Calculates indices of redundancy (Stewart & Love, 1968) from a canonical correlation analysis. These give the proportion of variances of the variables in each set (X and Y) which are accounted for by the variables in the other set through the canonical variates.
Arguments
- object
A
"cancor"
object- ...
Other arguments
- x
A
"cancor.redundancy"
for theprint
method.- digits
Number of digits to print
Value
An object of class "cancor.redundancy"
, a list with the
following 5 components:
- Xcan.redun
Canonical redundancies for the X variables, i.e., the total fraction of X variance accounted for by the Y variables through each canonical variate.
- Ycan.redun
Canonical redundancies for the Y variables
- X.redun
Total canonical redundancy for the X variables, i.e., the sum of
Xcan.redun
.- Y.redun
Total canonical redundancy for the Y variables
- set.names
names for the X and Y sets of variables
Details
The term "redundancy analysis" has a different interpretation and implementation in the environmental ecology literature, such as the vegan. In that context, each \(Y_i\) variable is regressed separately on the predictors in \(X\), to give fitted values \(\widehat{Y} = [\widehat{Y}_1, \widehat{Y}_2, \dots\). Then a PCA of \(\widehat{Y}\) is carried out to determine a reduced-rank structure of the predictions.
Functions
print(cancor.redundancy)
:print()
method for"cancor.redundancy"
objects.
References
Muller K. E. (1981). Relationships between redundancy analysis, canonical correlation, and multivariate regression. Psychometrika, 46(2), 139-42.
Stewart, D. and Love, W. (1968). A general canonical correlation index. Psychological Bulletin, 70, 160-163.
Brainder, "Redundancy in canonical correlation analysis", https://brainder.org/2019/12/27/redundancy-in-canonical-correlation-analysis/
Examples
data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10]) # the PA tests
Y <- as.matrix(Rohwer[,3:5]) # the aptitude/ability variables
cc <- cancor(X, Y, set.names=c("PA", "Ability"))
redundancy(cc)
#>
#> Redundancies for the PA variables & total X canonical redundancy
#>
#> Xcan1 Xcan2 Xcan3 total X|Y
#> 0.173424 0.042113 0.007966 0.223503
#>
#> Redundancies for the Ability variables & total Y canonical redundancy
#>
#> Ycan1 Ycan2 Ycan3 total Y|X
#> 0.22491 0.03688 0.01564 0.27743
##
## Redundancies for the PA variables & total X canonical redundancy
##
## Xcan1 Xcan2 Xcan3 total X|Y
## 0.17342 0.04211 0.00797 0.22350
##
## Redundancies for the Ability variables & total Y canonical redundancy
##
## Ycan1 Ycan2 Ycan3 total Y|X
## 0.2249 0.0369 0.0156 0.2774