structable(~gender + right + left, data=VisualAcuity)
## right 1 2 3 4
## gender left
## male 1 821 116 72 43
## 2 112 494 151 34
## 3 85 145 583 106
## 4 35 27 87 331
## female 1 1520 234 117 36
## 2 266 1512 362 82
## 3 124 432 1772 179
## 4 66 78 205 492
women <- subset(VisualAcuity, gender=="female", select=-gender)
structable(~right + left, data=women)
## left 1 2 3 4
## right
## 1 1520 266 124 66
## 2 234 1512 432 78
## 3 117 362 1772 205
## 4 36 82 179 492
sieve(Freq ~ right + left, data = women,
gp=shading_Friendly, labeling=labeling_values,
main="Vision data: Women")
men <- subset(VisualAcuity, gender=="male", select=-gender)
structable(~right + left, data=men)
## left 1 2 3 4
## right
## 1 821 112 85 35
## 2 116 494 145 27
## 3 72 151 583 87
## 4 43 34 106 331
sieve(Freq ~ right + left, data = men,
gp=shading_Friendly, labeling=labeling_values,
main="Vision data: Men")
cotabplot(Freq ~ right + left | gender, data=VisualAcuity,
panel=cotab_sieve, gp=shading_Friendly)
chisq.test(xtabs(Freq ~ left + right, data=women))
##
## Pearson's Chi-squared test
##
## data: xtabs(Freq ~ left + right, data = women)
## X-squared = 8097, df = 9, p-value <2e-16
chisq.test(xtabs(Freq ~ left + right, data=men))
##
## Pearson's Chi-squared test
##
## data: xtabs(Freq ~ left + right, data = men)
## X-squared = 3304, df = 9, p-value <2e-16
mutual independence of gender, right, left
MASS::loglm(Freq ~ gender + right + left, data=VisualAcuity)
## Call:
## MASS::loglm(formula = Freq ~ gender + right + left, data = VisualAcuity)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 9686 24 0
## Pearson 11913 24 0