Calculates indices of redundancy (Stewart & Love, 1968) from a canonical correlation analysis. These give the proportion of variances of the variables in each set (X and Y) which are accounted for by the variables in the other set through the canonical variates.
Value
An object of class "cancor.redundancy", a list with the
following 5 components:
- Xcan.redun
 Canonical redundancies for the X variables, i.e., the total fraction of X variance accounted for by the Y variables through each canonical variate.
- Ycan.redun
 Canonical redundancies for the Y variables
- X.redun
 Total canonical redundancy for the X variables, i.e., the sum of
Xcan.redun.- Y.redun
 Total canonical redundancy for the Y variables
- set.names
 names for the X and Y sets of variables
Details
The term "redundancy analysis" has a different interpretation and implementation in the environmental ecology literature, such as the vegan. In that context, each \(Y_i\) variable is regressed separately on the predictors in \(X\), to give fitted values \(\widehat{Y} = [\widehat{Y}_1, \widehat{Y}_2, \dots\). Then a PCA of \(\widehat{Y}\) is carried out to determine a reduced-rank structure of the predictions.
Functions
print(cancor.redundancy):print()method for"cancor.redundancy"objects.
References
Muller K. E. (1981). Relationships between redundancy analysis, canonical correlation, and multivariate regression. Psychometrika, 46(2), 139-42.
Stewart, D. and Love, W. (1968). A general canonical correlation index. Psychological Bulletin, 70, 160-163.
Brainder, "Redundancy in canonical correlation analysis", https://brainder.org/2019/12/27/redundancy-in-canonical-correlation-analysis/
See also
\ cancor()
Examples
  data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10])  # the PA tests
Y <- as.matrix(Rohwer[,3:5])   # the aptitude/ability variables
cc <- cancor(X, Y, set.names=c("PA", "Ability"))
redundancy(cc)
#> 
#> Redundancies for the PA variables & total X canonical redundancy
#> 
#>     Xcan1     Xcan2     Xcan3 total X|Y 
#>  0.173424  0.042113  0.007966  0.223503 
#> 
#> Redundancies for the Ability variables & total Y canonical redundancy
#> 
#>     Ycan1     Ycan2     Ycan3 total Y|X 
#>   0.22491   0.03688   0.01564   0.27743 
## 
## Redundancies for the PA variables & total X canonical redundancy
## 
##     Xcan1     Xcan2     Xcan3 total X|Y 
##   0.17342   0.04211   0.00797   0.22350 
## 
## Redundancies for the Ability variables & total Y canonical redundancy
## 
##     Ycan1     Ycan2     Ycan3 total Y|X 
##    0.2249    0.0369    0.0156    0.2774 
