables (“pooling strength”)

* Show how the multivariate responses are jointly related to the predictors
* How many aspects (dimensions?)

25



Why do multivariate tests?

Overall test is highly significant:
 Combines the evidence for all predictors v
« Takes response correlations into account v/

> mod <- Im(cbind(BM WP) ~ group, data=mmthscore)
> Anova(nod)

Type 11 MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr (>F)
group 1 0.86518 28.878 2 9 0.0001213 **=*

Visual test of significance (Roy’s test)
* The H ellipse projects outside the E ellipse iff the
effect is significant.

120 130
| |

110
|

HE plot provides an interpretation:

 Group 1> Group 2 on Basic Math, but worse on Word
Problems

* Group 2> Group 1 on Word Problems, but worse on
Basic Math

* BM & WP are + correlated w/in groups

Word problems
a0 100
|

an
I

140 150 160 170 180

Basic math 26



HE plot framework: Visual overview

The data ellipsoid is a sufficient visual summary for multivariate
location & scatter, just as (y,S) are sufficient for (4,Z)

Data > Data ellipses
" Group1 ¢ ®
s 4 ® Group2 o
L L
7)) w -
= ] o | |
5 = ® é .
s | o .
o S a =
T 2
g N ! g .
2 | |
[ | 2
2 [ |

T T T T
140 150 160 170 180 190 200 140 160 180 200
Basic math Basic math
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Word problems

160

140

120

100

a0

G0

Data ellipses

T T T
140 160 180
Basic math

Discriminant

scores

120 130

1o

a0

Word problems
100

a0

70

T
160

Basic math

T
170

Word problems
100

120

140

160 180
Basic math

200

220

Can (100%)

Visual
overview

Canonical space

Canonical scores

Structure

[
i

o
<

BM

group
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Word problems

160

140

120

100

a0

G0

Data — Data ellipses — HE plot

160
130
|

14
20

120
110
|

Word problems
100
Word problems
a0 100
1

a0

60

70

T T T T
140 160 180 200 140 160 180 200
Basic math Basic math

140 150 160 170 180
Basic math

Differences between group means are shown by the H ellipsoid— data ellipsoid
of the fitted values (w/ 1 df, degenerates to a line)

=  Direction shows relation of groups to response variables
= Size shows “how big is H relative to E”

Variation within groups is reflected in the E ellipsoid-- data ellipsoid of the

residuals
®=  Direction: residual (partial) correlation between BM & WP
=  Size/shape: residual variance

29



The H ellipse

160
|

¢ Jittered fitted

O values
‘ (gp means)

T T T T T T T T T T T
140 160 180 200 140 150 160 170 180 190 200

Basic math Basic math

130
|

140
1

v
120
|

120
1
|

110
|

100
|

Word problems
100
1
Word problems
a0

an

G0
|
a0
|

7a

* The H ellipse is the data ellipse of the fitted values (group
means, here)

" The H matrix is the sum of squares and crossproducts of the fitted
values, corrected for the grand mean
H=(Y'Y-nyy)
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The E ellipse

Basic math Basic math

Word problems \
80 100 120 140
Il 1 Il

Word problems

Word problems l
20 10 0 10 20
Il 1 1 1

160 180
Basic math

The E ellipse is the data ellipse of the residuals

= What you get when you subtract the group means from all
observations, shifting them to the grand means.

" E matrix called the “within-group pooled covariance matrix”

e

E=(V-¥)(V-¥)=EE

31



H & E in numbers

The H and E matrices are calculated in the car::Anova() function and saved as the SSP

and SSPE components, used in the statistical tests.

> math.aov <- Anova(math.mod)
> (H <- math.aov$SSP)
$group
BM WP
BM 1302.1 -2395.8
WP -2395.8 4408.3

Direct calculation: H :(Y’?—nﬁ’)

fit <- fitted(math.mod)

ybar <- colMeans(mathscore[,2:3])

h <- nrow(mathscore)

crossprod(fit) - n*outer(ybar, ybar)
BM WP

BM 1302.1 -2395.8

WP -2395.8 4408.3

>
>
>
>

fit

\'%

Ooo~NOUVIDE WN R

178.
178.
178.
178.
178.
178.
157.
157.
157.
10 157.
11 157.
12 157.

BM
33
33
33
33
33
33
50
50
50
50
50
50

83.
83.
83.
83.
83.
83.
.667
121.
121.

121

121

WP
333
333
333
333
333
333

667
667

.667
121.
121.

667
667
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H & E in numbers

> (E <- math.aov$SSPE)
BM WP

BM 3070.8 2808.3

WP 2808.3 4216.7

Direct calculation: E=(§(—Y)'(§A{—S_{

> resids <- residuals(math.mod)
> crossprod(resids)
BM WP
BM 3070.8 2808.3
WP 2808.3 4216.7

> cor(resids)

BM WP
BM 1.00 0.78
wp 0.78 1.00

> resids
BM
1 11.667
2 -8.333
3 1.667
4 21.667
5 -28.333
6 1.667
7 2.500
8 32.500
9 -7.500
10 2.500
11 -17.500
12 -12.500

WP

.667
.333
.333
.667
.333
.333
.667
.333
.667
.333
.667
.333
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ININIMEINEREWSE

*  MANOVA and linear discriminant analysis (LDA) are intimately related and
differ mainly in perspective:
= MANOVA: Do means of groups on 2+ responses differ?
= LDA: Find weighted sums of responses that best discriminate groups

* |n both cases,
= Group differences are represented by the H matrix; residuals: E matrix

= Test statistics based on eigenvalues of HE!
= Discriminant weights are eigenvectors of HE!

100 110 120 130

Word problems
Word problems

a0

a0

7o

T T T T T T T T T
140 150 160 170 180 180 120 140 160 180 200 220
Basic math Basic math
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ININIMEINEREWSE

For 2 groups,
= the discriminant axis is the line joining the two group centroids,

= discriminant scores are the projections of observations on this line.

MASS:lda() does this analysis

> (mod.lda <- MASS::lda(group ~ ., mathscore))

Group means:
BM WP

1 178.3 83.33

2 157.5 121.67

Word problems

Coefficients of linear discriminants:

-0.08350
0.07527

The canonical dimension is Can1 = 0.075 WP - 0.083 BM, a contrast between the two
tests

160 180
Basic math

WP
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Canonical space

* The HE plot view shows the data in data space
Easier to see effects by projecting scores to canonical space —
the best-discriminating axes.

For a 1 df effect, there is only one canonical dimension
= Arrows show the relative size & direction of discriminant weights

Word problems

160 180
Basic math

Cani (100%)

Canonical scores Structure . .
library(candisc)

T g mod.can <- candisc(math.mod)
plot(mod.can)

EM
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Penguin data

Data on 3 species of penguins, measured on 3 Antarctic
islands

= How does penguin “size” differ by species, island, ... ?

> Tibrary(palmerpengiuns)
> peng <- penguins %>% rename(...) %>% ... # clean up names, etc.
> peng[sample(1:333, 5), 1
# A tibble: 5 x 8
species island bill_length bill_depth flipper_length body_mass sex year
<fct> <fct> <db1> <db1> <int> <int> <fct> <int>
1 Chinstrap Dream 58 17.8 181 3700 f 2007
2 Adelie Torgersen 39.6 17.2 196 3550 f 2008
3 Gentoo Biscoe 46.2 14.1 217 4375 f 2009
4 Chinstrap Dream 49 19.5 210 3950 m 2008
5 Gentoo Biscoe 50.4 15.7 222 5750 m 2009

GENTOO/

ADELigs

C,\\\“Sg RA Pf

Bl depth
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Penguins: Multivariate EDA

Boxplots by grouping variables (factors) are often useful for an initial overview
e Can show multiple variables, but hard for >1 factor.
 What is the pattern here?

bill_depth bill_length body_mass flipper_length
- BD T -
230 -
6000 -
200 220 -
507 5000 210-
. species
g 17.5 EI Adelie
& 200 - - Chinstrap
B3 Gentoo
4000 -
40 - . 190 _
15.0 -
180 -
‘ 3000 -
- -
1 1 1 1 1 1 1 1 1 1?0 L 1 1 1
Adelie  Chinstrap  Gentoo Adelie  Chinstrap  Gentoo Adelie  Chinstrap  Gentoo Adelie  Chinstrap  Gentoo
species
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Penguins: Multivariate EDA

Boxplots by grouping variables (factors) are often useful for an initial overview
Need to reshape data from wide to long format

# convert wide to long format

peng_long <- peng |>
tidyr::gather(Measure, Size, bill_length:body_mass)

ggplot(peng_long, aes(x=species, y=Size, fill=species)) +

geom_boxplot() +
facet_wrap(. ~ Measure, scales="free_y", nrow=1)

ppppppppppppp

nnnnnnnnnnnnnnnnnnnnn

39
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PCA & Biplots

* For multivariate data, often want to view the data in
a low-D space that shows the most total variance

* PCA: finds weighted sums of variables which are:
" Uncorrelated
= Account for maximum variance
" How many dimensions are necessary?

* A biplotis a 2D (or 3D) plot of the largest PCA
dimensions
= \ectors in this plot show the original data variables
" Points in this plot show the observations

e Data ellipses here show within group relations

40



PCA:

* PC1is the direction along which points have max. variance
e Equivalently, the perp. deviations from the line have min. residual SS

PCA by springs .|

* Imagine each pt connected
to a possible PC1 line by ol /
springs

 Force ~ deviation? 1}

Forces balance, naturally seek ol

the min. residual SS position.

Voila, QED!
* Avisual proof P




PCA

peng.pca <- prcomp (~ bill_length + bill_depth + flipper_length + body_mass,
data=peng,
na.action=na.omit,
scale. = TRUE)
screeplot(peng.pca, type = "line", Iwd=3, cex=3,
main="Variances of PCA Components")

Variances of PCA Components

> summary (peng.pca)
Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 1.657 0.882 0.6072 0.328
Proportion of Variance 0.686 0.195 0.0922 0.027
CumuTlative Proportion 0.686 0.881 0.9730 1.000

Variances
15 2.0 25

10

2D: 88.1 %
3D:97.3 %

05
L

See: https://rpubs.com/friendly/penguin-biplots for details
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Biplot

library(ggbiplot)

ggbiplot(peng.pca, obs.scale = 1, var.scale =1,
groups = pengSspecies,
ellipse = TRUE, circle = TRUE) +
scale_color_discrete(name = 'Penguin Species')

Penguin Species Adelie —* Chinstrap Gentoo
PC1, PC2 ~ 88.1% of variance :
* PC1: largely flipper len Adelig
”g Y .pp. ” gth & body 1 Gentoo
mass: “penguin size - .

* PC2 (& PC1): relates to “bill shape” - -

2 ﬂi(]j)per_length
Easy to characterize the species in terms E body.pass
of these variables o

o -1

&

4
80955
-2 0 2 4

See: https://rpubs.com/friendly/penguin-biplots PC1 (68.6% explained var.)
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Penguins: MANOVA

Assume the goal is to determine whether/how the penguins differ in “size” by species
* A MLM tests all 4 size variables together: ~ species
* Could also use other factors: ~ species + sex + island

> peng.mod0 <-Im(cbind(bil1_Tength, bill_depth, flipper_Tlength, body_mass) ~ species,
data=peng)
> Anova(peng.mod0)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)
species 2 1.64 371 8 656 <2e-16 **¥*

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * ’ 1

Yet, we are left to understand the nature of this effect wrt. the size variables.

See: https://rpubs.com/friendly/penguin-manova for details
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Penguins: view data ellipses

Data ellipses in 2D provide a good start for pairwise relations

bill depth & length body mass & flipper length
s @ )
o = - £ S 4
L |2
! z
8 e 3 8.
35 40 45 50 180 190 200 210 220
bill_length flipper_length
* group means negatively correlated * group means positively correlated
e within group correlation >0 e within group correlation >0
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HE plot details

* E ellipse reflects within-group error (co)variation

= Size: E / df, set to cover 68%, an analog of y £ 1 std
= Shift to grand mean for direct comparison with H

* H ellipse reflects (co)variation of group means

= effect size scaling, uses H/df, to put this on the same scale as the E ellipse.
Analog of effect size in univariate designs.
= significance (“evidence”) scaling: uses H/A df, .

* The H ellipse protrudes outside the E ellipse somewhere, iff an effect is
significant (Roy’s largest root test) at p < a

Effect size scaling:H /df, 3 4 fonificance scaling:H/ A, df,

45 50 0 20 40 60 80
billength il |_length 4 6



Penguins: HE plots

Orientation of the H ellipse reflects negative correlation of the species means: species
with larger bill depth have smaller bill length (bill “shape”?)
E ellipse: within species, larger bill length — larger bill depth

20
I

Effect size scaling:H/df, vificance scaling:H/ A df,

30
I

19

Error_

Adelie ‘Cﬁinstrap
- \‘ L ]

18

20
I

c c Adelie Eninstrap
3 s s F
8| < 5 S+
= 5 o | '\_,Gérltoo
species P
T species
I I I T T I I
35 40 45 50 0 20 40 60 80
bill_length bill_length

heplot(peng.modO, size="effect") heplot(peng.modO, size="evidence")



* Inlinear models, any effect of df, > 1 can be partitioned into

df, separate 1 df tests of contrasts

= If orthogonal, H=H; + H, + ... H 4, -- accounts for total effect
= Tested as a linear hypothesis, e.g., x; — (%, + x3)/2 =0

= Each H, has rank=1, so appears as a line in HE plots

°* Assume we want to compare the species as two contrasts:

= Do Adelie differ from Chinstrap?
= Do Gentoo penguins differ from the other two?

> contrasts(peng$species)<-matrix(c(1,-1, O, -1, -1, -2), 3,2)
> contrasts(peng$species)
[,1]1 [,2]
Adelie 1 -1
Chinstrap -1 -1
Gentoo 0 2
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Contrasts

hyp <- list("A:C"="species1","AC:G"="species2") # give names to contrasts
heplot(peng.modo, fill=TRUE, fill.alpha=0.2,
hypotheses=hyp, size="effect")

Result is very clear:

14

* Adelie & Chinstrap differ only in bill
length

* Gentoo differ from other two —
longer, but less deep bills (bill shape)

Adelie
L ]

18

bill_depth

17

Both of these are large effects!

Together, they are the entire species
effect!

16

15

28 40 42 44 46 43 50

bill_length 49



Other models

peng.mod2 <-Im(cbind(bill_length, bill_depth, flipper_length, body_mass) ~ species + sex, data=peng)
Anova(peng.mod?2)

Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)
species 2 1.65480 391.89 8 654 < 2.2e-16 ***
sex 1 0.64004 144.91 4 326 < 2.2e-16 ***

19

heplot(peng.mod2, fill=TRUE, fill.alpha=0.2,
hypotheses=hyp)

Adelie
L ]

18

pth

Effect of sex: male penguins have larger bills

bill_de
17

Adding sex reduces E variances
—Effect of species now more pronounced

16

Gentoo
L ]

15

Each 1 df effect plots as a line

f?\{:i'qﬁlhr:lripcc

I I I I
38 40 42 44 46 48 50

bill_length



Other HE plots

* 2D: can plot any pair of responses in data space
* pairs.mIlm(): all pairwise 2D views
* heplot3d(): plots in 3D, can rotate, spin, zoom, ...

heplot(peng.mod0, variables=3:4,
fill=TRUE, fill.alpha=0.2, size="effect")

5000

4500

Interpretation:

* major axis of the H ellipse measures
“penguin size”

* Gentoo are the Big Birds in this story!

body mass

4000

3500
|

190 200 210 220

flipper_length

-1



HE Pairs plots

The pairs() method for mlm objects gives all pairwise HE plots in a scatterplot matrix

format.

60

bill_length

specid

body_mass

2700

pairs(peng.modo, size="effect",
fill=c(TRUE, FALSE))

Something new here:

* avg. bill depth is negatively correlated
with “size” variables — larger penguin
species have smaller bill depths
(curvature?)

* correlation of avg. bill depth with body
mass nearly -1
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heplot3d()

3D HE plots can show other features

heplot3d(peng.mod0, size="effect")

Specles

The H ellipsoid here is flat (2D), because /20/1
the species effect has 2 df - 0]
| |
| el
In this 3D view, the 3 species form a t:]!” ° L
triangle, suggesting some further || _d‘eﬂ
interpretation, not seen in 2D views 164
.15
|
| 180
199

fli ppeial[:]_% gth

40 il |1ehGth

220
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Canonical view

* 4 response variables, but only s=min(q, dfh)=2 dimensions.
= Here, both dimensions are significant
= Canl accounts for 86.5% of between-species variance
= Can 2 accounts for the rest: 13.5%

> library(candisc)
> (peng.can <- candisc(peng.mod0))

Canonical Discriminant Analysis for species:
CanRsq Eigenvalue Difference Percent Cumulative

1 0.938 15.03 12.7 86.5 86.5

2 0.700 2.34 12.7 13.5 100.0

Test of HO: The canonical correlations in the
current row and all that follow are zero

LR test stat approx F numDF denDF Pr(> F)

1 0.0187 516 8 654 <2e-16 *** v
2 0.2997 255 3 328 <2e-16 *** v
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 “ 1
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Canonical view

The plot() method for candisc objects shows points for observations and vector for
variables

plot(peng.can, ellipse = TRUE .. ) #plot CAN scores with ellipses

Canl: largely body mass &
flipper length, that separate -
Gentoo from (Adelie, Chinstrap)

Can2: bill length distinguishes
Chinstrap from others.

Can2 (13.5%)

bill_length

Can1 (86.5%)



Canonical HE plot

heplot(peng.can, size="effect", fill=c(TRUE, FALSE))

Here is the entire effect of
species shown in one HE plot

In CAN space, residuals are
uncorrelated: E = circle

Size of H shows the total effect of
species

Variable vectors show how the
groups are discriminated.

Can2 (13.5%)

Adelie . -
L ] f,- "
i ' flipper_length
bill depth == / Pper_teng
\\\
“Erfor
Chinstrap ~ SPeties hY bill_length
L ]
T T T T T
4 2 0 2 4

Can1 (86.5%)




Checking assumptions

* Assumptions in the MLM extend those in
univariate models
" Linearity: Each vy, is linearly related to all xs

= Constant variance matrices of residuals
S,=S,=--=8, }Q~MVN(O,E)

iid
" Residuals are multivariate normal

* In addition, need to check
*" No multivariate outliers
®" No multicollinearity among predictors
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Checking assumptions

* Linearity: plot each y; against each x;
" quantitative x; : plot(y; ~ x;) + loess smooth
= factor: boxplots

* Constant variance
= visual: plot data ellipses for each group
 heplots:: covEllipses(data, group=, ..)
" univariate-- levene test: heplots::TleveneTests()
" multivariate—-Box M test: Hy: 2, =%, = ..= L,
* res <- heplots::boxM(); plot(res)
° Multivariate outliers
" Mahalanobis D (y;) ~ x?, : outlier if prob (x°; ) < .01
" Chisquare QQ plot : plot D* (y;) vs. x>, quantiles: cqplot()
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Constant variance: Visual

heplots::covEllipses() plotsthe data ellipses for each group, for 2+ variables

Are the sizes and shapes & orientations = the same in all panels?

Approximately true, w/ some
diffces

* Gentoo looks a bit smaller

* Adelie: correlations ~ differ?

This might be good enough

covEllipses(peng|[,3:6],
group = pengsSspecies,
variables=1:4, # all pairs
fill=TRUE, fill.alpha=0.1,
pooled=FALSE)

bill_length

Chiuﬁtrﬁp

£

bill_depth

£

£

B [D
ORGSR

body_mass
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Constant variance: Visual

This is easier to judge if all groups are centered at the grand mean in each panel

covEllipses(peng[,3:6],
group = pengsSspecies,
variables=1:4,
center=TRUE,
fill=TRUE, fill.alpha=0.1,
pooled=FALSE)

bill_length

bill_depth
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Constant variance: statistical tests

Levene tests for each response variable separately:

> heplots::leveneTests(peng[,3:6], group=peng$species)
Levene's Tests for Homogeneity of Variance (center = median)

dfl df2 F value Pr(GF)

bill_length 2 330 2.29 0.1033

bill_depth 2 330 1.91 0.1494

flipper_length 2 330 0.44 0.6426

body_mass 2 330 5.13 0.0064 =**

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Box’s M test: all responses together — equal variances & correlations !

> heplots::boxM(peng[,3:6], group = peng$species)
Box's M-test for Homogeneity of Covariance Matrices

data: peng[, 3:6]
Chi-Sq (approx.) = 75, df = 20, p-value = 3e-08

NB: Box’s M test is highly sensitive to small diff®s; use @ = 0.001
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Multivariate normality: z2 — D?

For MVN & outliers, Mahalanobis D? generalizes z scores

1 variable: z; = (x;— xj/s ~ N(0,1) or, 22 ~ X%

2 variables, uncorrelated: squared distance from mean is

D =2,)% + 2,7 ~ X%y

p variables: D,2 = Mahalanobis squared distance of x. from centroid

D} = (i — @) S (@ — ) ~ X{p)

Contours of constant D2, r= -0.03

o 73

Contours of constant D*2, r= 0.69
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Chi-squared QQ plot

° QQplot of ordered distances, D, vs x°,, quantiles should plot
as a 45° line through origin if MVN

* Multivariate outliers: outside the envelope
* Here: both cases check out as OK: no outliers, MVN v
heplots::cgplot(df, id.n=3)

Chi-square QQ plot, r=-0.03 Chi-square QQ plot, r=0.69

Squared Mahalanobis Distance
Squared Mahalanobis Distance

% g Quantile % 3 Quantile 63



Penguins: MVN & outliers

Are penguins normal?
Can you spot the outlier?
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Penguins: MVN & outliers

heplots::cq plot(peng, ml m, Chi-Square QQ plot of residuals from peng.mim
id.n = 3, conf=0.999)

35

L 4
263

30
|

25
|

Get D? values

with rstatix::mahalanobis_distance
Find z-scores
Select outliers (is.outlier==TRUE)

15

Squared Mahalanobis Distance
10

peng |> 0 -
group_by(species) |>
mahalanobis_distance(bill_length:body_mass) |> I I I |
tibble::rownames_to_column() |> 0 ’ 10 1
mutate(across(bill_length:body mass,
fns=scale)) |>

filter(is.outlier == TRUE) |>
as.data.frame()

xi Quantile

rowname bill_length bill_depth flipper_length body_mass mahal.dist is.outlier

1 283 2.561 0.3225 -1.425 -0.6297 27.76 TRUE
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MVN: Numerical tests

Shapiro-Wilk test

= QOriginally for univariate normality: stats::shapiro.test()

= Multivariate version: rstatix::mshapiro_test()

peng |> # A tibble: 1 x 2 :
select(bill_length : body_mass) |> Statljg]: p.ZZb#S
rstatix::mshapiro_test() 1 0.978 0.0000484

Mardia test: multivariate skewness & kurtosis

res <- MVN::mvn(data = peng[,c(3:6)], _ Test Statistic
mvnTest="mardia") 1 Mardia Skewness 127.42

o l 2 Mardia Kurtosis -2.51
resSmultivariateNormality 3 MVN <NA>

But: these are overly-sensitive; MLM is relatively robust

p value Result

< 0.001
0.0118
<NA>

NO
NO
NO
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* MLM just like univariate LM, but for multiple responses
= Simultaneous tests — no need for p-value adjustment
= Take correlations among responses into account
" |ndicates # of dimensions of responses

* Data ellipses
= Summarize bivariate data to show means, variances, correlation
= MANOVA: shows how groups differ in these

* HE framework

= Visualize multivariate tests in the MLM

= Canonical displays show these results in the 2D (or 3D) space that
accounts for largest between-group variance.

* Checking assumptions: visual tests are often sufficient
= homogeneity of variances: heplots::covETlTipses()
= outliers & MVN: heplot::cgplot()

68



	Visualizing Linear Models: �An R Bag of Tricks�Session 2: Multivariate Models
	Today’s topics
	One-way MANOVA
	One-way ANOVA vs. MANOVA
	Response dimensions
	GLM: the design matrix (X)
	Univariate linear model
	Least squares: SST and SSE
	Regression: Visualizing SST = SSH + SSE
	ANOVA: Visualizing SST = SSH + SSE
	Which means differ?
	Plotting multiple comparisons
	Contrasts: planned comparisons
	Slide Number 14
	Using contrasts in R
	Nested dichotomies
	Multivariate linear model
	Visualizing SSPT = SSPH + SSPE
	Data ellipsoids
	Data ellipsoids: definitions
	Data ellipsoids: properties
	The HE plot framework
	HE plot framework: Trivial example
	Follow along
	Why do multivariate tests?
	Why do multivariate tests?
	HE plot framework: Visual overview
	Slide Number 28
	Data  Data ellipses  HE plot
	The H ellipse
	The E ellipse
	H & E in numbers
	H & E in numbers
	Discriminant analysis
	Discriminant analysis
	Canonical space
	Penguin data
	Penguins: Multivariate EDA
	Penguins: Multivariate EDA
	PCA & Biplots
	PCA animation
	PCA
	Biplot
	Penguins: MANOVA
	Penguins: view data ellipses
	HE plot details
	Penguins: HE plots
	Contrasts
	Contrasts
	Other models
	Other HE plots
	HE Pairs plots
	heplot3d()
	Canonical view
	Canonical view
	Canonical HE plot
	Checking assumptions
	Checking assumptions
	Constant variance: Visual
	Constant variance: Visual
	Constant variance: statistical tests
	Multivariate normality: z2  D2
	Chi-squared QQ plot
	Penguins: MVN & outliers
	Penguins: MVN & outliers
	MVN: Numerical tests
	Summary

