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Today’s topics
• Brief review of the GLM & MLM
• Data ellipses
 sufficient visual summaries

• HE plot framework
 H & E matrices/ellipses
 Discriminant/canonical views

• Example: Penguins data

• Checking assumptions
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One-way MANOVA

• p responses, 1 “factor” (IV), g groups
Ho:  μ1 � μ2 � … μg

H1: at least one group centroid is different

• Assumptions:
 Independent groups, independent observations
 Responses are independent, multivariate normal w/in each group
 Pop. within-group covariance matrices are equal across groups

• H0:  Σ1 = Σ2 = … = Σg

• (Σ estimated by S = E / dfe)
• tested by e.g., Box’s test, heplots::boxM

 → yij (p x 1) ~ N ( μj, Σ)



One-way ANOVA vs. MANOVA
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Do means differ?

(Assume equal within-
group variances)

How do centroids differ?
How many dimensions?

(Assume equal within-
group variance-
covariance matrices)

ANOVA

MANOVA



Response dimensions
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Y1

Y2

Y1

Y2

Means on Y1 and Y2 are nearly 
perfectly correlated

Means on Y1 and Y2 have a low 
correlation

Only 1 dimension required to 
understand the group effect

Two different aspects are reflected 
in group means
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GLM: the design matrix (X)
• In the full GLM, the design matrix (X) may consist of:

 A constant, 1, for the intercept (usually implicit)
 Quantitative regressors: age, income, education
 Transformed regressors: √age, log(income)
 Polynomial terms: age2, age3, …
 Categorical predictors (“factors”, class variables): treatment (control, drug A, 

drug B), sex
 Interactions: treatment * sex, age * sex

prestige ~ income + education                 # 2 main effects
prestige ~ income * education                 #  + interaction
prestige ~ income + education + women + type  # 4 main effects
prestige ~ education + poly(women, 2) + log(income)*type

Model formulae in R define y ~ X:



Univariate linear model
• Model

• Sums of squares

• Hypothesis tests
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Least squares: SST and SSE
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In simple linear regression,

the intercept b0 & slope b1
are values that minimize 
the SSE (or MSE) 

SST is that value when b1=0

22 ˆ( )E i i iS e yS y= −=∑ ∑

0 1i i iy b b ex= + × +

b1 MSE

.00 1.0

.89 0.2



Regression: Visualizing SST = SSH + SSE
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Total variance (SST)                 =     Regression variance  (SSH)   +   Residual variance (SSE)

2)(i iy y−Σ 2ˆ( )ii y yΣ − 2( )ˆi i iy y−Σ

F test: How much better is the fitted regression line (β = bр)  than the flat line (β = 0) ?

�𝑦𝑦 0β = b̂β =



ANOVA: Visualizing SST = SSH + SSE

10

Total variance                        =     Between group variance    +    Within group variance

2
•• )(ij ijy y−Σ 2

• ••( )ij jy y−Σ 2
•( )ij ij jyy −Σ

Control       Group A       Group B           Control       Group A       Group B                Control      Group A       Group B   
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sp
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F test: How much better is the groups model than the model ignoring groups?



Which means differ?
• In ANOVA, when a factor is significant, follow-

up to find which means differ
• Post-hoc tests: 
 all-pairwise comparisons
 all treatments vs. control group

• Need to correct for multiple testing– control 
family-wise error rate
 Bonferroni: i = FW / k  [too conservative]
 Tukey pairwise: “honestly significant difference” 
 many others: Dunnett’s test, Sidak, FDR, …
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Plotting multiple comparisons
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HH::mmcplot() – the mean-mean multiple comparison plot shows multiple 
comparisons or contrasts for any linear model

Construction:

• plot means, yуi, yуj on grid
• rota te  45o

• horizonta l axis  shows: 
yуI - yуj

• SE de termined by MC 
method

• s ignif. comparisons  
highlighted

library(HH)
catalystm.lm <- lm(concent ~ catalyst, data=catalystm)
catalystm.mmc <-mmc(catalystm.lm, linfct = mcp(catalyst = "Tukey"))
mmcplot(catalystm.mmc)



Contrasts: planned comparisons
• Better to test specific, planned comparisons, rather than all-

pairwise
• A contrast is a weighted sum, L,  of the means, with weights, 

c, that sum to zero

L = c’ μ = Σ ci μi such that   Σ ci = 0

• In words: average of one subset of groups vs. another subset
• Any r-1 linearly independent contrasts → same overall test
• A priori contrasts can be tested w/o adjusting 
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The X matrix for a factor can be represented by a set of r-1
contrasts, combined with the unit vector

X (r x r) = ( 1, C )

1 1 1 0
1 1 1 0
1 1 0 1
1 1 0 1

 
 − =
 −
 

− − 

X

1 0 0
0 1 0
0 0 1
1 1 1
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c1   c2   c3

3 0 0
1 2 0
1 1 1
1 1 1
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Deviation contrasts Helmert contrasts Polynomial contrasts

lin   quad  cubic
each treatment vs control 
or baseline [not 
orthogonal]

ordered treatments: each 
vs all the rest [always 
orthogonal]

quantitative treatment 
levels [orthogonal]

Some special contrasts:



Using contrasts in R
• R has 4 basic functions for generating contrasts for a factor

 Dummy coding, aka “reference level”, “treatment” contrasts
 Deviation coding, aka “sum-to-zero” constraints
 Polynomial contrasts for an ordered/quantitative factor
 Helmert contrasts for ordered factor comparisons

• Defaults are set separately for unordered and ordered factors
• Define your own by assigning a matrix to contrasts(myfactor)<- cmat
• These affect the tests of coefficients, but not overall tests
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> contr.treatment(4)
2 3 4

1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1

> contr.sum(4)
[,1] [,2] [,3]

1    1    0    0
2    0    1    0
3    0    0    1
4   -1   -1   -1

> contr.poly(4)
.L   .Q      .C

[1,] -0.6708  0.5 -0.2236
[2,] -0.2236 -0.5  0.6708
[3,]  0.2236 -0.5 -0.6708
[4,]  0.6708  0.5  0.2236

> options("contrasts")
$contrasts

unordered           ordered 
"contr.treatment"      "contr.poly" 

> contr.helmert(4)
[,1] [,2] [,3]

1   -1   -1   -1
2    1   -1   -1
3    0    2   -1
4    0    0    3See: http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm

http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm
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Nested dichotomies
• Orthogonal contrasts can always be generated as nested 

dichotomies
• They correspond to independent research questions
• Sums of squares decompose the overall effect

SSA = SSc1 + SSc2 + … + SSc(r-1)

c1 = mangles vs beets c2 = globe mangles vs other c5 = mono beets vs yellow



Multivariate linear model
• Model

• Sums of squares & cross-products

• Hypothesis tests
 Eigenvalues λi, i=1:p of H E-1

 Wilks’ Λ, Pillai & Hotelling trace, Roy’s test
 how many dimensions (aspects of responses)?
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Visualizing SSPT = SSPH + SSPE
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Data ellipsoids

Data Data ellipses

The data ellipsoid is a sufficient visual summary for multivariate 
location & scatter, just as              are sufficient for  ( , )y S ( , )μ Σ
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Data ellipsoids: definitions
• For a p-dimensional multivariate sample, YN×p , the sample mean 

vector,    , and sample covariance matrix, S, are minimally sufficient 
statistics under classical (gaussian) assumptions.

• These can be represented visually by the p-dimensional data 
ellipsoid,         of size (“radius”) c centered at    ,

• → an ellipsoid centered at the means whose size & shape 
reflects variances & covariances

• We consider this a minimally sufficient visual summary of 
multivariate location and scatter.
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Data ellipsoids: properties
• Ellipsoid boundary: Mahalanobis DM

2 (yi) ~ χp
2

 p=2: shadows generalize univariate confidence intervals
 eccentricity: precision; visual estimate of correlation

21

r ≈ 0.5 here



The HE plot framework
• Hypothesis-Error (HE) plots
 Visualize multivariate tests in the MLM 
 Linear hypotheses--- lower-dimensional ellipsoids
 Extension:  HE plot matrices

• Canonical displays
 low-dimensional multivariate juicers
 shows data in the space of maximal effects

• Covariance ellipsoids
 visualize tests of homogeneity of covariance matrices

• For all: robust methods are available or good 
research projects!
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HE plot framework: Trivial example
Two groups of middle-school students are taught algebra by instructors using 
different methods,  and then tested on:  
• BM: basic math problems (7 * 23 – 2 * 9 = ?)
• WP: word problems (“a train travels at 23 mph for 7 hours, but for 2 hours …”)

Do the groups differ on (BM, WP) by a multivariate test?
If so, how ???

> da t a ( ma t hs c or e ,  pa c ka ge =" he pl ot s " )
> mod <- l m( c bi nd( BM,  WP)  ~ gr oup,  da t a =ma t hs c or e )
> Anova ( mod)

Type  I I  MANOVA Te s t s :  Pi l l a i  t e s t  s t a t i s t i c
Df t e s t  s t a t  a ppr ox F num Df de n Df Pr ( >F)     

gr oup  1    0 . 86518   28. 878      2       9  0 . 0001213 ***
- - -
Si gni f .  c ode s :   0  å ***ç  0. 001 å **ç  0. 01 å *ç  0. 05 å . ç  0 . 1  å  ç  1

23





Follow along
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The R script (mathscore-ex.R) for this example is linked on the course page. Download 
and open in R Studio to follow along.  

The script was run with `knitr` (ctrl+shift+K) in R Studio to create the HTML output 
(mathscore-ex.html)
The Code button there allows you do download the R code and comments

(R notebooks are a simple way to turn R scripts into finished documents)

HW: explore other 
examples



Why do multivariate tests?
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Could do univariate ANOVAs (or t-tests) on each response variable (BM, WP)

From this, might conclude that: 
• Groups don’t differ on Basic Math score 
• Groups are significantly different on Word problems 

Multivariate tests:
• Do not require correcting for multiple tests (e.g., Bonferroni)
• Combine evidence from multiple response variables (“pooling strength”)
• Show how the multivariate responses are jointly related to the predictors

• How many aspects (dimensions?)

> Anova(lm(BM ~ group, data=mathscore))
Anova Table (Type II tests)

Response: BM
Sum Sq Df F value Pr(>F)  

group       1302  1    4.24  0.066 .
Residuals   3071 10 



> Anova(lm(WP ~ group, data=mathscore))
Anova Table (Type II tests)

Response: WP
Sum Sq Df F value Pr(>F)   

group       4408  1    10.4  0.009 **
Residuals   4217 10 





Why do multivariate tests?
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> mod <- l m( c bi nd( BM,  WP)  ~ gr oup,  da t a =ma t hs c or e )
> Anova ( mod)

Type  I I  MANOVA Te s t s :  Pi l l a i  t e s t  s t a t i s t i c
Df t e s t  s t a t  a ppr ox F num Df de n Df Pr ( >F)     

gr oup  1    0 . 86518   28. 878      2       9  0 . 0001213 ***

Overall test is highly significant:
• Combines the evidence for all predictors
• Takes response correlations into account

Visual test of significance (Roy’s test)
• The H ellipse projects outside the E ellipse iff the 

effect is significant.

HE plot provides an interpretation:
• Group 1 > Group 2 on Basic Math, but worse on Word 

Problems
• Group 2 > Group 1 on Word Problems, but worse on 

Basic Math
• BM & WP are + correlated w/in groups






HE plot framework: Visual overview

Data Data ellipses

The data ellipsoid is a sufficient visual summary for multivariate 
location & scatter, just as              are sufficient for  ( , )y S ( , )μ Σ
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Visual 
overview

Data ellipses HE plot

Discriminant 
scores

Canonical space
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Data → Data ellipses → HE plot

• Differences between group means are shown by the H ellipsoid– data ellipsoid 
of the fitted values (w/ 1 df, degenerates to a line)
 Direction shows relation of groups to response variables
 Size shows “how big is H relative to E”

• Variation within groups is reflected in the E ellipsoid-- data ellipsoid of the 
residuals
 Direction: residual (partial) correlation between BM & WP
 Size/shape: residual variance

29



The H ellipse

• The H ellipse is the data ellipse of the fitted values (group 
means, here)
 The H matrix is the sum of squares and crossproducts of the fitted 

values, corrected for the grand mean 
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Jittered fitted 
values
(gp means)

( )ˆ ˆ n= ′ − ′Y Y yyH



The E ellipse

• The E ellipse is the data ellipse  of the residuals 
 What you get when you subtract the group means from all 

observations, shifting them to the grand means.
 E matrix called the “within-group pooled covariance matrix”
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H & E in numbers
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> math.aov <- Anova(math.mod)
> (H <- math.aov$SSP)
$group

BM      WP
BM  1302.1 -2395.8
WP -2395.8  4408.3

> fit <- fitted(math.mod)
> ybar <- colMeans(mathscore[,2:3])
> n <- nrow(mathscore)
> crossprod(fit) - n*outer(ybar, ybar)

BM      WP
BM  1302.1 -2395.8
WP -2395.8  4408.3

> fit
BM      WP

1  178.33  83.333
2  178.33  83.333
3  178.33  83.333
4  178.33  83.333
5  178.33  83.333
6  178.33  83.333
7  157.50 121.667
8  157.50 121.667
9  157.50 121.667
10 157.50 121.667
11 157.50 121.667
12 157.50 121.667

( )ˆ ˆ n= ′ − ′Y Y yyH

The H and E matrices are calculated in the car::Anova() function and saved as the SSP 
and SSPE components, used in the statistical tests.

Direct calculation:



H & E in numbers
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> (E <- math.aov$SSPE)
BM     WP

BM 3070.8 2808.3
WP 2808.3 4216.7

> resids <- residuals(math.mod)
> crossprod(resids)

BM     WP
BM 3070.8 2808.3
WP 2808.3 4216.7

> resids
BM      WP

1   11.667   6.667
2   -8.333  -3.333
3    1.667  -3.333
4   21.667  36.667
5  -28.333 -23.333
6    1.667 -13.333
7    2.500  -1.667
8   32.500  28.333
9   -7.500 -31.667
10   2.500   8.333
11 -17.500 -11.667
12 -12.500   8.333

> cor(resids)
BM   WP

BM 1.00 0.78
WP 0.78 1.00

Direct calculation: ( ) ( )  ˆ ˆ'= − − = ′E Y Y Y Y E E



Discriminant analysis
• MANOVA and linear discriminant analysis (LDA) are intimately related and 

differ mainly in perspective:
 MANOVA: Do means of groups on 2+ responses differ?
 LDA: Find weighted sums of responses that best discriminate groups

• In both cases,
 Group differences are represented by the H matrix; residuals: E matrix
 Test statistics based on eigenvalues of HE-1

 Discriminant weights are eigenvectors of HE-1

34



Discriminant analysis
• For 2 groups, 
 the discriminant axis is the line joining the two group centroids, 
 discriminant scores are the projections of observations on this line.

• MASS:lda() does this analysis

35

> (mod.lda <- MASS::lda(group ~ ., mathscore))

Group means:
BM     WP

1 178.3  83.33
2 157.5 121.67

Coefficients of linear discriminants:
LD1

BM -0.08350
WP  0.07527

The canonical dimension is Can1 = 0.075 WP - 0.083 BM, a contrast between the two 
tests



Canonical space
• The HE plot view shows the data in data space
• Easier to see effects by projecting scores to canonical space –

the best-discriminating axes.
• For a 1 df effect, there is only one canonical dimension
 Arrows show the relative size & direction of discriminant weights
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library(candisc)
mod.can <- candisc(math.mod)
plot(mod.can)



Penguin data
• Data on 3 species of penguins, measured on 3 Antarctic 

islands
 How does penguin “size” differ by species, island, … ?
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> library(palmerpengiuns)
> peng <- penguins %>% rename(...) %>% ...         # clean up names, etc.
> peng[sample(1:333, 5), ]
# A tibble: 5 x 8

species   island    bill_length bill_depth flipper_length body_mass sex    year
<fct>     <fct>           <dbl>      <dbl>          <int>     <int> <fct> <int>

1 Chinstrap Dream            58         17.8            181      3700 f      2007
2 Adelie Torgersen 39.6       17.2            196      3550 f      2008
3 Gentoo    Biscoe           46.2       14.1            217      4375 f      2009
4 Chinstrap Dream            49         19.5            210      3950 m      2008
5 Gentoo    Biscoe           50.4       15.7            222      5750 m      2009



Penguins: Multivariate EDA

38

Boxplots by grouping variables (factors) are often useful for an initial overview
• Can show multiple variables, but hard for >1 factor.
• What is the pattern here?



Penguins: Multivariate EDA
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Boxplots by grouping variables (factors) are often useful for an initial overview
• Need to reshape data from wide to long format

peng_long <- peng |>                                                       # convert wide to long format
tidyr::gather(Measure, Size, bill_length:body_mass) 

ggplot(peng_long, aes(x=species, y=Size, fill=species)) +
geom_boxplot() + 
facet_wrap(. ~ Measure, scales="free_y", nrow=1)



PCA & Biplots
• For multivariate data, often want to view the data in 

a low-D space that shows the most total variance
• PCA: finds weighted sums of variables which are:
 Uncorrelated
 Account for maximum variance
 How many dimensions are necessary?

• A biplot is a 2D (or 3D) plot of the largest PCA 
dimensions
 Vectors in this plot show the original data variables
 Points in this plot show the observations

• Data ellipses here show within group relations

40



PCA animation
PCA:
• PC1 is the direction along which points have max. variance
• Equivalently, the perp. deviations from the line have min. residual SS

PCA by springs
• Imagine each pt connected 

to a possible PC1 line by 
springs

• Force ~ deviation2

Forces balance, naturally seek 
the min. residual SS position.

Voila, QED!
• A visual proof



PCA
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peng.pca <- prcomp (~ bill_length + bill_depth + flipper_length + body_mass,
data=peng,
na.action=na.omit,
scale. = TRUE)

screeplot(peng.pca, type = "line", lwd=3, cex=3, 
main="Variances of PCA Components")

> summary(peng.pca)
Importance of components:

PC1   PC2    PC3   PC4
Standard deviation     1.657 0.882 0.6072 0.328
Proportion of Variance 0.686 0.195 0.0922 0.027
Cumulative Proportion  0.686 0.881 0.9730 1.000

2D: 88.1 %
3D: 97.3 %

See: https://rpubs.com/friendly/penguin-biplots for details 

https://rpubs.com/friendly/penguin-biplots


Biplot
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library(ggbiplot)
ggbiplot(peng.pca, obs.scale = 1, var.scale = 1,

groups = peng$species, 
ellipse = TRUE, circle = TRUE) +
scale_color_discrete(name = 'Penguin Species') 

PC1, PC2 ~ 88.1% of variance

• PC1: largely flipper length & body 
mass: “penguin size”

• PC2 (& PC1): relates to “bill shape”

Easy to characterize the species in terms 
of these variables

Gentoo

Chinstrap

Adelie

See: https://rpubs.com/friendly/penguin-biplots

https://rpubs.com/friendly/penguin-biplots


Penguins: MANOVA
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> peng.mod0 <-lm(cbind(bill_length, bill_depth, flipper_length, body_mass) ~ species,         
data=peng)

> Anova(peng.mod0)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)    

species  2      1.64      371      8    656 <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Assume the goal is to determine whether/how the penguins differ in “size” by species
• A MLM tests all 4 size variables together:  ~ species
• Could also use other factors:  ~ species + sex + island

Yet, we are left to understand the nature of this effect wrt. the size variables. 

See: https://rpubs.com/friendly/penguin-manova for details

https://rpubs.com/friendly/penguin-manova


Penguins: view data ellipses
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• group means negatively correlated
• within group correlation > 0

• group means positively correlated
• within group correlation > 0

Data ellipses in 2D provide a good start for pairwise relations

bill depth & length body mass & flipper length



HE plot details
• E ellipse reflects within-group error (co)variation
 Size: E / dfe set to cover 68%, an analog of y̅ ± 1 std
 Shift to grand mean for direct comparison with H

• H ellipse reflects (co)variation of group means
 effect size scaling, uses H/dfe to put this on the same scale as the E ellipse. 

Analog of effect size in univariate designs.

 significance (“evidence”) scaling: uses H/λα dfe .
• The H ellipse protrudes outside the E ellipse somewhere, iff an effect is 

significant (Roy’s largest root test) at p < α

46



Penguins: HE plots
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Orientation of the H ellipse reflects negative correlation of the species means: species 
with larger bill depth have smaller bill length (bill “shape”?)
E ellipse: within species, larger bill length → larger bill depth 

heplot(peng.mod0,  size="evidence")heplot(peng.mod0,  size=“effect")



Contrasts
• In linear models, any effect of dfh > 1 can be partitioned into 

dfh separate 1 df tests of contrasts
 If orthogonal, H = H1 + H2 + … H dfh -- accounts for total effect
 Tested as a linear hypothesis, e.g., x1 – (x2 + x3)/2 = 0
 Each Hi has rank=1, so appears as a line in HE plots

• Assume we want to compare the species as two contrasts:
 Do Adelie differ from Chinstrap?
 Do Gentoo penguins differ from the other two?

48

> contrasts(peng$species)<-matrix(c(1,-1, 0,   -1, -1, -2), 3,2)
> contrasts(peng$species)

[,1] [,2]
Adelie 1   -1
Chinstrap   -1   -1
Gentoo       0    2



Contrasts
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hyp <- list("A:C"="species1","AC:G"="species2")  # give names to contrasts
heplot(peng.mod0, fill=TRUE, fill.alpha=0.2, 

hypotheses=hyp, size="effect")

Result is very clear:

• Adelie & Chinstrap differ only in bill 
length

• Gentoo differ from other two –
longer, but less deep bills (bill shape)

Both of these are large effects!

Together, they are the entire species 
effect!



Other models
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peng.mod2 <-lm(cbind(bill_length, bill_depth, flipper_length, body_mass) ~ species + sex, data=peng)
Anova(peng.mod2)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df    Pr(>F)    

species  2   1.65480   391.89      8    654 < 2.2e-16 ***
sex      1   0.64004   144.91      4    326 < 2.2e-16 ***

heplot(peng.mod2, fill=TRUE, fill.alpha=0.2,  
hypotheses=hyp)

Effect of sex: male penguins have larger bills

Adding sex reduces E variances
→Effect of species now more pronounced

Each 1 df effect plots as a line



Other HE plots
• 2D: can plot any pair of responses in data space
• pairs.mlm(): all pairwise 2D views
• heplot3d(): plots in 3D, can rotate, spin, zoom, …
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heplot(peng.mod0, variables=3:4,  
fill=TRUE, fill.alpha=0.2, size="effect")

Interpretation:
• major axis of the H ellipse measures 

“penguin size”
• Gentoo are the Big Birds in this story!



HE Pairs plots
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The pairs() method for mlm objects gives all pairwise HE plots in a scatterplot matrix 
format.

pairs(peng.mod0, size="effect",  
fill=c(TRUE, FALSE)) 

Something new here:
• avg. bill depth is negatively correlated 

with “size” variables – larger penguin 
species have smaller bill depths 
(curvature?)

• correlation of avg. bill depth with body 
mass nearly -1



heplot3d()
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3D HE plots can show other features 

heplot3d(peng.mod0, size="effect")

The H ellipsoid here is flat (2D), because 
the species effect has 2 df

In this 3D view, the 3 species  form a 
triangle, suggesting some further 
interpretation, not seen in 2D views



Canonical view
• 4 response variables, but only s=min(q, dfh)=2 dimensions.
 Here, both dimensions are significant
 Can1 accounts for 86.5% of between-species variance
 Can 2 accounts for the rest:  13.5%
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> library(candisc)
> (peng.can <- candisc(peng.mod0))

Canonical Discriminant Analysis for species:

CanRsq Eigenvalue Difference Percent Cumulative
1  0.938      15.03       12.7    86.5       86.5
2  0.700       2.34       12.7    13.5      100.0

Test of H0: The canonical correlations in the 
current row and all that follow are zero

LR test stat approx F numDF denDF Pr(> F)    
1       0.0187      516     8   654  <2e-16 ***
2       0.2997      255     3   328  <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1






Canonical view
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The plot() method for candisc objects shows points for observations and vector for 
variables 

plot(peng.can, ellipse = TRUE … )  #plot CAN scores with ellipses

Can1: largely body mass & 
flipper length, that separate 
Gentoo from (Adelie, Chinstrap)

Can2: bill length distinguishes 
Chinstrap from others.



Canonical HE plot
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heplot(peng.can, size="effect", fill=c(TRUE, FALSE))

Here is the entire effect of 
species shown in one HE plot

In CAN space, residuals are 
uncorrelated: E = circle

Size of H shows the total effect of 
species

Variable vectors show how the 
groups are discriminated.



Checking assumptions
• Assumptions in the MLM extend those in 

univariate models
 Linearity: Each yi is linearly related to all xs
 Constant variance matrices of residuals

 Residuals are multivariate normal

• In addition, need to check
 No multivariate outliers
 No multicollinearity among predictors
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2i g= = =S S S MVN~ ( , )i iid
0 Σò



Checking assumptions
• Linearity: plot each yi against each xj
 quantitative xj : plot(yi ~ xj) + loess smooth
 factor: boxplots 

• Constant variance
 visual: plot data ellipses for each group

• heplots:: covEllipses(data, group=, …)

 univariate-- levene test:   heplots::leveneTests()
 multivariate– Box M test: H0 : Σ1 = Σ2 = …= Σg

• res <- heplots::boxM(); plot(res)

• Multivariate outliers
 Mahalanobis D2 (yi) ~ χ2

p : outlier if prob (χ2
p ) < .01

 Chisquare QQ plot : plot D2 (yi) vs. χ2
p quantiles: cqplot()
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Constant variance: Visual
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heplots::covEllipses() plots the data ellipses for each group, for 2+ variables
Are the sizes and shapes & orientations ≅ the same in all panels?

Approximately true, w/ some 
diffces

• Gentoo looks a bit smaller
• Adelie: correlations ~ differ?

This might be good enough

covEllipses(peng[,3:6], 
group = peng$species, 
variables=1:4,               # all pairs
fill=TRUE, fill.alpha=0.1,
pooled=FALSE)



Constant variance: Visual
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This is easier to judge if all groups are centered at the grand mean in each panel

covEllipses(peng[,3:6], 
group = peng$species, 
variables=1:4,
center=TRUE,              
fill=TRUE, fill.alpha=0.1,
pooled=FALSE)



Constant variance: statistical tests
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> heplots::leveneTests(peng[,3:6], group=peng$species)
Levene's Tests for Homogeneity of Variance (center = median)

df1 df2 F value Pr(>F)   
bill_length 2 330    2.29 0.1033   
bill_depth 2 330    1.91 0.1494   
flipper_length 2 330    0.44 0.6426   
body_mass 2 330    5.13 0.0064 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> heplots::boxM(peng[,3:6], group = peng$species)

Box's M-test for Homogeneity of Covariance Matrices

data:  peng[, 3:6]
Chi-Sq (approx.) = 75, df = 20, p-value = 3e-08

Levene tests for each response variable separately:

Box’s M test: all responses together – equal variances & correlations !

NB: Box’s M test is highly sensitive to small diffces; use � = 0.001



Multivariate normality: z2 → D2

For MVN & outliers, Mahalanobis D2 generalizes z scores
• 1 variable: zi = (xi – xу)/s ~ N(0,1) or, zi

2 ~ χ2
(1)

• 2 variables, uncorrelated: squared distance from mean is 
Di

2 = zi1
2 + zi2

2 ~ χ2
(2)

• p variables: Di
2 = Mahalanobis squared distance of xi from centroid
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Chi-squared QQ plot
• QQ plot of ordered distances, D2

(i) vs χ2
(p) quantiles should plot 

as a 45o line through origin if MVN
• Multivariate outliers: outside the envelope
• Here: both cases check out as OK: no outliers, MVN 
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heplots::cqplot(df, id.n=3)



Penguins: MVN & outliers
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Are penguins normal?
Can you spot the outlier?



Penguins: MVN & outliers
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heplots::cqplot(peng.mlm, 
id.n = 3, conf=0.999)

peng |>
group_by(species) |>   
mahalanobis_distance(bill_length:body_mass) |>
tibble::rownames_to_column() |>
mutate(across(bill_length:body_mass, 

.fns= scale)) |>
filter(is.outlier == TRUE) |>
as.data.frame()

rowname bill_length bill_depth flipper_length body_mass mahal.dist is.outlier
1     283       2.561 0.3225         -1.425   -0.6297      27.76       TRUE

Get D2 values  
with rstatix::mahalanobis_distance

Find z-scores
Select outliers (is.outlier==TRUE)



MVN: Numerical tests
• Shapiro-Wilk test
 Originally for univariate normality: stats::shapiro.test()
 Multivariate version:  rstatix::mshapiro_test()

• Mardia test: multivariate skewness & kurtosis

• But: these are overly-sensitive; MLM is relatively robust
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peng |>
select(bill_length : body_mass) |>
rstatix::mshapiro_test()

# A tibble: 1 x 2
statistic   p.value

<dbl>     <dbl>
1     0.978 0.0000484

res <- MVN::mvn(data = peng[,c(3:6)],
mvnTest="mardia")

res$multivariateNormality

Test Statistic   p value Result
1 Mardia Skewness    127.42   < 0.001     NO
2 Mardia Kurtosis     -2.51    0.0118     NO
3             MVN      <NA>      <NA>     NO



Summary
• MLM just like univariate LM, but for multiple responses
 Simultaneous tests – no need for p-value adjustment
 Take correlations among responses into account
 Indicates # of dimensions of responses

• Data ellipses
 Summarize bivariate data to show means, variances, correlation
 MANOVA: shows how groups differ in these

• HE framework
 Visualize multivariate tests in the MLM 
 Canonical displays show these results in the 2D (or 3D) space that 

accounts for largest between-group variance.
• Checking assumptions: visual tests are often sufficient
 homogeneity of variances: heplots::covEllipses()
 outliers & MVN: heplot::cqplot()
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