

#### Visualizing Linear Models: An R Bag of Tricks Session 2: Multivariate Models

Michael Friendly SCS Short Course Oct-Nov 2021 https://friendly.github.io/VisMLM-course/

## Today's topics

- Brief review of the GLM & MLM
- Data ellipses
  - sufficient visual summaries
- HE plot framework
  - H & E matrices/ellipses
  - Discriminant/canonical views
- Example: Penguins data



Checking assumptions



 $(n \times p)$ 

 $(n \times q) (q \times p)$ 

#### **One-way MANOVA**

*p* responses, 1 "factor" (IV), *g* groups

 $\mathsf{H}_{\mathsf{o}}: \ \underline{\boldsymbol{\mu}}_1 \Box \underline{\boldsymbol{\mu}}_2 \Box \dots \underline{\boldsymbol{\mu}}_{\mathsf{g}}$ 

H<sub>1</sub>: at least one group centroid is different

#### • Assumptions:

- Independent groups, independent observations
- Responses are independent, multivariate normal w/in each group
- Pop. within-group covariance matrices are equal across groups
  - $H_0: \Sigma_1 = \Sigma_2 = ... = \Sigma_g$
  - ( $\Sigma$  estimated by  $S = E / df_e$ )
  - tested by e.g., Box's test, heplots::boxM
- ${\color{black} \bullet} \rightarrow y_{ij \; (p \, x \; 1)} \, {\color{black} \sim} \, N \; ( \; {\color{black} \mu_{j}}, \, {\color{black} \Sigma})$

#### One-way ANOVA vs. MANOVA

#### ANOVA



#### Do means differ?

(Assume equal withingroup variances)

Figure 8.1. The simple anova situation, when the differences among the populations are "real."

source: Cooley & Lohnes ((1971)



Figure 8.2. The simple manova situation, when the differences among the populations are "real."

#### **Response dimensions**

Means on Y<sub>1</sub> and Y<sub>2</sub> are nearly perfectly correlated

Means on  $Y_1$  and  $Y_2$  have a low correlation



Only 1 dimension required to understand the group effect

Two different aspects are reflected in group means

## GLM: the design matrix (X)

#### • In the full GLM, the design matrix (X) may consist of:

- A constant, 1, for the intercept (usually implicit)
- Quantitative regressors: age, income, education
- Transformed regressors: Vage, log(income)
- Polynomial terms: age<sup>2</sup>, age<sup>3</sup>, ...
- Categorical predictors ("factors", class variables): treatment (control, drug A, drug B), sex
- Interactions: treatment \* sex, age \* sex

Model formulae in R define y ~ X:

#### Univariate linear model

• Model 
$$\mathbf{y}_{(n \times 1)} = \mathbf{X}_{(n \times q)} \mathbf{\beta}_{(1 \times q)} + \mathbf{\dot{o}}_{(n \times 1)}$$
  
 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_q x_{iq} + \mathbf{\dot{o}}_i$ 

$$\mathbf{X}_{(n \times q)} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_q)$$

matrix of predictors, factors, ...

Sums of squares

data fit residuals  

$$SS_{\text{Tot}} = \sum_{i,j} (\hat{y}_{i,j} - \overline{y}_i)^2 + \sum_{i,j} (y_{i,j} - \hat{y}_i)^2$$
  
 $= SS_H + SS_E$ 

Hypothesis tests

$$F = \frac{SS_H / df_H}{SS_E / df_E} = \frac{MS_H}{MS_E}$$

How big is hypothesis variation relative to error variation?

mean square is a variance estimate

## Least squares: SS<sub>T</sub> and SS<sub>E</sub>

In simple linear regression,

 $y_i = b_0 + b_1 \times x_i + e_i$ 

the intercept  $b_0$  & slope  $b_1$ are values that minimize the SS<sub>F</sub> (or MS<sub>F</sub>)

$$SS_E = \sum e_i^2 = \sum \left(y_i - \hat{y}_i\right)^2$$

 $SS_{\rm T}$  is that value when b1=0

| b <sub>1</sub> | MS <sub>E</sub> |
|----------------|-----------------|
| .00            | 1.0             |
| .89            | 0.2             |

Average of Squared Errors = 1.00



# Regression: Visualizing $SS_T = SS_H + SS_E$

Total variance  $(SS_T)$ 

 $\Sigma_i (y_i - \overline{y})^2$ 

= Regression variance  $(SS_{H})$  + Residual variance  $(SS_{E})$ 

$$\Sigma_i (\hat{y}_i - \overline{y})^2 \qquad \qquad \Sigma_i (y_i - \hat{y}_i)^2$$



*F* test: How much better is the fitted regression line ( $\beta = b_p$ ) than the flat line ( $\beta = 0$ )?

# ANOVA: Visualizing $SS_T = SS_H + SS_E$

**Total variance** 

Between group variance +

Within group variance



F test: How much better is the groups model than the model ignoring groups?

## Which means differ?

- In ANOVA, when a factor is significant, followup to find which means differ
- Post-hoc tests:
  - all-pairwise comparisons
  - all treatments vs. control group
- Need to correct for multiple testing
   – control family-wise error rate
  - Bonferroni: ?; = ?; / k [too conservative]
  - Tukey pairwise: "honestly significant difference"
  - many others: Dunnett's test, Sidak, FDR, ...

## Plotting multiple comparisons

HH::mmcplot() – the mean-mean multiple comparison plot shows multiple comparisons or contrasts for any linear model

library(HH)
catalystm.lm <- lm(concent ~ catalyst, data=catalystm)
catalystm.mmc <-mmc(catalystm.lm, linfct = mcp(catalyst = "Tukey"))
mmcplot(catalystm.mmc)</pre>

Construction:

- plot means, yy yy on grid
- rotate 45°
- horizontal axis shows:
   yy yy
- SE determined by MC method
- signif. comparisons highlighted



#### Contrasts: planned comparisons

- Better to test specific, planned comparisons, rather than allpairwise
- A contrast is a weighted sum, L, of the means, with weights,
   c, that sum to zero

 $L = c' \mu = \Sigma c_i \mu_i$  such that  $\Sigma c_i = 0$ 

- In words: average of one subset of groups vs. another subset
- Any *r*-1 linearly independent contrasts  $\rightarrow$  same overall test
- A priori contrasts can be tested w/o adjusting 🛛

The **X** matrix for a factor can be represented by a set of *r*-1 contrasts, combined with the unit vector

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{pmatrix}$$
  
c1 c2 c3

Some special contrasts:

**Deviation contrasts** 

 $X_{(r \times r)} = (1, C)$ 

Helmert contrasts

Polynomial contrasts

$$\mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix}$$

each treatment vs control or baseline [not orthogonal]

$$\mathbf{C} = \begin{pmatrix} 3 & 0 & 0 \\ -1 & 2 & 0 \\ -1 & -1 & 1 \\ -1 & -1 & -1 \end{pmatrix}$$

ordered treatments: each vs all the rest [always orthogonal]  $\mathbf{C} = \begin{pmatrix} -3 & 1 & -1 \\ -1 & -1 & 3 \\ 1 & -1 & -3 \\ 3 & 1 & 1 \end{pmatrix}$ 

lin quad cubic

quantitative treatment levels [orthogonal] 14

## Using contrasts in R

- R has 4 basic functions for generating contrasts for a factor
  - Dummy coding, aka "reference level", "treatment" contrasts
  - Deviation coding, aka "sum-to-zero" constraints
  - Polynomial contrasts for an ordered/quantitative factor
  - Helmert contrasts for ordered factor comparisons
- Defaults are set separately for unordered and ordered factors
- Define your own by assigning a matrix to contrasts (myfactor) <- cmat</li>
- These affect the tests of coefficients, but not overall tests

| <pre>&gt; contr.treatment(4)    2 3 4</pre>                                                | <pre>&gt; contr.sum(4) [,1] [,2] [,3]</pre>           | <pre>&gt; contr.poly(4) .L .Q .C</pre>                                                                     |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 1 0 0 0<br>2 1 0 0<br>3 0 1 0<br>4 0 0 1                                                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | [1,] -0.6708 0.5 -0.2236<br>[2,] -0.2236 -0.5 0.6708<br>[3,] 0.2236 -0.5 -0.6708<br>[4,] 0.6708 0.5 0.2236 |
| <pre>&gt; options("contrasts") \$contrasts     unordered co "contr.treatment" "contr</pre> | ordered<br>.poly"                                     | <pre>&gt; contr.helmert(4)   [,1] [,2] [,3] 1 -1 -1 -1 2 1 -1 -1</pre>                                     |
| See: <u>http://www.ats.ucla.edu/stat/r/libra</u>                                           | ry/contrast_coding.htm                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                       |

#### Nested dichotomies

- Orthogonal contrasts can always be generated as nested dichotomies
- They correspond to independent research questions
- Sums of squares decompose the overall effect

 $SS_A = SS_{c1} + SS_{c2} + \dots + SS_{c(r-1)}$ 



Treatment C1 C2 C3 C4 Č5 C6 C7 1 1 0 1 0 0 0 Brigadier mangels  $\mu_1$ 1 -1 1 0 0 0 0 York globe mangels  $\mu_2$ 1 -1 -1 0 0 0 Orange globe mangels 0  $\mu_3$ 1 1 0 -1 0 0 Red intermediate mangels 44 0 -1 0 0 0 1 1 Mono rosa fodder beet 1  $\mu_5$  $\mu_6$  -1 0 0 0 1 1 -1 Mono blanc fodder beet  $\mu_7$  -1 0 0 0 1 -2 Mono bomba fodder beet -1 0. 0 Yellow daeno fodder beet 0 -3 0μ7

#### $c_5 = mono beets vs yellow$

#### Multivariate linear model

• Model 
$$\mathbf{Y}_{(n \times p)} = \mathbf{X}_{(n \times q)} \mathbf{B}_{(q \times p)} + \mathbf{E}_{(n \times p)}$$

$$\mathbf{Y}_{(n \times p)} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_p)$$

matrix of p responses

Sums of squares & cross-products

$$\mathbf{SSP}_{(p \times p)} = \left( \hat{\mathbf{Y}}' \hat{\mathbf{Y}} - n \overline{\mathbf{yy}}' \right) + \hat{\mathsf{E}}' \hat{\mathsf{E}}$$

$$= \mathbf{SSP}_H + \mathbf{SSP}_E = \mathbf{H} + \mathbf{E}$$

- Hypothesis tests
  - Eigenvalues  $\lambda_i$ , *i=1:p* of H E<sup>-1</sup>
  - Wilks' Λ, Pillai & Hotelling trace, Roy's test
  - how many dimensions (aspects of responses)?

How big is hypothesis variation relative to error variation?

Ah, but there are up to  $s = min(p, df_h)$  dimensions of size

# Visualizing $SSP_T = SSP_H + SSP_E$



#### Data ellipsoids

The data ellipsoid is a sufficient visual summary for multivariate location & scatter, just as  $(\overline{y}, \mathbf{S})$  are sufficient for  $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ 



#### Data ellipsoids: definitions

- For a *p*-dimensional multivariate sample, Y<sub>N×p</sub>, the sample mean vector, y
   *x*, and sample covariance matrix, S
   *x*, are minimally sufficient statistics under classical (gaussian) assumptions.
- These can be represented visually by the *p*-dimensional data ellipsoid, E<sub>c</sub> of size ("radius") *c* centered at y

$$\mathsf{E}_{\mathsf{c}}(\mathbf{\overline{y}},\mathbf{S}) := \{\mathbf{y} : (\mathbf{y} - \mathbf{\overline{y}})^T \, \mathbf{S}^{-1}(\mathbf{y} - \mathbf{\overline{y}}) \le c^2\} \qquad \text{or,} \quad \mathsf{D}_{\mathsf{M}}^{-2}(\mathbf{y}) \le c^2$$

- → an ellipsoid centered at the means whose size & shape reflects variances & covariances
- We consider this a minimally sufficient visual summary of multivariate location and scatter.

#### Data ellipsoids: properties

- Ellipsoid boundary: Mahalanobis  $D_M^2(y_i) \sim \chi_p^2$ 
  - *p*=2: shadows generalize univariate confidence intervals
  - eccentricity: precision; visual estimate of correlation



## The HE plot framework

- Hypothesis-Error (HE) plots
  - Visualize multivariate tests in the MLM
  - Linear hypotheses--- lower-dimensional ellipsoids
  - Extension: HE plot matrices
- Canonical displays
  - Iow-dimensional multivariate juicers
  - shows data in the space of maximal effects
- Covariance ellipsoids
  - visualize tests of homogeneity of covariance matrices
- For all: robust methods are available or good research projects!

## HE plot framework: Trivial example

Two groups of middle-school students are taught algebra by instructors using different methods, and then tested on:

- BM: basic math problems (7 \* 23 2 \* 9 = ?)
- WP: word problems ("a train travels at 23 mph for 7 hours, but for 2 hours ...")

Do the groups differ on (BM, WP) by a multivariate test? If so, how ???

```
> data(mathscore, package="heplots")
> mod <- lm(cbind(BM, WP) ~ group, data=mathscore)
> Anova(mod)
Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)
group 1 0.86518 28.878 2 9 0.0001213 ***
---
Signif. codes: 0 å***ç 0.001 å**ç 0.01 å*ç 0.05 å.ç 0.1 å ç 1
```

## Follow along

The R script (mathscore-ex.R) for this example is linked on the course page. Download and open in R Studio to follow along.

Examples: 

 Math scores: Simple demo of MLMs mathscore simple.R
 Math scores: HE plot examples mathscore ex.R || mathscore ex.html
 Penguins data: Multivariate EDA vignette
 Diabetes data: heplots and candisc examples vignette
 HW: explore other examples

The script was run with `knitr` (ctrl+shift+K) in R Studio to create the HTML output (mathscore-ex.html)

The Code button there allows you do download the R code and comments



(R notebooks are a simple way to turn R scripts into finished documents)

## Why do multivariate tests?

Could do univariate ANOVAs (or t-tests) on each response variable (BM, WP)



From this, might conclude that:

- Groups don't differ on Basic Math score ×
- Groups are significantly different on Word problems ✓

Multivariate tests:

- Do not require correcting for multiple tests (e.g., Bonferroni)
- Combine evidence from multiple response variables ("pooling strength")
- Show how the multivariate responses are jointly related to the predictors
  - How many aspects (dimensions?)

## Why do multivariate tests?

Overall test is highly significant:

- Combines the evidence for all predictors
- Takes response correlations into account

```
> mod <- lm(cbind(BM, WP) ~ group, data=mathscore)
> Anova(mod)
```

```
Type II MANOVA Tests: Pillai test statistic<br/>Df test stat approx F num Df den DfPr(>F)group 10.8651828.878290.0001213 ***
```

Visual test of significance (Roy's test)

• The **H** ellipse projects outside the **E** ellipse iff the effect is significant.

HE plot provides an interpretation:

- Group 1 > Group 2 on Basic Math, but worse on Word Problems
- Group 2 > Group 1 on Word Problems, but worse on Basic Math
- BM & WP are + correlated w/in groups



## HE plot framework: Visual overview

The data ellipsoid is a sufficient visual summary for multivariate location & scatter, just as  $(\overline{y}, \mathbf{S})$  are sufficient for  $(\mathbf{\mu}, \mathbf{\Sigma})$ 





## Data $\rightarrow$ Data ellipses $\rightarrow$ HE plot



- Differences between group means are shown by the H ellipsoid data ellipsoid of the fitted values (w/ 1 df, degenerates to a line)
  - Direction shows relation of groups to response variables
  - Size shows "how big is H relative to E"
- Variation within groups is reflected in the E ellipsoid-- data ellipsoid of the residuals
  - Direction: residual (partial) correlation between BM & WP
  - Size/shape: residual variance

## The H ellipse



- The **H** ellipse is the data ellipse of the fitted values (group means, here)
  - The H matrix is the sum of squares and crossproducts of the fitted values, corrected for the grand mean

$$\mathbf{H} = \left(\hat{\mathbf{Y}}'\hat{\mathbf{Y}} - n\overline{\mathbf{y}\mathbf{y}}'\right)$$

### The E ellipse



- The **E** ellipse is the data ellipse of the residuals
  - What you get when you subtract the group means from all observations, shifting them to the grand means.
  - E matrix called the "within-group **pooled** covariance matrix"

$$\mathbf{E} = \left(\hat{\mathbf{Y}} - \overline{\mathbf{Y}}\right)' \left(\hat{\mathbf{Y}} - \overline{\mathbf{Y}}\right) = \hat{\mathsf{E}}' \hat{\mathsf{E}}$$

## H & E in numbers

The **H** and **E** matrices are calculated in the car::Anova() function and saved as the SSP and SSPE components, used in the statistical tests.

Direct calculation: H =

$$\mathbf{H} = \left(\hat{\mathbf{Y}}'\hat{\mathbf{Y}} - n\overline{\mathbf{y}\mathbf{y}}'\right)$$

| > 1 | fit    |         |
|-----|--------|---------|
|     | BM     | WP      |
| 1   | 178.33 | 83.333  |
| 2   | 178.33 | 83.333  |
| 3   | 178.33 | 83.333  |
| 4   | 178.33 | 83.333  |
| 5   | 178.33 | 83.333  |
| 6   | 178.33 | 83.333  |
| 7   | 157.50 | 121.667 |
| 8   | 157.50 | 121.667 |
| 9   | 157.50 | 121.667 |
| 10  | 157.50 | 121.667 |
| 11  | 157.50 | 121.667 |
| 12  | 157.50 | 121.667 |

#### H & E in numbers

Direct calculation: 
$$\mathbf{E} = (\hat{\mathbf{Y}} - \overline{\mathbf{Y}})'(\hat{\mathbf{Y}} - \overline{\mathbf{Y}}) = \hat{\mathsf{E}}'\hat{\mathsf{E}}$$

| >  | resids  |         |
|----|---------|---------|
|    | BM      | WP      |
| 1  | 11.667  | 6.667   |
| 2  | -8.333  | -3.333  |
| 3  | 1.667   | -3.333  |
| 4  | 21.667  | 36.667  |
| 5  | -28.333 | -23.333 |
| 6  | 1.667   | -13.333 |
| 7  | 2.500   | -1.667  |
| 8  | 32.500  | 28.333  |
| 9  | -7.500  | -31.667 |
| 10 | 2.500   | 8.333   |
| 11 | -17.500 | -11.667 |
| 12 | -12.500 | 8.333   |

## Discriminant analysis

- MANOVA and linear discriminant analysis (LDA) are intimately related and differ mainly in perspective:
  - MANOVA: Do means of groups on 2+ responses differ?
  - LDA: Find weighted sums of responses that best discriminate groups
- In both cases,
  - Group differences are represented by the **H** matrix; residuals: **E** matrix
  - Test statistics based on eigenvalues of HE<sup>-1</sup>
  - Discriminant weights are eigenvectors of HE<sup>-1</sup>



## Discriminant analysis

- For 2 groups,
  - the discriminant axis is the line joining the two group centroids,
  - discriminant scores are the projections of observations on this line.
- MASS:Ida() does this analysis

```
> (mod.lda <- MASS::lda(group ~ ., mathscore))</pre>
                                                                             8
                                                                             140
                                                                                                Frror
Group means:
                                                                           Word problems
<sup>80</sup> 100 120
       BM
                 WP
1 178.3
           83.33
2 157.5 121.67
                                                                             8
Coefficients of linear discriminants:
                                                                                               aroup
                                                                             8
BM
    -0.08350
                                                                                120
                                                                                     140
                                                                                                   200
                                                                                                        220
      0.07527
WP
                                                                                        Basic math
```

The canonical dimension is Can1 = 0.075 WP - 0.083 BM, a contrast between the two tests

#### **Canonical space**

- The HE plot view shows the data in data space
- Easier to see effects by projecting scores to canonical space the best-discriminating axes.
- For a 1 df effect, there is only one canonical dimension
  - Arrows show the relative size & direction of discriminant weights



### Penguin data

- Data on 3 species of penguins, measured on 3 Antarctic islands
  - How does penguin "size" differ by species, island, ... ?



| > | library(pa  | almerpengiu | uns)        |             |                |                                                          |               |
|---|-------------|-------------|-------------|-------------|----------------|----------------------------------------------------------|---------------|
| > | peng <- pe  | enguins %>% | % rename()  | ) %>%       | # clean ı      | up names, etc.                                           |               |
| > | peng[samp]  | le(1:333, 5 | 5), ]       |             |                |                                                          |               |
| # | A tibble:   | 5 x 8       |             |             |                |                                                          |               |
|   | species     | island      | bill_length | bill_depth  | flipper_length | body_mass sex                                            | year          |
|   | <fct></fct> | <fct></fct> | <dbl></dbl> | <dbl></dbl> | <int></int>    | <int> <fct< td=""><td>&gt; <int></int></td></fct<></int> | > <int></int> |
| 1 | Chinstrap   | Dream       | 58          | 17.8        | 181            | 3700 f                                                   | 2007          |
| 2 | Adelie      | Torgersen   | 39.6        | 17.2        | 196            | 3550 f                                                   | 2008          |
| 3 | Gentoo      | Biscoe      | 46.2        | 14.1        | 217            | 4375 f                                                   | 2009          |
| 4 | Chinstrap   | Dream       | 49          | 19.5        | 210            | 3950 m                                                   | 2008          |
| 5 | Gentoo      | Biscoe      | 50.4        | 15.7        | 222            | 5750 m                                                   | 2009          |



## Penguins: Multivariate EDA

Boxplots by grouping variables (factors) are often useful for an initial overview

- Can show multiple variables, but hard for >1 factor.
- What is the pattern here?



#### Penguins: Multivariate EDA

Boxplots by grouping variables (factors) are often useful for an initial overview

Need to reshape data from wide to long format

```
ggplot(peng_long, aes(x=species, y=Size, fill=species)) +
geom_boxplot() +
facet_wrap(. ~ Measure, scales="free_y", nrow=1)
```



## PCA & Biplots

- For multivariate data, often want to view the data in a low-D space that shows the most total variance
- PCA: finds weighted sums of variables which are:
  - Uncorrelated
  - Account for maximum variance
  - How many dimensions are necessary?
- A biplot is a 2D (or 3D) plot of the largest PCA dimensions
  - Vectors in this plot show the original data variables
  - Points in this plot show the observations
    - Data ellipses here show within group relations

#### **PCA** animation

#### PCA:

- PC1 is the direction along which points have max. variance
- Equivalently, the perp. deviations from the line have min. residual SS

#### PCA by springs 3 Imagine each pt connected ٠ to a possible PC1 line by 2 springs Force ~ deviation<sup>2</sup> ٠ 1 Forces balance, naturally seek Û the min. residual SS position. -1 Voila, QED! A visual proof -2 -3

-3

-2

-1

Û

1

2

3

#### PCA



See: https://rpubs.com/friendly/penguin-biplots for details

# Biplot

```
library(ggbiplot)
ggbiplot(peng.pca, obs.scale = 1, var.scale = 1,
    groups = peng$species,
    ellipse = TRUE, circle = TRUE) +
    scale_color_discrete(name = 'Penguin Species')
```

PC1, PC2 ~ 88.1% of variance

- PC1: largely flipper length & body mass: "penguin size"
- PC2 (& PC1): relates to "bill shape"

Easy to characterize the species in terms of these variables



### Penguins: MANOVA

Assume the goal is to determine whether/how the penguins differ in "size" by species

- A MLM tests all 4 size variables together: ~ species
- Could also use other factors: ~ species + sex + island

Yet, we are left to understand the nature of this effect wrt. the size variables.

See: https://rpubs.com/friendly/penguin-manova for details

## Penguins: view data ellipses

Data ellipses in 2D provide a good start for pairwise relations

bill depth & length



body mass & flipper length



- group means negatively correlated
- within group correlation > 0

- group means positively correlated
- within group correlation > 0

## HE plot details

- **E** ellipse reflects within-group error (co)variation
  - Size: E / df<sub>e</sub> set to cover 68%, an analog of y ± 1 std
  - Shift to grand mean for direct comparison with **H**
- **H** ellipse reflects (co)variation of group means
  - effect size scaling, uses H/df<sub>e</sub> to put this on the same scale as the E ellipse. Analog of effect size in univariate designs.
  - significance ("evidence") scaling: uses  $H/\lambda_{\alpha} df_{e}$ .
    - The H ellipse protrudes outside the E ellipse somewhere, *iff* an effect is significant (Roy's largest root test) at p < α</li>





#### Penguins: HE plots

Orientation of the **H** ellipse reflects negative correlation of the species means: species with larger bill depth have smaller bill length (bill "shape"?) **E** ellipse: within species, larger bill length  $\rightarrow$  larger bill depth



heplot(peng.mod0, size="effect")

heplot(peng.mod0, size="evidence")

#### Contrasts

- In linear models, any effect of df<sub>h</sub> > 1 can be partitioned into df<sub>h</sub> separate 1 df tests of contrasts
  - If orthogonal, H = H<sub>1</sub> + H<sub>2</sub> + ... H<sub>dfh</sub> -- accounts for total effect
  - Tested as a linear hypothesis, e.g.,  $x_1 (x_2 + x_3)/2 = 0$
  - Each H<sub>i</sub> has rank=1, so appears as a line in HE plots
- Assume we want to compare the species as two contrasts:
  - Do Adelie differ from Chinstrap?
  - Do Gentoo penguins differ from the other two?

```
> contrasts(peng$species)<-matrix(c(1,-1, 0, -1, -1, -2), 3,2)
> contrasts(peng$species)
       [,1] [,2]
Adelie 1 -1
Chinstrap -1 -1
Gentoo 0 2
```

#### Contrasts



Result is very clear:

- Adelie & Chinstrap differ only in bill length
- Gentoo differ from other two longer, but less deep bills (bill shape)

Both of these are large effects!

Together, they are the entire species effect!

#### Other models

peng.mod2 <-Im(cbind(bill\_length, bill\_depth, flipper\_length, body\_mass) ~ species + sex, data=peng)
Anova(peng.mod2)</pre>

 Type II
 MANOVA Tests: Pillai test statistic

 Df test stat approx F num Df den Df
 Pr(>F)

 species
 2
 1.65480
 391.89
 8
 654 < 2.2e-16</td>
 \*\*\*

 sex
 1
 0.64004
 144.91
 4
 326 < 2.2e-16</td>
 \*\*\*

heplot(peng.mod2, fill=TRUE, fill.alpha=0.2, hypotheses=hyp)

Effect of sex: male penguins have larger bills

Adding sex reduces **E** variances →Effect of species now more pronounced

Each 1 df effect plots as a line



## Other HE plots

- 2D: can plot any pair of responses in data space
- pairs.mlm(): all pairwise 2D views
- heplot3d(): plots in 3D, can rotate, spin, zoom, ...



#### HE Pairs plots

The pairs() method for mlm objects gives all pairwise HE plots in a scatterplot matrix format.



# pairs(peng.mod0, size="effect", fill=c(TRUE, FALSE))

#### Something new here:

- avg. bill depth is negatively correlated with "size" variables – larger penguin species have smaller bill depths (curvature?)
- correlation of avg. bill depth with body mass nearly -1

## heplot3d()

3D HE plots can show other features

heplot3d(peng.mod0, size="effect")

The H ellipsoid here is flat (2D), because the species effect has 2 df

In this 3D view, the 3 species form a triangle, suggesting some further interpretation, not seen in 2D views



#### **Canonical view**

- 4 response variables, but only s=min(q, dfh)=2 dimensions.
  - Here, both dimensions are significant
  - Can1 accounts for 86.5% of between-species variance
  - Can 2 accounts for the rest: 13.5%

```
> library(candisc)
> (peng.can <- candisc(peng.mod0))</pre>
Canonical Discriminant Analysis for species:
 CanRsg Eigenvalue Difference Percent Cumulative
1 0.938
             15.03
                         12.7
                                  86.5
                                            86.5
2 0.700
              2.34
                         12.7
                                 13.5
                                           100.0
Test of HO: The canonical correlations in the
current row and all that follow are zero
 LR test stat approx F numDF denDF Pr(> F)
       0.0187
                    516
                           8
                               654 <2e-16 ***
1
                               328 <2e-16 ***
       0.2997
                   255 3
2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

#### **Canonical view**

The plot() method for candisc objects shows points for observations and vector for variables

plot(peng.can, ellipse = TRUE ... ) #plot CAN scores with ellipses

Can1: largely body mass & flipper length, that separate Gentoo from (Adelie, Chinstrap)

Can2: bill length distinguishes Chinstrap from others.



## Canonical HE plot

heplot(peng.can, size="effect", fill=c(TRUE, FALSE))

Here is the entire effect of species shown in one HE plot

In CAN space, residuals are uncorrelated: **E** = circle

Size of **H** shows the total effect of species

Variable vectors show how the groups are discriminated.



## **Checking assumptions**

- Assumptions in the MLM extend those in univariate models
  - Linearity: Each y<sub>i</sub> is linearly related to all xs
  - Constant variance matrices of residuals

$$\mathbf{S}_i = \mathbf{S}_2 = \cdots = \mathbf{S}_g$$

$$\dot{\mathbf{o}}_{iid} \sim \mathrm{MVN}(\mathbf{0}, \boldsymbol{\Sigma})$$

Residuals are multivariate normal

- In addition, need to check
  - No multivariate outliers
  - No multicollinearity among predictors

## **Checking assumptions**

- Linearity: plot each **y**<sub>i</sub> against each **x**<sub>i</sub>
  - quantitative  $\mathbf{x}_i$ : plot( $\mathbf{y}_i \sim \mathbf{x}_i$ ) + loess smooth
  - factor: boxplots
- Constant variance
  - visual: plot data ellipses for each group
    - heplots:: covEllipses(data, group=, ...)
  - univariate-- levene test: heplots::leveneTests()
  - multivariate Box M test:  $H_0 : \Sigma_1 = \Sigma_2 = ... = \Sigma_g$ 
    - res <- heplots::boxM(); plot(res)</pre>
- Multivariate outliers
  - Mahalanobis D<sup>2</sup> ( $\mathbf{y}_i$ ) ~  $\chi^2_p$  : outlier if prob ( $\chi^2_p$ ) < .01
  - Chisquare QQ plot : plot D<sup>2</sup> (y<sub>i</sub>) vs. χ<sup>2</sup><sub>p</sub> quantiles: cqplot()

#### **Constant variance: Visual**

heplots::covEllipses() plots the data ellipses for each group, for 2+ variables Are the sizes and shapes & orientations  $\cong$  the same in all panels?



#### **Constant variance: Visual**

This is easier to judge if all groups are centered at the grand mean in each panel

```
covEllipses(peng[,3:6],
  group = peng$species,
  variables=1:4,
  center=TRUE,
  fill=TRUE, fill.alpha=0.1,
  pooled=FALSE)
```



#### Constant variance: statistical tests

Levene tests for each response variable separately:

Box's M test: all responses together – equal variances & correlations !

```
> heplots::boxM(peng[,3:6], group = peng$species)
```

Box's M-test for Homogeneity of Covariance Matrices

```
data: peng[, 3:6]
Chi-Sq (approx.) = 75, df = 20, p-value = 3e-08
```

NB: Box's M test is highly sensitive to small diff<sup>ces</sup>; use  $\mathbb{P} = 0.001$ 

## Multivariate normality: $z^2 \rightarrow D^2$

#### For MVN & outliers, Mahalanobis D<sup>2</sup> generalizes z scores

- 1 variable:  $z_i = (x_i x)/s \sim N(0,1)$  or,  $z_i^2 \sim \chi^2_{(1)}$
- 2 variables, uncorrelated: squared distance from mean is

$$D_i^2 = z_{i1}^2 + z_{i2}^2 \sim \chi^2_{(2)}$$

• p variables:  $D_i^2$  = Mahalanobis squared distance of  $x_i$  from centroid

$$D_i^2 = (\boldsymbol{x}_i - \bar{\boldsymbol{x}})^{\mathsf{T}} \boldsymbol{S}^{-1} (\boldsymbol{x}_i - \bar{\boldsymbol{x}}) \sim \chi^2_{(p)}$$



#### Chi-squared QQ plot

- QQ plot of ordered distances,  $D^2_{(i)} vs \chi^2_{(p)}$  quantiles should plot as a 45° line through origin if MVN
- Multivariate outliers: outside the envelope
- Here: both cases check out as OK: no outliers, MVN ✓



#### Penguins: MVN & outliers



#### Penguins: MVN & outliers

heplots::cqplot(peng.mlm, id.n = 3, conf=0.999)

Get D<sup>2</sup> values with rstatix::mahalanobis\_distance Find z-scores Select outliers (is.outlier==TRUE)

#### Chi-Square QQ plot of residuals from peng.mlm



rowname bill\_length bill\_depth flipper\_length body\_mass mahal.dist is.outlier 1 283 2.561 0.3225 -1.425 -0.6297 27.76 TRUE

## **MVN:** Numerical tests

- Shapiro-Wilk test
  - Originally for univariate normality: stats::shapiro.test()
  - Multivariate version: rstatix::mshapiro\_test()

| peng  >                           | <pre># A tibble: 1 x 2</pre> |
|-----------------------------------|------------------------------|
| coloct/hill longth, hady mass) [> | statistic p.value            |
| select(bill_length: body_mass)  > | <dbl><dbl></dbl></dbl>       |
| rstatix::mshapiro_test()          | <b>1 0.978 0.0000484</b>     |

Mardia test: multivariate skewness & kurtosis

| res <- MVN::mvn(data = peng[.c(3:6)]. | Test              | Statistic | p value   | Result |
|---------------------------------------|-------------------|-----------|-----------|--------|
| munTost-"mardia")                     | 1 Mardia Skewness | 127.42    | < 0.001   | NO     |
| mvmest– marula j                      | 2 Mardia Kurtosis | -2.51     | 0.0118    | NO     |
| res                                   | 3 MVN             | <na></na> | <na></na> | NO     |

• But: these are overly-sensitive; MLM is relatively robust

## Summary

- MLM just like univariate LM, but for multiple responses
  - Simultaneous tests no need for p-value adjustment
  - Take correlations among responses into account
  - Indicates # of dimensions of responses
- Data ellipses
  - Summarize bivariate data to show means, variances, correlation
  - MANOVA: shows how groups differ in these
- HE framework
  - Visualize multivariate tests in the MLM
  - Canonical displays show these results in the 2D (or 3D) space that accounts for largest between-group variance.
- Checking assumptions: visual tests are often sufficient
  - homogeneity of variances: heplots::covEllipses()
  - outliers & MVN: heplot::cqplot()