Main effects model, with two interactions
arrests.mod <- glm(released ~ employed + citizen + checks +
colour*year + colour*age,
family=binomial, data=Arrests)
Anova(arrests.mod)
## Analysis of Deviance Table (Type II tests)
##
## Response: released
## LR Chisq Df Pr(>Chisq)
## employed 72.7 1 < 2e-16 ***
## citizen 25.8 1 3.8e-07 ***
## checks 205.2 1 < 2e-16 ***
## colour 19.6 1 9.7e-06 ***
## year 6.1 5 0.29785
## age 0.5 1 0.49827
## colour:year 21.7 5 0.00059 ***
## colour:age 13.9 1 0.00019 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot all effects
arrests.effects <- allEffects(arrests.mod,
xlevels=list(age=seq(15,45,5)))
plot(arrests.effects,
ylab="Probability(released)")
Plot 3-way effect (not in model)
plot(effect("colour:year:age", arrests.mod,
xlevels=list(age=15:45)),
multiline=TRUE,
ylab="Probability(released)",
rug=FALSE)
colour x year interaction
plot(effect("colour:year", arrests.mod),
multiline=TRUE, ylab="Probability(released)")
colour x age interaction
plot(effect("colour:age", arrests.mod),
multiline=FALSE, ylab="Probability(released)")
IycgLS0tDQojJyB0aXRsZTogIkFycmVzdHMgZGF0YTogRWZmZWN0cyBwbG90cyINCiMnIGF1dGhvcjogIk1pY2hhZWwgRnJpZW5kbHkiDQojJyBkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCkpYCINCiMnIG91dHB1dDoNCiMnICAgaHRtbF9kb2N1bWVudDoNCiMnICAgICB0aGVtZTogcmVhZGFibGUNCiMnICAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQojJyAtLS0NCg0KIysgZWNobz1GQUxTRQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KA0KICB3YXJuaW5nID0gRkFMU0UsICAgIyBhdm9pZCB3YXJuaW5ncyBhbmQgbWVzc2FnZXMgaW4gdGhlIG91dHB1dA0KICBtZXNzYWdlID0gRkFMU0UNCikNCg0KDQojIEV4YW1wbGVzIGZyb20gSm9obiBGb3gncyBKU1MgcGFwZXINCg0KbGlicmFyeShlZmZlY3RzKSAgICAjIGVmZmVjdCBwbG90cw0KbGlicmFyeShjYXIpICAgICAgICAjIGZvciBBbm92YSgpDQoNCiMnICMjTG9hZCB0aGUgZGF0YQ0KIycgYHllYXJgIGlzIG51bWVyaWMsIGJ1dCB3ZSB3YW50IHRvIHRyZWF0IGl0IGFzIGEgZmFjdG9yDQpkYXRhKEFycmVzdHMsIHBhY2thZ2UgPSAiY2FyRGF0YSIpDQpBcnJlc3RzJHllYXIgPC0gYXMuZmFjdG9yKEFycmVzdHMkeWVhcikNCg0KIycgIyMgTWFpbiBlZmZlY3RzIG1vZGVsLCB3aXRoIHR3byBpbnRlcmFjdGlvbnMNCmFycmVzdHMubW9kIDwtIGdsbShyZWxlYXNlZCB+IGVtcGxveWVkICsgY2l0aXplbiArIGNoZWNrcyArDQogICAgICAgICAgICAgICAgICAgY29sb3VyKnllYXIgKyBjb2xvdXIqYWdlLA0KICAgICAgICAgICAgICAgICAgIGZhbWlseT1iaW5vbWlhbCwgZGF0YT1BcnJlc3RzKQ0KDQpBbm92YShhcnJlc3RzLm1vZCkNCg0KIycgIyMjIHBsb3QgYWxsIGVmZmVjdHMNCiMrIGZpZy53aWR0aD05LCBmaWcuaGVpZ2h0PTQNCmFycmVzdHMuZWZmZWN0cyA8LSBhbGxFZmZlY3RzKGFycmVzdHMubW9kLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHhsZXZlbHM9bGlzdChhZ2U9c2VxKDE1LDQ1LDUpKSkNCnBsb3QoYXJyZXN0cy5lZmZlY3RzLCANCiAgICAgeWxhYj0iUHJvYmFiaWxpdHkocmVsZWFzZWQpIikNCg0KIycgIyMjIFBsb3QgMy13YXkgZWZmZWN0IChub3QgaW4gbW9kZWwpDQpwbG90KGVmZmVjdCgiY29sb3VyOnllYXI6YWdlIiwgYXJyZXN0cy5tb2QsIA0KICAgICAgICAgICAgeGxldmVscz1saXN0KGFnZT0xNTo0NSkpLA0KICAgICBtdWx0aWxpbmU9VFJVRSwgDQogICAgIHlsYWI9IlByb2JhYmlsaXR5KHJlbGVhc2VkKSIsIA0KICAgICBydWc9RkFMU0UpDQoNCiMnICMjIyBjb2xvdXIgeCB5ZWFyIGludGVyYWN0aW9uDQpwbG90KGVmZmVjdCgiY29sb3VyOnllYXIiLCBhcnJlc3RzLm1vZCksDQogICAgICBtdWx0aWxpbmU9VFJVRSwgeWxhYj0iUHJvYmFiaWxpdHkocmVsZWFzZWQpIikNCg0KIycgIyMjIGNvbG91ciB4IGFnZSBpbnRlcmFjdGlvbg0KcGxvdChlZmZlY3QoImNvbG91cjphZ2UiLCBhcnJlc3RzLm1vZCksDQogICAgICBtdWx0aWxpbmU9RkFMU0UsIHlsYWI9IlByb2JhYmlsaXR5KHJlbGVhc2VkKSIpDQoNCiAgICAg