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Discrete data often follow various theoretical probability models. Graphic displays are
used to visualize goodness of fit, to diagnose an appropriate model, and determine the
impact of individual observations on estimated parameters.

Not everything that counts can be counted, and not everything that can be counted
counts.

Albert Einstein

Discrete frequency distributions often involve counts of occurrences of events, such as accident
fatalities, incidents of terrorism or suicide, words in passages of text, or blood cells with some
characteristic. Often interest is focused on how closely such data follow a particular probability
distribution, such as the binomial, Poisson, or geometric distribution, which provide the basis for
generating mechanisms that might give rise to the data. Understanding and visualizing such dis-
tributions in the simplest case of an unstructured sample provides a building block for generalized
linear models (Chapter 11) where they serve as one component. They also provide the basis for a
variety of recent extensions of regression models for count data (Chapter 11), some of which ac-
count for the excess counts of zeros (zero-inflated models) caused by left- or right-truncation often
encountered in statistical practice.

This chapter describes the well-known discrete frequency distributions: the binomial, Poisson,
negative binomial, geometric, and logarithmic series distributions in the simplest case of an unstruc-
tured sample. The chapter begins with simple graphical displays (line graphs and bar charts) to view
the distributions of empirical data and theoretical frequencies from a specified discrete distribution.
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66 3. Fitting and Graphing Discrete Distributions

The chapter then describes methods for fitting data to a distribution of a given form, and presents
simple but effective graphical methods that can be used to visualize goodness of fit, to diagnose an
appropriate model (e.g., does a given data set follow the Poisson or negative binomial?) and to
determine the impact of individual observations on estimated parameters.

3.1 Introduction to discrete distributions
{sec:discrete-intro}

Discrete data analysis is concerned with the study of the tabulation of one or more types of events,
often categorized into mutually exclusive and exhaustive categories. Binary events having two
outcome categories include the toss of a coin (head/tails), sex of a child (male/female), survival
of a patient following surgery (lived/died), and so forth. Polytomous events have more outcome
categories, which may be ordered (rating of impairment: low/medium/high, by a physician) and
possibly numerically valued (number of dots (pips), 1–6 on the toss of a die) or unordered (political
party supported: Liberal, Conservative, Greens, Socialist).

In this chapter, we focus largely on one-way frequency tables for a single numerically valued
variable. Probability models for such data provide the opportunity to describe or explain the struc-
ture in such data, in that they entail some data-generating mechanism and provide the basis for
testing scientific hypotheses and predicting future results. If a given probability model does not fit
the data, this can often be a further opportunity to extend understanding of the data, or the underlying
substantive theory, or both.

The remainder of this section gives a few substantive examples of situations where the well-
known discrete frequency distributions (binomial, Poisson, negative binomial, geometric, and log-
arithmic series) might reasonably apply, at least approximately. The mathematical characteristics
and properties of these theoretical distributions are postponed to Section 3.2.

In many cases, the data at hand pertain to two types of variables in a one-way frequency table.
There is a basic outcome variable, k, taking integer values, k = 0, 1, . . ., and called a count. For
each value of k, we also have a frequency, nk that the count k was observed in some sample. For
example, in the study of children in families, the count variable k could be the total number of
children or the number of male children; the frequency variable, nk, would then give the number of
families with that basic count k.

3.1.1 Binomial data
{sec:binom-data}

Binomial-type data arise as the discrete distribution of the number of “success” events in n indepen-
dent binary trials, each of which yields a success (yes/no, head/tail, lives/dies, male/female) with a
constant probability p.

Sometimes, as in Example 3.1 below, the available data record only the number of successes
in n trials, with separate such observations recorded over time or space. More commonly, as in
Example 3.2 and Example 3.3, we have available data on the frequency nk of k = 0, 1, 2, . . . n
successes in the n trials.{ex:arbuthnot1}

EXAMPLE 3.1: Arbuthnot data
Sex ratios, such as births of male to female children, have long been of interest in population

studies and demography. Indeed, in 1710, John Arbuthnot (Arbuthnot, 1710) used data on the ratios
of male to female christenings in London from 1629–1710 to carry out the first known significance
test. The data for these 82 years showed that in every year there were more boys than girls. He
calculated that, under the assumption that male and female births were equally likely, the probability
of 82 years of more males than females was vanishingly small, (Pr ≈ 4.14× 10−25). He used this
to argue that a nearly constant birth ratio > 1 (or Pr(Male) > 0.5) could be interpreted to show the
guiding hand of a divine being.

Arbuthnot’s data, along with some other related variables, are available in Arbuthnot in the
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Figure 3.1: Arbuthnot’s data on male/female sex ratios in London, 1629–1710, together with a
(loess) smoothed curve (blue) over time and the mean Pr(Male). {fig:arbuthnot1}

HistData (Friendly, 2014a) package. For now, we simply display a plot of the probability of a male
birth over time. The plot in Figure 3.1 shows the proportion of males over years, with horizontal
lines at Pr(Male) = 0.5 and the mean, Pr(Male) = 0.517. Also shown is a (loess) smoothed curve,
which suggests that any deviation from a constant sex ratio is relatively small, but also showed some
systematic trend over time.

> data("Arbuthnot", package = "HistData")
> with(Arbuthnot, {
+ prob = Males / (Males + Females)
+ plot(x = Year, y = prob, type = "b",
+ ylim = c(0.5, 0.54), ylab = "Pr (Male)")
+ abline(h = 0.5, col = "red", lwd = 2)
+ abline(h = mean(prob), col = "blue")
+ lines(loess.smooth(Year, prob), col = "blue", lwd = 2)
+ text(x = 1640, y = 0.5, expression(H[0]: "Pr(Male)=0.5"),
+ pos = 3, col = "red")
+ })

Exercise 3.1 invites you to consider some other plots for this data. We return to this data in a
later chapter where we ask whether the variation around the mean can be explained by any other
considerations, or should just be considered random variation (see Exercise 7.1). 4

{ex:saxony1}

EXAMPLE 3.2: Families in Saxony
A related example of sex ratio data that ought to follow a binomial distribution comes from a

classic study by A. Geissler (1889). Geissler listed the data on the distributions of boys and girls in
families in Saxony for the period 1876–1885. In total, over four million births were recorded, and
the sex distribution in the family was available because the parents had to state the sex of all their
children on the birth certificate.

The complete data, classified by number of boys and number of girls (each 0–12) appear in Ed-
wards (1958, Table 1).1 Lindsey (1995, Table 6.2) selected only the 6115 families with 12 children,
and listed the frequencies by number of males. The data are shown in table form in Table 3.1 in the

1Edwards (1958) notes that over these 10 years, many parents will have had several children, and their family composition
is therefore recorded more than once. However, in families with a given number of children, each family can appear only
once.
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Table 3.1: Number of male children in 6115 Saxony families of size 12 {tab:saxtab}
Males (k) 0 1 2 3 4 5 6 7 8 9 10 11 12
Families (nk) 3 24 104 286 670 1,033 1,343 1,112 829 478 181 45 7
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Figure 3.2: Number of males in Saxony families of size 12.{fig:saxony-barplot}

standard form of a complete discrete distribution. The basic outcome variable, k = 0, 1, . . . , 12, is
the number of male children in a family, and the frequency variable, nk is the number of families
with that number of boys.

Figure 3.2 shows a bar plot of the frequencies in Table 3.1. It can be seen that the distribution is
quite symmetric. The questions of interest here are: (a) how close does the data follow a binomial
distribution, with a constant Pr(Male) = p? (b) is there evidence to reject the hypothesis that
p = 0.5?

> data("Saxony", package = "vcd")
> barplot(Saxony, xlab = "Number of males", ylab = "Number of families",
+ col = "lightblue", cex.lab = 1.5)

4
{ex:dice}

EXAMPLE 3.3: Weldon’s dice
Common examples of binomial distributions involve tossing coins or dice, where some event

outcome is considered a “success” and the number of successes (k) are tabulated in a long series of
trials to give the frequency (nk) of each basic count, k.

Perhaps the most industrious dice-tosser of all time, W. F. Raphael Weldon, an English evolu-
tionary biologist and joint founding editor of Biometrika (with Francis Galton and Karl Pearson),
tallied the results of throwing 12 dice 26,306 times. For his purposes, he considered the outcome of
5 or 6 pips showing on each die to be a success, and all other outcomes as failures.

Weldon reported his results in a letter to Francis Galton dated February 2, 1894, in order “to
judge whether the differences between a series of group frequencies and a theoretical law . . . were
more than might be attributed to the chance fluctuations of random sampling” (Kemp and Kemp,
1991). In his seminal paper, Pearson (1900) used Weldon’s data to illustrate the χ2 goodness-of-fit
test, as did Kendall and Stuart (1963, Table 5.1, p. 121).

These data are shown here as Table 3.2, in terms of the number of occurrences of a 5 or 6 in the
throw of 12 dice. If the dice were all identical and perfectly fair (balanced), one would expect that
p = Pr{5 or 6} = 1

3 and the distribution of the number of 5 or 6 would be binomial.
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Table 3.2: Frequencies of 5s or 6s in throws of 12 dice {tab:dicetab}
# 5s or 6s (k) 0 1 2 3 4 5 6 7 8 9 10+
Frequency (nk) 185 1,149 3,265 5,475 6,114 5,194 3,067 1,331 403 105 18
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Figure 3.3: Weldon’s dice data, frequency distribution of 5s and 6s in throws of 12 dice. {fig:dice}

A peculiar feature of these data as presented by Kendall and Stuart (not uncommon in discrete
distributions) is that the frequencies of 10–12 successes are lumped together.2 This grouping must
be taken into account in fitting the distribution. This dataset is available as WeldonDice in the
vcd (Meyer et al., 2015) package. The distribution is plotted in Figure 3.3.

> data("WeldonDice", package = "vcd")
> dimnames(WeldonDice)$n56[11] <- "10+"
> barplot(WeldonDice, xlab = "Number of 5s and 6s", ylab = "Frequency",
+ col = "lightblue", cex.lab = 1.5)

4

3.1.2 Poisson data
{sec:pois-data}

Data of Poisson type arise when we observe the counts of events k within a fixed interval of time or
space (length, area, volume) and tabulate their frequencies, nk. For example, we may observe the
number of radioactive particles emitted by a source per second or number of births per hour, or the
number of tiger or whale sightings within some geographical regions.

In contrast to binomial data, where the counts are bounded below and above, in Poisson data the
counts k are bounded below at 0, but can take integer values with no fixed upper limit. One defining
characteristic for the Poisson distribution is for rare events, which occur independently with a small
and constant probability, p, in small intervals, and we count the number of such occurrences.

Several examples of data of this general type are given below. {ex:horsekick1}

EXAMPLE 3.4: Death by horse kick
One of the oldest and best known examples of a Poisson distribution is the data from von

Bortkiewicz (1898) on deaths of soldiers in the Prussian army from kicks by horses and mules,

2The unlumped entries are, for (number of 5s or 6s: frequency) — (10: 14); (11: 4), (12:0), given by Labby (2009). In
this remarkable paper, Labby describes a mechanical device he constructed to repeat Weldon’s experiment physically and
automate the counting of outcomes. He created electronics to roll 12 dice in a physical box, and hooked that up to a webcam
to capture an image of each toss and used image processing software to record the counts.
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Table 3.3: von Bortkiewicz’s data on deaths by horse kicks{tab:horsetab}
Number of deaths (k) 0 1 2 3 4 Sum
Frequency (nk) 109 65 22 3 1 200
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Figure 3.4: HorseKicks data, distribution of the number of deaths in 200 corps-years.{fig:horsekicks}

shown in Table 3.3. Ladislaus von Bortkiewicz, an economist and statistician, tabulated the number
of soldiers in each of 14 army corps in the 20 years from 1875–1894 who died after being kicked
by a horse (Andrews and Herzberg, 1985, p. 18). Table 3.3 shows the data used by Fisher (1925)
for 10 of these army corps, summed over 20 years, giving 200 ‘corps-year’ observations. In 109
corps-years, no deaths occurred; 65 corps-years had one death, etc.

The data set is available as HorseKicks in the vcd package. The distribution is plotted in
Figure 3.4.

> data("HorseKicks", package = "vcd")
> barplot(HorseKicks, xlab = "Number of deaths", ylab = "Frequency",
+ col = "lightblue", cex.lab = 1.5)

4
{ex:madison1}

EXAMPLE 3.5: Federalist Papers
In 1787–1788, Alexander Hamilton, John Jay, and James Madison wrote a series of newspaper

essays to persuade the voters of New York State to ratify the U.S. Constitution. The essays were
titled The Federalist Papers and all were signed with the pseudonym “Publius.” Of the 77 papers
published, the author(s) of 65 are known, but both Hamilton and Madison later claimed sole au-
thorship of the remaining 12. Mosteller and Wallace (1963, 1984) investigated the use of statistical
methods to identify authors of disputed works based on the frequency distributions of certain key
function words, and concluded that Madison had indeed authored the 12 disputed papers.3

Table 3.4 shows the distribution of the occurrence of one of these “marker” words, the word may
in 262 blocks of text (each about 200 words long) from issues of the Federalist Papers and other
essays known to be written by James Madison. Read the table as follows: in 156 blocks, the word
may did not occur; it occurred once in 63 blocks, etc. The distribution is plotted in Figure 3.5.

3It should be noted that this is a landmark work in the development of statistical methods and their application to the
analysis of texts and cases of disputed authorship. In addition to may, they considered many such marker words, such as any,
by, from, upon, and so forth. Among these, the word upon was the best discriminator between the works known by Hamilton
(3 per 1000 words) and Madison (0.16 per 1000 words). In this work, they pioneered the use of Bayesian discriminant
analysis, and the use of cross-validation to assess the stability of estimates and their conclusions.
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Table 3.4: Number of occurrences of the word may in texts written by James Madison
tab:fedtab

Occurrences of may (k) 0 1 2 3 4 5 6 Sum
Blocks of text (nk) 156 63 29 8 4 1 1 262
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Figure 3.5: Federalist Papers data, distribution of the uses of the word may. {fig:federalist}

> data("Federalist", package = "vcd")
> barplot(Federalist,
+ xlab = "Occurrences of 'may'",
+ ylab = "Number of blocks of text",
+ col = "lightgreen", cex.lab = 1.5)

4
{ex:cyclists1}

EXAMPLE 3.6: London cycling deaths
Aberdein and Spiegelhalter (2013) observed that from November 5–13, 2013, six people were

killed while cycling in London. How unusual is this number of deaths in less than a two-week
period? Was this a freak occurrence, or should Londoners petition for cycling lanes and greater
road safety? To answer these questions, they obtained data from the UK Department of Transport
Road Safety Data from 2005–2012 and selected all accident fatalities of cyclists within the city of
London.

It seems reasonable to assume that, in any short period of time, deaths of people riding bicycles
are independent events. If, in addition, the probability of such events is constant over this time span,
the Poisson distribution should describe the distribution of 0, 1, 2, 3, . . . deaths. Then, an answer to
the main question can be given in terms of the probability of six (or more) deaths in a comparable
period of time.

Their data, comprising 208 counts of deaths in the fortnightly periods from January 2005 to
December 2012, are contained in the data set CyclingDeaths in vcdExtra (Friendly, 2015). To
work with the distribution, we first convert this to a one-way table.

> data("CyclingDeaths", package = "vcdExtra")
> CyclingDeaths.tab <- table(CyclingDeaths$deaths)
> CyclingDeaths.tab

0 1 2 3
114 75 14 5
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Figure 3.6: Frequencies of number of cyclist deaths in two-week periods in London, 2005–2012.{fig:cyclists2}

The maximum number of deaths was 3, which occurred in only 5 two-week periods. The distri-
bution is plotted in Figure 3.6.

> barplot(CyclingDeaths.tab,
+ xlab = "Number of deaths", ylab = "Number of fortnights",
+ col = "pink", cex.lab = 1.5)

We return to this data in Example 3.10 and answer the question of how unusual six or more
deaths would be in a Poisson distribution.

4

3.1.3 Type-token distributions
{sec:type-token}

There are a variety of other types of discrete data distributions. One important class is type-token
distributions, where the basic count k is the number of distinct types of some observed event, k =
1, 2, . . . and the frequency, nk, is the number of different instances observed. For example, distinct
words in a book, words that subjects list as members of the semantic category “fruit,” musical notes
that appear in a score, and species of animals caught in traps can be considered as types, and the
occurrences of of those type comprise tokens.

This class differs from the Poisson type considered above in that the frequency for value k = 0
is unobserved. Thus, questions like (a) How many words did Shakespeare know? (b) How many
words in the English language are members of the “fruit” category? (c) How many wolves remain
in Canada’s Northwest territories? depend on the unobserved count for k = 0. They cannot easily
be answered without appeal to additional information or statistical theory.{ex:butterfly}

EXAMPLE 3.7: Butterfly species in Malaya
In studies of the diversity of animal species, individuals are collected and classified by species.

The distribution of the number of species (types) where k = 1, 2, . . . individuals (tokens) were
collected forms a kind of type-token distribution. An early example of this kind of distribution was
presented by Fisher et al. (1943). Table 3.5 lists the number of individuals of each of 501 species
of butterfly collected in Malaya. There were thus 118 species for which just a single instance was
found, 74 species for which two individuals were found, down to 3 species for which 24 individuals
were collected. Fisher et al. note, however, that the distribution was truncated at k = 24. Type-token
distributions are often J-shaped, with a long upper tail, as we see in Figure 3.7.
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Table 3.5: Number of butterfly species nk for which k individuals were collected{tab:buttertab}
Individuals (k) 1 2 3 4 5 6 7 8 9 10 11 12
Species (nk) 118 74 44 24 29 22 20 19 20 15 12 14
Individuals (k) 13 14 15 16 17 18 19 20 21 22 23 24 Sum
Species (nk) 6 12 6 9 9 6 10 10 11 5 3 3 501
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Figure 3.7: Butterfly species in Malaya. {fig:butterfly}

> data("Butterfly", package = "vcd")
> barplot(Butterfly, xlab = "Number of individuals",
+ ylab = "Number of species", cex.lab = 1.5)

4

3.2 Characteristics of discrete distributions
{sec:discrete-distrib}

This section briefly reviews the characteristics of some of the important discrete distributions en-
countered in practice and illustrates their use with R. An overview of these distributions is shown
in Table 3.6. For more detailed information on these and other discrete distributions, Johnson et al.
(1992) and Wimmer and Altmann (1999) present the most comprehensive treatments; Zelterman
(1999, Chapter 2) gives a compact summary.

For each distribution, we describe properties and generating mechanisms, and show how its
parameters can be estimated and how to plot the frequency distribution. R has a wealth of functions

Table 3.6: Discrete probability distributions
tab:distns

Discrete
distribution

Probability
function, p(k) Parameters

Binomial
(
n
k

)
pk(1− p)n−k

p = Pr (success);
n = # trials

Poisson e−λλk/k! λ = mean

Negative binomial
(
n+k−1

k

)
pn(1− p)k p; n = # successful trials

Geometric p(1− p)k p

Logarithmic series θk/[−k log(1− θ)] θ
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Table 3.7: R functions for discrete probability distributions
tab:distfuns

Discrete
distribution

Density (pmf)
function

Cumulative
(CDF)

Quantile
CDF−1

Random #
generator

Binomial dbinom() pbinom() qbinom() rbinom()

Poisson dpois() ppois() qpois() rpois()

Negative binomial dnbinom() pnbinom() qnbinom() rnbinom()

Geometric dgeom() pgeom() qgeom() rgeom()

Logarithmic series dlogseries() plogseries() qlogseries() rlogseries()

for a wide variety of distributions. For ease of reference, their names and types for the distributions
covered here are shown in Table 3.7. The naming scheme is simple and easy to remember: for each
distribution, there are functions, with a prefix letter, d, p, q, r, followed by the name for that class
of distribution:4

d a density function,5 Pr{X = k} ≡ p(k) for the probability that the variable X takes the value k.
p a cumulative probability/density function, or CDF, F (k) =

∑
X≤k p(k).

q a quantile function, the inverse of the CDF, k = F−1(p). The quantile is defined as the smallest
value x such that F (k) ≥ p.

r a random number generating function for that distribution.

In the R console, help(Distributions) gives an overview listing of the distribution functions
available in the stats package.

3.2.1 The binomial distribution
{sec:binomial}

The binomial distribution, Bin(n, p), arises as the distribution of the number k of events of interest
that occur in n independent trials when the probability of the event on any one trial is the constant
value p = Pr(event). For example, if 15% of the population has red hair, the number of redheads
in randomly sampled groups of n = 10 might follow a binomial distribution, Bin(10, 0.15); in
Weldon’s dice data (Example 3.3), the probability of a 5 or 6 should be 1

3 on any one trial, and the
number of 5s or 6s in tosses of 12 dice would follow Bin(12, 13 ).

Over n independent trials, the number of events k may range from 0 to n; if X is a random
variable with a binomial distribution, the probability that X = k is given by

Bin(n, p) : Pr{X = k} ≡ p(k) =

(
n

k

)
pk(1− p)n−k k = 0, 1, . . . , n , (3.1){eq:binom}

where
(
n
k

)
= n!/k!(n − k)! is the number of ways of choosing k out of n. The first three (central)

moments of the binomial distribution are as follows (letting q = 1− p),

Mean(X) = np

Var(X) = npq

Skew(X) = npq(q − p) .

It is easy to verify that the binomial distribution has its maximum variance when p = 1
2 . It is

symmetric (Skew(x)=0) when p = 1
2 , and negatively (positively) skewed when p < 1

2 (p > 1
2 ).

4The CRAN Task View on Probability Distributions, http://cran.r-project.org/web/views/
Distributions.html, provides a general overview and lists a wide variety of contributed packages for special-
ized distributions, discrete and continuous.

5For discrete random variables this is usually called the probability mass function (pmf).
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Figure 3.8: Binomial distribution for k = 0, . . . , 12 successes in 12 trials and p=1/3. {fig:dbinom12}

If we are given data in the form of a discrete (binomial) distribution (and n is known), then the
maximum likelihood estimator6 of p can be obtained as the weighted mean of the values k with
weights nk,

p̂ =
x̄

n
=

(
∑
k k × nk)/

∑
k nk

n
,

and has sampling variance V(p̂) = pq/n.

3.2.1.1 Calculation and visualization

As indicated in Table 3.7 (but without listing the parameters of these functions), binomial probabili-
ties can be calculated with dbinom(x, n, p), where x is a vector of the number of successes in
n trials and p is the probability of success on any one trial. Cumulative probabilities, summed to a
vector of quantiles, Q, can be calculated with pbinom(Q, n, p), and the quantiles (the smallest
value x such that F (x) ≥ P ) with qbinom(P, n, p). To generate N random observations from
a binomial distribution with n trials and success probability p use rbinom(N, n, p)7.

For example, to find and plot the binomial probabilities corresponding to Weldon’s tosses of 12
dice, with k = 0, . . . , 12 and p = 1

3 , we could do the following (giving Figure 3.8):

> k <- 0 : 12
> Pk <- dbinom(k, 12, 1/3)
> b <- barplot(Pk, names.arg = k,
+ xlab = "Number of successes", ylab = "Probability")
> lines(x = b, y = Pk, col = "red")

We illustrate other styles for plotting in Section 3.2.2, Example 3.11 below. {ex:dice2}

EXAMPLE 3.8: Weldon’s dice
Going a bit further, we can compare Weldon’s data with the theoretical binomial distribution

as shown below. Because the WeldonDice data collapsed the frequencies for 10–12 successes as
10+, we do the same with the binomial probabilities. The expected frequencies (Exp), if Weldon’s
dice tosses obeyed the binomial distribution, are calculated as N × p(k) for N = 26, 306 tosses.
In addition, we compute the differences of the observed (Freq) and expected (Exp) frequencies
as column Diff, to be used for the χ2 test for goodness of fit described later in Section 3.3, but a
glance reveals that these are all negative for k = 0, . . . 4 and positive thereafter.

6For the purpose of this book, we assume at least a basic familiarity with the idea of maximum likelihood estimation. A
useful brief introduction to this topic for binomial data is Fox (2015, Section D.6), available online.

7Note that the actual R function arguments differ from the ones used here.
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> Weldon_df <- as.data.frame(WeldonDice) # convert to data frame
>
> k <- 0 : 12 # same as seq(0, 12)
> Pk <- dbinom(k, 12, 1/3) # binomial probabilities
> Pk <- c(Pk[1:10], sum(Pk[11:13])) # sum values for 10+
> Exp <- round(26306 * Pk, 5) # expected frequencies
> Diff <- Weldon_df$Freq - Exp # raw residuals
> Chisq <- Diff^2 / Exp
> data.frame(Weldon_df, Prob = round(Pk, 5), Exp, Diff, Chisq)

n56 Freq Prob Exp Diff Chisq
1 0 185 0.00771 202.749 -17.7495 1.55386
2 1 1149 0.04624 1216.497 -67.4968 3.74503
3 2 3265 0.12717 3345.366 -80.3661 1.93064
4 3 5475 0.21195 5575.610 -100.6102 1.81548
5 4 6114 0.23845 6272.561 -158.5614 4.00821
6 5 5194 0.19076 5018.049 175.9509 6.16947
7 6 3067 0.11127 2927.195 139.8047 6.67716
8 7 1331 0.04769 1254.512 76.4877 4.66346
9 8 403 0.01490 392.035 10.9649 0.30668
10 9 105 0.00331 87.119 17.8811 3.67008
11 10+ 18 0.00054 14.305 3.6947 0.95424

4

Finally, we can use programming features in R to calculate and plot probabilities for binomial
distributions over a range of both k and p as follows, for the purposes of graphing the distributions as
one or both varies. The following code uses outer() to create a 13×4 matrix Prob containing the
result of dbinom() for all combinations of k = 0:12 and p = c(1/6, 1/3, 1/2, 2/3).
These values are then supplied as arguments to dbinom().

> p <- c(1/6, 1/3, 1/2, 2/3)
> k <- 0 : 12
> Prob <- outer(k, p, function(k, p) dbinom(k, 12, p))
> str(Prob)

num [1:13, 1:4] 0.1122 0.2692 0.2961 0.1974 0.0888 ...

In this form, each column of Prob can be most easily plotted against k using matplot().
The following code generates Figure 3.9.

> col <- palette()[2:5]
> matplot(k, Prob,
+ type = "o", pch = 15 : 17, col = col, lty = 1,
+ xlab = "Number of Successes", ylab = "Probability")
> legend("topright", legend = c("1/6","1/3","1/2","2/3"),
+ pch = 15 : 17, lty = 1, col = col, title = "Pr(Success)")

3.2.2 The Poisson distribution
{sec:poisson}

The Poisson distribution gives the probability of an event occurring k = 0, 1, 2, . . . times over a
large number of independent “trials,” when the probability, p, that the event occurs on any one trial
(in time or space) is small and constant. Hence, the Poisson distribution is usually applied to the
study of rare events such as highway accidents at a particular location, deaths from horse kicks,
or defects in a well-controlled manufacturing process. Other applications include: the number of
customers contacting a call center per unit time; the number of insurance claims per unit region or
unit time; number of particles emitted from a small radioactive sample.



3.2: Characteristics of discrete distributions 77

0 2 4 6 8 10 12

0.
00

0.
10

0.
20

0.
30

Number of Successes

P
ro

ba
bi

lit
y

●

●

●

●

●

●

●

●

●
● ● ● ●

●

Pr(Success)

1/6
1/3
1/2
2/3

Figure 3.9: Binomial distributions for k = 0, . . . , 12 successes in n = 12 trials, and four values of
p.{fig:dbinom2-plot2}

For the Poisson distribution, the probability function is

Pois(λ) : Pr{X = k} ≡ p(k) =
e−λ λk

k!
k = 0, 1, . . . (3.2){eq:poisf}

where the rate parameter, λ (> 0), turns out to be the mean of the distribution. The first three
(central) moments of the Poisson distribution are:

Mean(X) = λ

Var(X) = λ

Skew(X) = λ−1/2

So, the mean and variance of the Poisson distribution are always the same, which is sometimes
used to identify a distribution as Poisson. For the binomial distribution, the mean (Np) is always
greater than the variance (Npq); for other distributions (negative binomial and geometric) the mean
is less than the variance. The Poisson distribution is always positively skewed, but skewness de-
creases as λ increases.

The maximum likelihood estimator of the parameter λ in Eqn. (3.2) is just the mean of the
distribution,

λ̂ = x̄ =

∑
k k nk∑
k nk

. (3.3) {eq:pois-lambda}

Hence, the expected frequencies can be estimated by substituting the sample mean into Eqn. (3.2)
and multiplying by the total sample size N .

There are many useful properties of the Poisson distribution.8 Among these are:

• Poisson variables have a nice reproductive property: ifX1, X2, . . . Xm are independent Poisson
variables with the same parameter λ, then their sum,

∑
Xi is a Poisson variate with parameter

mλ; if the Poisson parameters differ, the sum is still Poisson with parameter
∑
λi.

• For two or more independent Poisson variables, X1 ∼ Pois(λ1), X2 ∼ Pois(λ2), . . ., with
rate parameters λ1, λ2 . . ., the distribution of any Xi, conditional on their sum,

∑
j Xj = n, is

binomial, Bin(n, p), where p = λi/
∑
j λj .

• As λ increases, the Poisson distribution becomes increasingly symmetric, and approaches the
normal distribution N(λ, λ) with mean and variance λ as λ → ∞. The approximation is quite
good with λ > 20.

8See: http://en.wikipedia.org/wiki/Poisson_distribution.
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Table 3.8: Goals scored by home and away teams in 380 games in the Premier Football League,
1995/96 season{tab:soccer1}

Home Away Team Goals
Team 0 1 2 3 4+ Total
Goals

0 27 29 10 8 2 76
1 59 53 14 12 4 142
2 28 32 14 12 4 90
3 19 14 7 4 1 45

4+ 7 8 10 2 0 27
Total 140 136 55 38 11 380

• If X ∼ Pois(λ), then
√
X converges much faster to a normal distribution N(λ, 14 ), with mean√

λ and constant variance 1
4 . Hence, the square root transformation is often recommended as a

variance stabilizing transformation for count data when classical methods (ANOVA, regression)
assuming normality are employed.

{ex:soccer}

EXAMPLE 3.9: UK soccer scores
Table 3.8 gives the distributions of goals scored by the 20 teams in the 1995/96 season of the

Premier League of the UK Football Association as presented originally by Lee (1997), and now
available as the two-way table UKSoccer in the vcd package. Over a season each team plays each
other team exactly once, so there are a total of 20 × 19 = 380 games. Because there may be an
advantage for the home team, the goals scored have been classified as “home team” goals and “away
team” goals in the table. Of interest for this example is whether the number of goals scored by home
teams and away teams follow Poisson distributions, and how this relates to the distribution of the
total number of goals scored.

If we assume that in any small interval of time there is a small, constant probability that the
home team or the away team may score a goal, the distributions of the goals scored by home teams
(the row totals in Table 3.8) may be modeled as Pois(λH ) and the distribution of the goals scored
by away teams (the column totals) may be modeled as Pois(λA).

If the number of goals scored by the home and away teams are independent9, we would expect
that the total number of goals scored in any game would be distributed as Pois(λH + λA). These
totals are shown in Table 3.9.

Table 3.9: Total goals scored in 380 games in the Premier Football League, 1995/95 season{tab:soccer2}

Total goals 0 1 2 3 4 5 6 7
Number of games 27 88 91 73 49 31 18 3

As a preliminary check of the distributions for the home and away goals, we can determine if the
means and variances are reasonably close to each other. If so, then the total goals variable should
also have a mean and variance equal to the sum of those statistics for the home and away goals.

9This question is examined visually in Chapter 5 (Example 5.5) and Chapter 6 (Example 6.11), where we find that the
answer is “basically, yes.”
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In the R code below, we first convert the two-way frequency table UKSoccer to a data frame in
frequency form. We use within() to convert Home and Away to numeric variables, and calculate
Total as their sum.

> data("UKSoccer", package = "vcd")
>
> soccer.df <- as.data.frame(UKSoccer, stringsAsFactors = FALSE)
> soccer.df <- within(soccer.df, {
+ Home <- as.numeric(Home) # make numeric
+ Away <- as.numeric(Away) # make numeric
+ Total <- Home + Away # total goals
+ })
> str(soccer.df)

'data.frame': 25 obs. of 4 variables:
$ Home : num 0 1 2 3 4 0 1 2 3 4 ...
$ Away : num 0 0 0 0 0 1 1 1 1 1 ...
$ Freq : num 27 59 28 19 7 29 53 32 14 8 ...
$ Total: num 0 1 2 3 4 1 2 3 4 5 ...

To calculate the mean and variance of these variables, first expand the data frame to 380 individ-
ual observations using expand.dft(). Then use apply() over the rows to calculate the mean
and variance in each column.

> soccer.df <- expand.dft(soccer.df) # expand to ungrouped form
> apply(soccer.df, 2, FUN = function(x) c(mean = mean(x), var = var(x)))

Home Away Total
mean 1.4868 1.0632 2.5500
var 1.3164 1.1728 2.6175

The means are all approximately equal to the corresponding variances. More to the point, the
variance of the Total score is approximately equal to the sum of the individual variances. Note
also there does appear to be an advantage for the home team, of nearly half a goal.

4
{ex:cyclists2}

EXAMPLE 3.10: London cycling deaths
A quick check of whether the number of deaths among London cyclists follows the Poisson

distribution can be carried out by calculating the mean and variance. The index of dispersion,
the ratio of the variance to the mean, is commonly used to quantify whether a set of observed
frequencies is more or less dispersed than a reference (Poisson) distribution.

> with(CyclingDeaths, c(mean = mean(deaths),
+ var = var(deaths),
+ ratio = mean(deaths) / var(deaths)))

mean var ratio
0.56731 0.52685 1.07679

Thus, there was an average of about 0.57 deaths per fortnight, or a bit more than 1 per month,
and no evidence for over- or underdispersion.

We can now answer the question of whether it was an extraordinary event to observe six deaths
in a two-week period, by calculating the probability of more than 5 deaths using ppois().

> mean.deaths <- mean(CyclingDeaths$deaths)
> ppois(5, mean.deaths, lower.tail = FALSE)

[1] 2.8543e-05
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This probability is extremely small, so we conclude that the occurrence of six deaths was a
singular event. The interpretation of this result might indicate an increased risk to cycling in London,
and might prompt further study of road safety. 4

3.2.2.1 Calculation and visualization

For the Poisson distribution, you can generate probabilities using dpois(x, lambda) for the
numbers of events in xwith rate parameter lambda. As we did earlier for the binomial distribution,
we can calculate these for a collection of values of lambda by using expand.grid() to create
all combinations of the values of x we wish to plot.{ex:dpois-plot}

EXAMPLE 3.11: Plotting styles for discrete distributions
In this example, we illustrate some additional styles for plotting discrete distributions, using

both lattice (Sarkar, 2015) xyplot() and the ggplot2 (Wickham and Chang, 2015) package. The
goal here is to visualize a collection of Poisson distributions for varying values of λ.

We first create the 63 combinations of x = 0:20 for three values of λ, lambda = c(1,
4, 10), and use these columns as arguments to dpois(). Again, lambda is a numeric variable,
but the plotting methods are easier if this variable is converted to a factor.

> KL <- expand.grid(k = 0 : 20, lambda = c(1, 4, 10))
> pois_df <- data.frame(KL, prob = dpois(KL$k, KL$lambda))
> pois_df$lambda = factor(pois_df$lambda)
> str(pois_df)

'data.frame': 63 obs. of 3 variables:
$ k : int 0 1 2 3 4 5 6 7 8 9 ...
$ lambda: Factor w/ 3 levels "1","4","10": 1 1 1 1 1 1 1 1 1 1 ...
$ prob : num 0.3679 0.3679 0.1839 0.0613 0.0153 ...

Discrete distributions are often plotted as bar charts or in histogram-like form, as we did for
the examples in Section 3.1, rather than the line-graph form used for the binomial distribution in
Figure 3.9. With xyplot(), the plot style is controlled by the type argument, and the code
below uses type = c("h", "p") to get both histogram-like lines to the origin and points. As
well, the plot formula, prob ~ k | lambda instructs xyplot() to produce a multi-panel plot,
conditioned on values of lambda. These lines produce Figure 3.10.

> library(lattice)
> xyplot(prob ~ k | lambda, data = pois_df,
+ type = c("h", "p"), pch = 16, lwd = 4, cex = 1.25, layout = c(3, 1),
+ xlab = list("Number of events (k)", cex = 1.25),
+ ylab = list("Probability", cex = 1.25))

The line-graph plot style of Figure 3.9 has the advantage that it is easier to compare the separate
distributions in a single plot (using the groups argument) than across multiple panels (using a
conditioning formula). It has the disadvantages that (a) a proper legend is difficult to construct with
lattice, and (b) is difficult to read, because you have to visually coordinate the curves in the plot with
the values shown in the legend. Figure 3.11 solves both problems using the directlabels (Hocking,
2013) package.

> mycol <- palette()[2:4]
> plt <- xyplot(prob ~ k, data = pois_df, groups = lambda,
+ type = "b", pch = 15 : 17, lwd = 2, cex = 1.25, col = mycol,
+ xlab = list("Number of events (k)", cex = 1.25),
+ ylab = list("Probability", cex = 1.25),
+ ylim = c(0, 0.4))
>
> library(directlabels)
> direct.label(plt, list("top.points", cex = 1.5, dl.trans(y = y + 0.1)))
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Figure 3.10: Poisson distributions for λ = 1, 4, 10, in a multi-panel display.{fig:dpois-xyplot1}
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Figure 3.11: Poisson distributions for λ = 1, 4, 10, using direct labels.{fig:dpois-xyplot2}

Note that the plot constructed by xyplot() is saved as a ("trellis") object, plt. The function
direct.label() massages this to add the labels directly to each curve. In the second argument
above, "top.points" says to locate these at the maximum value on each curve.

Finally, we illustrate the use of ggplot2 to produce a single-panel, multi-line plot of these dis-
tributions. The basic plot uses aes(x = k, y = prob, ...) to produce a plot of prob vs.
k, assigning color and shape attributes to the values of lambda.

> library(ggplot2)
> gplt <- ggplot(pois_df,
+ aes(x = k, y = prob, colour = lambda, shape = lambda)) +
+ geom_line(size = 1) + geom_point(size = 3) +
+ xlab("Number of events (k)") +
+ ylab("Probability")

ggplot2 allows most details of the plot to be modified using theme(). Here we use this to
move the legend inside the plot, and enlarge the axis labels and titles (producing Figure 3.12).
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Figure 3.12: Poisson distributions for λ = 1, 4, 10, using ggplot2.{fig:dpois-ggplot2}

> gplt + theme(legend.position = c(0.8, 0.8)) + # manually move legend
+ theme(axis.text = element_text(size = 12),
+ axis.title = element_text(size = 14, face = "bold"))

4

3.2.3 The negative binomial distribution
{sec:negbin}

The negative binomial distribution is a type of waiting-time distribution, but also arises in statistical
applications as a generalization of the Poisson distribution, allowing for overdispersion (variance >
mean). See Hilbe (2011) for a comprehensive treatment of negative binomial statistical models with
many applications in R.

One form of the negative binomial distribution (also called the Pascal distribution) arises when
a series of independent Bernoulli trials is observed with constant probability p of some event, and
we ask how many non-events (failures), k, it takes to observe n successful events. For example, in
tossing one die repeatedly, we may consider the outcome “1” as a “success” (with p = 1

6 ) and ask
about the probability of observing k = 0, 1, 2, . . . failures before getting n = 3 1s.

The probability function with parameters n (a positive integer, 0 < n <∞) and p (0 < p < 1)
gives the probability that k non-events (failures) are observed before the n-th event (success), and
can be written10

NBin(n, p) : Pr{X = k} ≡ p(k) =

(
n+ k − 1

k

)
pn(1− p)k k = 0, 1, . . . ,∞ (3.4){eq:negbinf}

This formulation makes clear that a given sequence of events involves a total of n + k trials, of
which there are n successes, with probability pn, and k are failures, with probability (1 − p)k.
The binomial coefficient

(
n+k−1

k

)
gives the number of ways to choose the k successes from the

remaining n+ k − 1 trials preceding the last success.

10There are a variety of other parameterizations of the negative binomial distribution, but all of these can be converted to
the form shown here, which is relatively standard, and consistent with R. They differ in whether the parameter n relates to
the number of successes or the total number of trials, and whether the stopping criterion is defined in terms of failures or
successes. See: http://en.wikipedia.org/wiki/Negative_binomial_distribution for details on these
variations.
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The first three central moments of the negative binomial distribution are:

Mean(X) = nq/p = µ

Var(X) = nq/p2

Skew(X) =
2− p
√
nq

,

where q = 1 − p. The variance of X is therefore greater than the mean, and the distribution is
always positively skewed.

A more general form of the negative binomial distribution (the Polya distribution) allows n to
take non-integer values and to be an unknown parameter. In this case, the combinatorial coefficient,(
n+k−1

k

)
in Eqn. (3.4), is calculated using the gamma function, Γ(•), a generalization of the factorial

for non-integer values, defined so that Γ(x+ 1) = x! when x is an integer.
Then the probability function Eqn. (3.4) becomes

Pr{X = k} ≡ p(k) =
Γ(n+ k)

Γ(n)Γ(k + 1)
pn(1− p)k k = 0, 1, . . . ,∞ . (3.5) {eq:negbinf2}

Greenwood and Yule (1920) developed the negative binomial distribution as a model for acci-
dent proneness or susceptibility of individuals to repeated attacks of disease. They assumed that for
any individual, i, the number of accidents or disease occurrences has a Poisson distribution with pa-
rameter λi. If individuals vary in proneness, so that the λi have a gamma distribution, the resulting
distribution is the negative binomial.

In this form, the negative binomial distribution is frequently used as an alternative to the Poisson
distribution when the assumptions of the Poisson (constant probability and independence) are not
satisfied, or when the variance of the distribution is greater than the mean (overdispersion). This
gives rise to an alternative parameterization in terms of the mean (µ) of the distribution and its
relation to the variance. From the relation of the mean and variance to the parameters n, p given
above,

Mean(X) = µ =
n(1− p)

p
=⇒ p =

n

n+ µ
, (3.6)

Var(X) =
n(1− p)

p2
=⇒ Var(X) = µ+

µ2

n
. (3.7)

This formulation allows the variance of the distribution to exceed the mean, and in these terms, the
“size” parameter n is called the dispersion parameter.11 Increasing this parameter corresponds to
less heterogeneity, variance closer to the mean, and therefore greater applicability of the Poisson
distribution.

3.2.3.1 Calculation and visualization

In R, the density (pmf), distribution (CDF), quantile, and random number functions for the negative
binomial distribution are a bit special, in that the parameterization can be specified using either
(n, p) or (n, µ) forms, where µ = n(1 − p)/p. In our notation, probabilities can be calculated
using dnbinom() using the call dbinom(k, n, p) or the call dbinom(k, n, mu=), as
illustrated below:

11Other terms are “shape parameter,” with reference to the mixing distribution of Poissons with varying λ, “heterogeneity
parameter,” or “aggregation parameter.”
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> k <- 2
> n <- 2 : 4
> p <- 0.2
> dnbinom(k, n, p)

[1] 0.07680 0.03072 0.01024

> (mu <- n * (1 - p) / p)

[1] 8 12 16

> dnbinom(k, n, mu = mu)

[1] 0.07680 0.03072 0.01024

Thus, for the distribution with k = 2 failures and n = 2:4 successes with probability p =
0.2, the values n = 2:4 correspond to means µ = 8, 12, 16 as shown above.

As before, we can calculate these probabilities for a range of the combinations of arguments
using expand.grid(). In the example below, we allow three values for each of n and p and
calculate all probabilities for all values of k from 0 to 20. The result, nbin_df, is like a 3-way,
21× 3× 3 array of prob values, but in data frame format.

> XN <- expand.grid(k = 0 : 20, n = c(2, 4, 6), p = c(0.2, 0.3, 0.4))
> nbin_df <- data.frame(XN, prob = dnbinom(XN$k, XN$n, XN$p))
> nbin_df$n <- factor(nbin_df$n)
> nbin_df$p <- factor(nbin_df$p)
> str(nbin_df)

'data.frame': 189 obs. of 4 variables:
$ k : int 0 1 2 3 4 5 6 7 8 9 ...
$ n : Factor w/ 3 levels "2","4","6": 1 1 1 1 1 1 1 1 1 1 ...
$ p : Factor w/ 3 levels "0.2","0.3","0.4": 1 1 1 1 1 1 1 1 1 1 ...
$ prob: num 0.04 0.064 0.0768 0.0819 0.0819 ...

With 9 combinations of the parameters, it is most convenient to plot these in separate panels, in
a 3 × 3 display, as in Figure 3.13. The formula prob ~ k | n + p in the call to xyplot()
constructs plots of prob vs. k conditioned on the combinations of n and p.

> xyplot(prob ~ k | n + p, data = nbin_df,
+ xlab = list("Number of failures (k)", cex = 1.25),
+ ylab = list("Probability", cex = 1.25),
+ type = c("h", "p"), pch = 16, lwd = 2,
+ strip = strip.custom(strip.names = TRUE)
+ )

It can be readily seen that the mean increases from left to right with n, and increases from top to
bottom with decreasing p. For these distributions, we can also calculate the theory-implied means,
µ, across the entire distributions, k = 0, 1, . . .∞, as shown below.

> n <- c(2, 4, 6)
> p <- c(0.2, 0.3, 0.4)
> NP <- outer(n, p, function(n, p) n * (1 - p) / p)
> dimnames(NP) <- list(n = n, p = p)
> NP

p
n 0.2 0.3 0.4
2 8 4.6667 3
4 16 9.3333 6
6 24 14.0000 9
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Figure 3.13: Negative binomial distributions for n = 2, 4, 6 and p = 0.2, 0.3, 0.4, using
xyplot().{fig:dnbin3}

3.2.4 The geometric distribution
{sec:geometric}

The special case of the negative binomial distribution when n = 1 is a geometric distribution. We
observe a series of independent trials and count the number of non-events (failures) preceding the
first successful event. The probability that there will be k failures before the first success is given
by

Geom(p) : Pr{X = k} ≡ p(k) = p(1− p)k k = 0, 1, . . . . (3.8) {eq:geomf}

For this distribution the central moments are:

Mean(X) = 1/p

Var(X) = (1− p)/p2

Skew(X) = (2− p)/
√

1− p

Note that estimation of the parameter p for the geometric distribution can be handled as the
special case of the negative binomial by fixing n = 1, so no special software is needed. Going the
other way, ifX1, X2, . . . Xn are independent geometrically distributed as Geom(p), then their sum,
Y =

∑n
j Xj is distributed as NBin(p, n).

In R, the standard set of functions for the geometric distribution are available as dgeom(x,
prob), pgeom(q, prob), qgeom(p, prob), and rgeom(n, prob), where prob repre-
sents p here. Visualization of the geometric distribution follows the pattern used earlier for other
discrete distributions.
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3.2.5 The logarithmic series distribution
The logarithmic series distribution is a long-tailed distribution introduced by Fisher et al. (1943) in
connection with data on the abundance of individuals classified by species of the type shown for the
distribution of butterfly species in Table 3.5.

The probability distribution function with parameter p is given by

LogSer(p) : Pr{X = k} ≡ p(k) =
pk

−(k log(1− p))
= αpk/k k = 1, 2, . . . ,∞ , (3.9){eq:logseriesf}

where α = −1/ log(1− p) and 0 < p < 1. For this distribution, the first two central moments are:

Mean(X) = α

(
p

1− p

)
,

Var(X) = −p p+ log(1− p)
(1− p)2 log2(1− p)

.

Fisher derived the logarithmic series distribution by assuming that for a given species the number
of individuals trapped has a Poisson distribution with parameter λ = γt, where γ is a parameter of
the species (susceptibility to entrapment) and t is a parameter of the trap. If different species vary so
that the parameter γ has a gamma distribution, then the number of representatives of each species
trapped will have a negative binomial distribution. However, the observed distribution is necessarily
truncated on the left, because one cannot observe the number of species never caught (where k = 0).
The logarithmic series distribution thus arises as a limiting form of the zero-truncated negative
binomial.

Maximum likelihood estimation of the parameter p in the log-series distribution is described
by Böhning (1983), extending a simpler Newton’s method approximation by Birch (1963). The
vcdExtra package contains the set of R functions, dlogseries(x, prob), plogseries(q,
prob), qlogseries(p, prob), and rlogseries(n, prob), where prob represents p
here.

3.2.6 Power series family
{sec:pwrseries}

We mentioned earlier that the Poisson distribution was unique among all discrete (one-parameter)
distributions, in that it is the only one whose mean and variance are equal (Kosambi, 1949). The
relation between mean and variance of discrete distributions also provides the basis for integrating
them into a general family. All of the discrete distributions described in this section are in fact
special cases of a family of discrete distributions called the power series distributions by Noack
(1950) and defined by

p(k) = a(k)θk/f(θ) k = 0, 1, . . . ,

with parameter θ > 0, where a(k) is a coefficient function depending only on k and f(θ) =∑
k a(k)θk is called the series function. The definitions of these functions are shown in Table 3.10.

These relations among the discrete distribution provide the basis for graphical techniques for diag-
nosing the form of discrete data described later in this chapter (Section 3.5.4).

3.3 Fitting discrete distributions
{sec:discrete-fit}

In applications to discrete data such as the examples in Section 3.1, interest is often focused on
how closely such data follow a particular distribution, such as the Poisson, binomial, or geometric
distribution. A close fit provides for interpretation in terms of the underlying mechanism for the
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Table 3.10: The Power Series family of discrete distributions
tab:pwrseries

Discrete Probability Series Series Series
Distributiion function, p(k) parameter, θ function, f(θ) coefficient, a(k)
Poisson e−λλk/k! θ = λ eθ 1/k!

Binomial
(
n
k

)
pk(1− p)n−k θ = p/(1− p) (1 + θ)n

(
n
k

)
Negative binomial

(
n+k−1

k

)
pn(1− p)k θ = (1− p) (1− θ)−k

(
n+k−1

k

)
Geometric p(1− p)k θ = (1− p) (1− θ)−k 1

Logarithmic series θk/[−k log(1− θ)] θ = θ − log(1− θ) 1/k

distribution; conversely, a bad fit can suggest the possibility for improvement by relaxing one or
more of the assumptions. We examine more detailed and nuanced methods for diagnosing and
testing discrete distributions in Section 3.4 and Section 3.5 below.

Fitting a discrete distribution involves three basic steps:

1. Estimating the parameter(s) of the distribution from the data; for example, p for the binomial,
λ for the Poisson, n and p for the negative binomial. Typically, this is carried out by max-
imum likelihood methods, or a simpler method of moments, which equates sample moments
(mean, variance, skewness) to those of the theoretical distribution, and solves for the parameter
estimates. These methods are illustrated in Section 3.3.1.

2. From this, we can calculate the fitted probabilities, p̂k that apply for the given distribution, or
equivalently, the model expected frequencies, Np̂k, where N is the total sample size.

3. Finally, we can calculate goodness-of-fit tests measuring the departure between the observed
and fitted frequencies.

Often goodness-of-fit is examined with a classical (Pearson) goodness-of-fit (GOF) chi-squared
test,

X2 =

K∑
k=1

(nk −Np̂k)
2

Np̂k
∼ χ2

(K−s−1) , (3.10) {eq:chi2}

where there are K frequency classes, s parameters have been estimated from the data, and p̂k is the
estimated probability of each basic count, under the null hypothesis that the data follows the chosen
distribution.

An alternative test statistic is the likelihood-ratio G2 statistic,

G2 =

K∑
k=1

nk log(nk/Np̂k) , (3.11) {eq:g2}

when the p̂k are estimated by maximum likelihood, which also has an asymptotic χ2
(K−s−1) distri-

bution. “Asymptotic” means that these are large sample tests, meaning that the test statistic follows
the χ2 distribution increasingly well as N → ∞. A common rule of thumb is that all expected
frequencies should exceed one and that fewer than 20% should be less than 5. {ex:horsekick2}

EXAMPLE 3.12: Death by horse kick
We illustrate the basic ideas of goodness-of fit tests with the HorseKicks data, where we

expect a Poisson distribution with parameter λ = mean number of deaths. As shown in Eqn. (3.3),
this is calculated as the frequency (nk) weighted mean of the k values, here, number of deaths.

In R, such one-way frequency distributions should be converted to data frames with numeric
variables. The calculation below uses weighted.mean() with the frequencies as weights, and
finds λ = 0.61 as the mean number of deaths per corps-year.
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> # goodness-of-fit test
> tab <- as.data.frame(HorseKicks, stringsAsFactors = FALSE)
> colnames(tab) <- c("nDeaths", "Freq")
> str(tab)

'data.frame': 5 obs. of 2 variables:
$ nDeaths: chr "0" "1" "2" "3" ...
$ Freq : int 109 65 22 3 1

> (lambda <- weighted.mean(as.numeric(tab$nDeaths), w = tab$Freq))

[1] 0.61

From this, we can calculate the probabilities (phat) of k = 0:4 deaths, and hence the ex-
pected (exp) frequencies in a Poisson distribution.

> phat <- dpois(0 : 4, lambda = lambda)
> exp <- sum(tab$Freq) * phat
> chisq <- (tab$Freq - exp)^2 / exp
>
> GOF <- data.frame(tab, phat, exp, chisq)
> GOF

nDeaths Freq phat exp chisq
1 0 109 0.5433509 108.67017 0.0010011
2 1 65 0.3314440 66.28881 0.0250573
3 2 22 0.1010904 20.21809 0.1570484
4 3 3 0.0205551 4.11101 0.3002534
5 4 1 0.0031346 0.62693 0.2220057

Finally, the Pearson χ2 is just the sum of the chisq values and pchisq() is used to calculate
the p-value of this test statistic—the probability of obtaining this χ2 or a more extreme value if our
assumption on the underlying distribution is true.

> sum(chisq) # chi-square value

[1] 0.70537

> pchisq(sum(chisq), df = nrow(tab) - 2, lower.tail = FALSE)

[1] 0.87194

The result, χ2
3 = 0.70537, shows an extremely good fit of these data to the Poisson distribution,

perhaps exceptionally so.12

4

3.3.1 R tools for discrete distributions
{sec:fitdistr}

In R, the function fitdistr() in the MASS (Ripley, 2015) package is a basic work horse for
fitting a variety of distributions by maximum likelihood and other methods, giving parameter es-
timates and standard errors. Among discrete distributions, the binomial, Poisson and geometric
distributions have closed-form maximum likelihood estimates; the negative binomial distribution,
parameterized by (n, µ), is estimated iteratively by direct optimization.

12An exceptionally good fit occurs when the p-value for the test χ2 statistic is so high, as to suggest that something
unreasonable under random sampling might have occurred. The classic example of this is the controversy over Gregor
Mendel’s experiments of cross-breeding garden peas with various observed (phenotype) characteristics, where R. A. Fisher
(1936) suggested that observed frequencies of combinations like (smooth/wrinkled), (green/yellow) in a second generation
were uncomfortably too close to the 3 : 1 ratio predicted by genetic theory.
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These basic calculations are extended and enhanced for one-way discrete distributions in the vcd
function goodfit(), which computes the fitted values of a discrete distribution (either Poisson,
binomial, or negative binomial) to the count data. If the parameters are not specified they are esti-
mated either by maximum likelihood (ML) or Minimum Chi-squared. print() and summary()
methods for the "goodfit" objects give, respectively, a table of observed and fitted frequencies, and
the Pearson and/or likelihood ratio goodness-of-fit statistics. Plotting methods for visualizing the
discrepancies between observed and fitted frequencies are described and illustrated in Section 3.3.2. {ex:saxfit}

EXAMPLE 3.13: Families in Saxony
This example uses goodfit() to fit the binomial to the distribution of the number of male

children in families of size 12 in Saxony. Note that for the binomial, both n and p are considered as
parameters, and by default n is taken as the maximum count.

> data("Saxony", package = "vcd")
> Sax_fit <- goodfit(Saxony, type = "binomial")
> unlist(Sax_fit$par) # estimated parameters

prob size
0.51922 12.00000

So, we estimate the probability of a male in these families to be p = 0.519, a value that is quite
close to the value found in Arbuthnot’s data (p = 0.517).

It is useful to know that goodfit() returns a list structure of named components that are used
by method functions for class "goodfit" objects. The print.goodfit() method prints the table
of observed and fitted frequencies. summary.goodfit() calculates and prints the likelihood
ratio χ2 GOF test when the ML estimation method is used.

> names(Sax_fit) # components of "goodfit" objects

[1] "observed" "count" "fitted" "type" "method"
[6] "df" "par"

> Sax_fit # print method

Observed and fitted values for binomial distribution
with parameters estimated by `ML'

count observed fitted pearson residual
0 3 0.93284 2.14028
1 24 12.08884 3.42580
2 104 71.80317 3.79963
3 286 258.47513 1.71205
4 670 628.05501 1.67371
5 1033 1085.21070 -1.58490
6 1343 1367.27936 -0.65661
7 1112 1265.63031 -4.31841
8 829 854.24665 -0.86380
9 478 410.01256 3.35761

10 181 132.83570 4.17896
11 45 26.08246 3.70417
12 7 2.34727 3.03687

> summary(Sax_fit) # summary method

Goodness-of-fit test for binomial distribution

X^2 df P(> X^2)
Likelihood Ratio 97.007 11 6.9782e-16
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Note that the GOF test gives a highly significant p-value (pratically zero), indicating significant
lack of fit to the binomial distribution.13 Some further analysis of this result is explored in examples
below. 4

{ex:dicefit}

EXAMPLE 3.14: Weldon’s dice
Weldon’s dice data, explored in Example 3.3, are also expected to follow a binomial distribution,

here with p = 1
3 . However, as given in the data set WeldonDice, the frequencies for counts 10–12

were grouped as “10+.” In this case, it is necessary to supply the correct value of n = 12 as the
value of the size parameter in the call to goodfit().

> data("WeldonDice", package = "vcd")
> dice_fit <- goodfit(WeldonDice, type = "binomial",
+ par = list(size = 12))
> unlist(dice_fit$par)

prob size
0.33769 12.00000

The probability of a success (a 5 or 6) is estimated as p̂ = 0.3377, not far from the theoretical
value, p = 1/3.

> print(dice_fit, digits = 0)

Observed and fitted values for binomial distribution
with parameters estimated by `ML'

count observed fitted pearson residual
0 185 187 -0
1 1149 1147 0
2 3265 3216 1
3 5475 5465 0
4 6114 6269 -2
5 5194 5114 1
6 3067 3042 0
7 1331 1330 0
8 403 424 -1
9 105 96 1

10 18 15 1
11 0 1 -1
12 0 0 -0

> summary(dice_fit)

Goodness-of-fit test for binomial distribution

X^2 df P(> X^2)
Likelihood Ratio 11.506 9 0.2426

Here, we find an acceptable fit for the binomial distribution. 4
{ex:HKfit}

EXAMPLE 3.15: Death by horse kick
This example reproduces the calculations done “manually” in Example 3.12 above. We fit the

Poisson distribution to the HorseKicks data by specifying type = "poisson" (actually, that
is the default for goodfit()).

13A handy rule-of-thumb is to think of the ratio of χ2/df , because, under the null hypothesis of acceptable fit,
E(χ2/df) = 1, so ratios exceeding ≈ 2.5 are troubling. Here, the ratio is 97/11 = 8.8, so the lack of fit is substan-
tial.
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> data("HorseKicks", package = "vcd")
> HK_fit <- goodfit(HorseKicks, type = "poisson")
> HK_fit$par

$lambda
[1] 0.61

> HK_fit

Observed and fitted values for poisson distribution
with parameters estimated by `ML'

count observed fitted pearson residual
0 109 108.67017 0.03164
1 65 66.28881 -0.15830
2 22 20.21809 0.39629
3 3 4.11101 -0.54795
4 1 0.62693 0.34142

The summary method uses the LR test by default, so the X^2 value reported below differs
slightly from the Pearson χ2 value shown earlier.

> summary(HK_fit)

Goodness-of-fit test for poisson distribution

X^2 df P(> X^2)
Likelihood Ratio 0.86822 3 0.83309

4
{ex:Fedfit}

EXAMPLE 3.16: Federalist Papers
In Example 3.5 we examined the distribution of the marker word “may” in blocks of text in

the Federalist Papers written by James Madison. A naive hypothesis is that these occurrences
might follow a Poisson distribution, that is, as independent occurrences with constant probability
across the 262 blocks of text. Using the same methods as above, we fit these data to the Poisson
distribution:

> data("Federalist", package = "vcd")
> Fed_fit0 <- goodfit(Federalist, type = "poisson")
> unlist(Fed_fit0$par)

lambda
0.65649

> Fed_fit0

Observed and fitted values for poisson distribution
with parameters estimated by `ML'

count observed fitted pearson residual
0 156 135.891389 1.724988
1 63 89.211141 -2.775086
2 29 29.283046 -0.052306
3 8 6.407995 0.628903
4 4 1.051694 2.874934
5 1 0.138085 2.319483
6 1 0.015109 7.620613



92 3. Fitting and Graphing Discrete Distributions

The GOF test below shows a substantial lack of fit, rejecting the assumptions of the Poisson
model.

> summary(Fed_fit0)

Goodness-of-fit test for poisson distribution

X^2 df P(> X^2)
Likelihood Ratio 25.243 5 0.00012505

Mosteller and Wallace (1963) determined that the negative binomial distribution provided a
better fit to these data than the Poisson. We can verify this as follows:

> Fed_fit1 <- goodfit(Federalist, type = "nbinomial")
> unlist(Fed_fit1$par)

size prob
1.18633 0.64376

> summary(Fed_fit1)

Goodness-of-fit test for nbinomial distribution

X^2 df P(> X^2)
Likelihood Ratio 1.964 4 0.74238

Recall that the Poisson distribution assumes that the probability of a word like may appearing
in a block of text is small and constant, and that for the Poisson, E(x) = V(x) = λ. One interpre-
tation of the better fit of the negative binomial is that the use of a given word occurs with Poisson
frequencies, but Madison varied its rate λi from one block of text to another according to a gamma
distribution, allowing the variance to be greater than the mean.

4

3.3.2 Plots of observed and fitted frequencies
{sec:fitplot}

In the examples of the last section, we saw cases where the GOF tests showed close agreement
between the observed and model-fitted frequencies, and cases where they diverged significantly, to
cause rejection of a hypothesis that the data followed the specified distribution.

What is missing from such numerical summaries is any appreciation of the details of this statis-
tical comparison. Plots of the observed and fitted frequencies can help to show both the shape of the
theoretical distribution we have fitted and the pattern of any deviations between our data and theory.

In this section we illustrate some simple plotting tools for these purposes, using the
plot.goodfit() method for "goodfit" objects.14 The left panel of Figure 3.14 shows the fit
of the Poisson distribution to the Federalist Papers data, using one common form of plot that is
sometimes used for this purpose. In this plot, observed frequencies are shown by bars and fitted
frequencies are shown by points, connected by a smooth (spline) curve.

Such a plot, however, is dominated by the largest frequencies, making it hard to assess the
deviations among the smaller frequencies. To make the smaller frequencies more visible, Tukey
(1977) suggests plotting the frequencies on a square-root scale, which he calls a rootogram. This
plot is shown in the right panel of Figure 3.14.

14Quantile–quantile (QQ) plots are a common alternative for the goal of comparing observed and expected values under
some distribution. These plots are useful for unstructured samples, but less so when we also want to see the shape of a
distribution, as is the case here.
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Figure 3.14: Plots for the Federalist Papers data, fitting the Poisson model. Each panel shows the
observed frequencies as bars and the fitted frequencies as a smooth curve. Left: raw frequencies;
right: plotted on a square-root scale to emphasize smaller frequencies. {fig:Fed0-plots1}

> plot(Fed_fit0, scale = "raw", type = "standing")
> plot(Fed_fit0, type = "standing")

Additional improvements over the standard plot on the scale of raw frequencies are shown in
Figure 3.15, both of which use the square root scale. The left panel moves the rootogram bars so
their tops are at the expected frequencies (giving a hanging rootogram). This has the advantage
that we can more easily judge the pattern of departures against the horizontal reference line at 0,
than against the curve.

> plot(Fed_fit0, type = "hanging", shade = TRUE)
> plot(Fed_fit0, type = "deviation", shade = TRUE)

A final variation is to emphasize the differences between the observed and fitted frequencies
by drawing the bars to show the gaps between the 0 line and the (observed−expected) difference
(Figure 3.15, right).

All of these plots are actually produced by the rootogram() function in vcd, the plot()
method for "goodfit" objects. The default is type = "hanging", and there are many options to
control the plot details. For example, the plots in Figure 3.15 use shade=TRUE to color the bars
according to the contribution to the Pearson chi-square.15

The plots in Figure 3.14 and Figure 3.15 used the ill-fitting Poisson model on purpose to high-
light how these plots show the departure between the observed and fitted frequencies. Figure 3.16
compares this with the negative binomial model, Fed_fit1, which we saw has a much better, and
acceptable fit.

> plot(Fed_fit0, main = "Poisson", shade = TRUE, legend = FALSE)
> plot(Fed_fit1, main = "Negative binomial", shade = TRUE, legend = FALSE)

Comparing the two plots in Figure 3.16, we can see that the Poisson model overestimates the
frequency of counts k = 1 and underestimates the larger counts for k = 4–6 occurrences. The

15The bipolar color scheme uses blue for positive standard Pearson residuals, (nk −Np̂k)/
√
Np̂k , and red for negative

residuals, with shading intensity proportional to the categorized absolute values shown in the legend.
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Figure 3.15: Plots for the Federalist Papers data, fitting the Poisson model. Left: hanging
rootogram; Right: deviation rootogram. Color reflects the sign and magnitude of the contributions
to lack of fit. {fig:Fed0-plots2}

surprising feature here is that the greatest contribution to lack of fit for the Poisson model is the
frequency for k = 6. The deviations for the negative binomial are small and unsystematic.

Finally, Figure 3.17 shows hanging rootograms for two atrociously bad models for the data on
butterfly species in Malaya considered in Example 3.7. As we will see in Section 3.4, this long-
tailed distribution is better approximated by the logarithmic series distribution, but this distribution
is presently not handled by goodfit().

> data("Butterfly", package = "vcd")
> But_fit1 <- goodfit(Butterfly, type = "poisson")
> But_fit2 <- goodfit(Butterfly, type = "nbinomial")
> plot(But_fit1, main = "Poisson", shade = TRUE, legend = FALSE)
> plot(But_fit2, main = "Negative binomial", shade = TRUE, legend = FALSE)
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Figure 3.16: Hanging rootograms for the Federalist Papers data, comparing the Poisson and nega-
tive binomial models. {fig:Fed0-Fed1}
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Figure 3.17: Hanging rootograms for the Butterfly data, comparing the Poisson and negative bino-
mial models. The lack of fit for both is readily apparent.{fig:But-fit}

3.4 Diagnosing discrete distributions: Ord plots
{sec:discrete-ord}

Ideally, the general form chosen for a discrete distribution should be dictated by substantive knowl-
edge of a plausible mechanism for generating the data. When such knowledge is lacking, however,
we may not know which distribution is most appropriate for some particular set of data. In these
cases, the question is often turned around, so that we seek a distribution that fits well, and then try
to understand the mechanism in terms of aspects of the underlying probability theory (independent
trials, rare events, waiting-time to an occurrence, and so forth).

Although it is possible to fit each of several possibilities, the summary goodness-of-fit statistics
can easily be influenced by one or two disparate cells, or additional (ignored or unknown) factors.
One simple alternative is a plot suggested by Ord (1967), which may be used to diagnose the form
of the discrete distribution.

Ord showed that a linear relationship of the form:

k p(k)

p(k − 1)
≡ k nk
nk−1

= a+ b k (3.12) {eq:ord}

holds for each of the Poisson, binomial, negative binomial, and logarithmic series distributions,
and these distributions are distinguished by the signs of the intercept, a, and slope, b, as shown in
Table 3.11.

Table 3.11: Diagnostic slope and intercept for four discrete distributions. The ratios knk/nk−1
plotted against k should appear as a straight line, whose slope and intercept determine the particular
distribution. {tab:ordparm}

Slope Intercept Distribution Parameter
(b) (a) (parameter) estimate
0 + Poisson (λ) λ = a
− + Binomial (n, p) p = b/(b− 1)
+ + Negative binomial (n, p) p = 1− b
+ − Log. series (θ) θ = b

θ = −a
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Figure 3.18: Ord plot for the Butterfly data. The slope and intercept in the plot correctly diagnoses
the log-series distribution.{fig:ordplot1}

The slope, b, in Eqn. (3.12) is zero for the Poisson, negative for the binomial, and positive
for the negative binomial and logarithmic series distributions; the latter two are distinguished by
their intercepts. In practical applications of this idea, the details are important: how to fit the line,
and how to determine if the pattern of signs are sufficient to reasonably provide a diagnosis of the
distribution type.

One difficulty in applying this technique is that the number of points (distinct values of k) in
the Ord plot is often small, and the sampling variances of k nk/nk−1 can vary enormously. A little
reflection indicates that points where nk is small should be given less weight in determining the
slope of the line (and hence determining the form of the distribution). In applications it has been
found that using a weighted least squares fit of k nk/nk−1 on k, using weights of wk =

√
nk − 1

produces reasonably good automatic diagnosis of the form of a probability distribution. Moreover,
to judge whether a coefficient is positive or negative, a small tolerance is used; if none of the
distributions can be classified, no parameters are estimated. Caution is advised in accepting the
conclusion, because it is based on these simple heuristics.

In the vcd package this method is implemented in the Ord_plot() function. The essential
ideas are illustrated using the Butterfly data below, which produces Figure 3.18. Note that the
function returns (invisibly) the values of the intercept and slope in the weighted least squares (WLS)
regression.

> ord <- Ord_plot(Butterfly,
+ main = "Butterfly species collected in Malaya",
+ gp = gpar(cex = 1), pch = 16)
> ord

Intercept Slope
-0.70896 1.06082

In this plot, the black line shows the usual ordinary least squares (OLS) regression fit of fre-
quency, nk, on number of occurrences, k; the red line shows the weighted least squares fit, using
weights of

√
nk − 1. In this case, the two lines are fairly close together, in regards to their intercepts

and slopes. The positive slope and negative intercept diagnoses this as a log-series distribution.
In other cases, the number of distinct points (values of k) is small, and the sampling variances
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of the ratios k nk/nk−1 can vary enormously. The following examples illustrate some other distri-
butions and some of the details of the heuristics.

3.4.0.1 Ord plot examples
{ex:horsekick3}

EXAMPLE 3.17: Death by horse kick
The results below show the calculations for the horse kicks data, with the frequency ratio

k nk/nk−1 labeled y.

> data("HorseKicks", package = "vcd")
> nk <- as.vector(HorseKicks)
> k <- as.numeric(names(HorseKicks))
> nk1 <- c(NA, nk[-length(nk)])
> y <- k * nk / nk1
> weight <- sqrt(pmax(nk, 1) - 1)
> (ord_df <- data.frame(k, nk, nk1, y, weight))

k nk nk1 y weight
1 0 109 NA NA 10.3923
2 1 65 109 0.59633 8.0000
3 2 22 65 0.67692 4.5826
4 3 3 22 0.40909 1.4142
5 4 1 3 1.33333 0.0000

> coef(lm(y ~ k, weights = weight, data = ord_df))

(Intercept) k
0.656016 -0.034141

The weighted least squares line, with weights wk, has a slope (-0.03) close to zero, indicating
the Poisson distribution.16 The estimate λ = a = .656 compares favorably with the maximum
likelihood estimate (MLE), λ = 0.610 and the value from the Poissonness plot, shown in the
following section. The call to Ord_plot() below produces Figure 3.19.

> Ord_plot(HorseKicks,
+ main = "Death by horse kicks", gp = gpar(cex = 1), pch = 16)

4
{ex:madison3}

EXAMPLE 3.18: Federalist Papers
Figure 3.20 (left) shows the Ord plot for the Federalist data. The slope is positive, so

either the negative binomial or log series are possible, according to Table 3.11. The intercept is
essentially zero, which is ambiguous. However, the logarithmic series requires b ≈ −a, so the
negative binomial is a better choice. Mosteller and Wallace (1963, 1984) did in fact find a reasonably
good fit to this distribution. Note that there is one apparent outlier, at k = 6, whose effect on the
OLS line is to increase the slope and decrease the intercept. 4

> Ord_plot(Federalist, main = "Instances of 'may' in Federalist Papers",
+ gp = gpar(cex = 1), pch = 16)

{ex:queues}

EXAMPLE 3.19: Women in queues
Jinkinson and Slater (1981) and Hoaglin and Tukey (1985) give the frequency distribution of the

number of females observed in 100 queues of length 10 in a London Underground station, recorded
in the data set WomenQueue in vcd.

16The heuristic adopted in Ord_plot() uses a tolerance of 0.1 to decide if a coefficient is negative, zero, or positive.
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Figure 3.19: Ord plot for the HorseKicks data. The plot correctly diagnoses the Poisson distribu-
tion. {fig:ordplot2}

> data("WomenQueue", package = "vcd")
> WomenQueue

nWomen
0 1 2 3 4 5 6 7 8 9 10
1 3 4 23 25 19 18 5 1 1 0

If it is assumed that people line up independently, and that men and women are equally likely
to be found in a queue (not necessarily reasonable assumptions), then the number of women out of
10 would have a (symmetric) binomial distribution with parameters n = 10 and p = 1

2 . However,
there is no real reason to expect that males and females are equally likely to be found in queues in
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Figure 3.20: Ord plots for the Federalist (left) and WomenQueue (right) data sets. {fig:ordplot3plot}
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the London underground, so we may be interested in estimating p from the data and determining if
a binomial distribution fits.

> Ord_plot(WomenQueue, main = "Women in queues of length 10",
+ gp = gpar(cex = 1), pch = 16)

Figure 3.20 (right) shows the Ord plot for these data. The negative slope and positive intercept
clearly diagnose this distribution as binomial. The rough estimate of p̂ = b/(1−b) = 0.53 indicates
that women are slightly more prevalent than men in these data for the London underground. 4

3.4.0.2 Limitations of Ord plots

Using a single simple diagnostic plot to determine one of four common discrete distributions is
advantageous, but your enthusiasm should be dampened by several weaknesses:

• The Ord plot lacks resistance, because a single discrepant frequency affects the points nk/nk−1
for both k and k + 1.

• The sampling variance of k nk/nk−1 fluctuates widely (Hoaglin and Tukey, 1985, Jinkinson and
Slater, 1981). The use of weights wk helps, but is purely a heuristic device. The Ord_plot()
function explicitly shows both the OLS line and the WLS line, which provides some indication
of the effect of the points on the estimation of slope and intercept.

3.5 Poissonness plots and generalized distribution plots
{sec:discrete-Poissonness}

The Poissonness plot (Hoaglin, 1980) is a robust plot to sensitively determine how well a one-way
table of frequencies follows a Poisson distribution. It plots a quantity called a count metameter
against k, designed so that the result will be points along a straight line when the data follow a
Poisson distribution. When the data deviate from a Poisson, the points will be curved. Hoaglin and
Tukey (1985) developed similar plots for other discrete distributions, including the binomial, neg-
ative binomial, and logarithmic series distributions. We first describe the features and construction
of these plots for the Poisson distribution; then (Section 3.5.4) the extension to other distributions.

3.5.1 Features of the Poissonness plot
The Poissonness plot has the following desirable features:

• Resistance: a single discrepant value of nk affects only the point at value k. (In the Ord plot it
affects each of its neighbors.)

• Comparison standard: An approximate confidence interval can be found for each point, indi-
cating its inherent variability and helping to judge whether each point is discrepant.

• Influence: Extensions of the method result in plots that show the effect of each point on the
estimate of the main parameter of the distribution (λ in the Poisson).

3.5.2 Plot construction
Assume, for some fixed λ, each observed frequency, nk equals the expected frequency, mk = Npk.
Then, setting nk = Npk = Ne−λ λk/k!, and taking logs of both sides gives

log(nk) = log N − λ+ k log λ− log k! .
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This can be rearranged to a linear equation in k,

φ (nk) ≡ log

(
k! nk
N

)
= −λ+ (log λ) k . (3.13) {eq:poispl}

The left side of Eqn. (3.13) is called the count metameter, and denoted φ (nk). Hence, plotting
φ(nk) against k should give a straight line of the form φ(nk) = a+ bk with

• slope = log λ
• intercept = −λ

when the observed frequencies follow a Poisson distribution. If the points in this plot are close
enough to a straight line, then an estimate of λ may be obtained from the slope b of the line, and
λ̂ = eb should be reasonably close in value to the MLE of λ, λ̂ = x̄. In this case, we might as well
use the MLE as our estimate.

3.5.2.1 Leveled plot

If we have a preliminary estimate λ0 of λ, we can use this to give a new plot where the reference line
is horizontal, making comparison of the points with the line easier. In this leveled plot the vertical
coordinate φ(nk) is modified to

φ′(nk) = φ(nk) + λ0 − k log λ0 . (3.14){eq:pois-leveled}

When the data follow a Poisson distribution with parameter λ, the modified plot will have

• slope = log λ− log λ0 = log(λ/λ0)
• intercept = λ0 − λ

In the ideal case, where our estimate of λ0 is close to the true λ, the line will be approximately
horizontal at φ(nk)′ = 0. The modified plot is particularly useful in conjunction with the confidence
intervals for individual points described below.

3.5.2.2 Confidence intervals

The goal of the Poissonness plot is to determine whether the points are “sufficiently linear” to
conclude that the Poisson distribution is adequate for the data. Confidence intervals for the points
can help you decide, and also show the relative precision of the points in these plots.

For example, when one or two points deviate from an otherwise nearly linear relation, it is
helpful to determine whether the discrepancy is consistent with chance variation. As well, we must
recognize that classes with small frequencies nk are less precise than classes with large frequencies.

Hoaglin and Tukey (1985) develop approximate confidence intervals for log(mk) for each point
in the Poissonness plot. These are calculated as

φ (n∗k)± hk (3.15){eq:poisCI}

where the count metameter function is calculated using a modified frequency n∗k, defined as

n∗k =

 nk − .8nk − .67 n ≥ 2
1/e n = 1
undefined n = 0

and hk is the half-width of the 95% confidence interval,

hk = 1.96

√
1− p̂k

[nk − (.25p̂k + .47)
√
nk]1/2

and p̂k = nk/N . A more modern approach could use a bootstrap estimate.
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3.5.3 The distplot() function
Poissonness plots (and versions for other distributions) are produced by the function distplot()
in vcd. As with Ord_plot(), the first argument is either a vector of counts, a one-way table
of frequencies of counts, or a data frame or matrix with frequencies in the first column and the
corresponding counts in the second column. Nearly all of the examples in this chapter use one-way
tables of counts.

The type argument specifies the type of distribution. For type = "poisson", specifying
a value for lambda = λ0 gives the leveled version of the plot. {ex:horsekick4}

EXAMPLE 3.20: Death by horse kick
The calculations for the Poissonness plot, including confidence intervals, are shown below for

the HorseKicks data. The call to distplot() produces the plot in the left panel of Figure 3.21.

> data("HorseKicks", package = "vcd")
> dp <- distplot(HorseKicks, type = "poisson",
+ xlab = "Number of deaths", main = "Poissonness plot: HorseKicks data")
> print(dp, digits = 4)

Counts Freq Metameter CI.center CI.width CI.lower CI.upper
1 0 109 -0.607 -0.6131 0.1305 -0.7436 -0.4827
2 1 65 -1.124 -1.1343 0.2069 -1.3412 -0.9274
3 2 22 -1.514 -1.5451 0.4169 -1.9620 -1.1281
4 3 3 -2.408 -2.6607 1.3176 -3.9783 -1.3431
5 4 1 -2.120 -3.1203 2.6887 -5.8089 -0.4316

In this plot, the open circles show the calculated observed values of the count
Metameter = φ (nk). The smaller filled points show the centers of the confidence intervals,
CI.center = φ (n∗k) (Eqn. (3.15)), and the dashed lines show the extent of the confidence inter-
vals.

The fitted least squares line has a slope of -0.431, which would indicate λ = e−0.431 = 0.65.
This compares well with the MLE, λ = x̄ = 0.61.

Using lambda = 0.61 as below gives the leveled version shown in the right panel of Fig-
ure 3.21.

> # leveled version, specifying lambda
> distplot(HorseKicks, type = "poisson", lambda = 0.61,
+ xlab = "Number of deaths", main = "Leveled Poissonness plot")

In both plots the fitted line is within the confidence intervals, indicating the adequacy of the
Poisson model for these data. The widths of the intervals for k > 2 are graphic reminders that these
observations have decreasingly low precision where the counts nk are small.

4

3.5.4 Plots for other distributions
{sec:discrete-other}

As described in Section 3.2.6, the binomial, Poisson, negative binomial, geometric, and logseries
distributions are all members of the general power series family of discrete distributions. For this
family, Hoaglin and Tukey (1985) developed similar plots of a count metameter against k, which
appear as a straight line when a data distribution follows a given family member.

The distributions which can be analyzed in this way are shown in Table 3.12, with the inter-
pretation given to the slope and intercept in each case. For example, for the Binomial distribution,
a “binomialness” plot is constructed by plotting log n∗k/N

(
n
k

)
against k. If the points in this plot

approximate a straight line, the slope is interpreted as log(p/(1 − p)), so the binomial parameter p
may be estimated as p = eb/(1 + eb).
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Figure 3.21: Poissonness plots for the HorseKick data. Left: standard plot; right: leveled plot.
fig:distplot1

Unlike the Ord plot, a different plot is required for each distribution, because the count metame-
ter, φ(nk), differs from distribution to distribution. Moreover, systematic deviation from a linear
relationship does not indicate which distribution provides a better fit. However, the attention to ro-
bustness, and the availability of confidence intervals and influence diagnostics, make this a highly
useful tool for visualizing discrete distributions.{ex:saxony-distplot}

EXAMPLE 3.21: Families in Saxony
Our analysis in Example 3.2 and Example 3.13 of the Saxony data showed that the distribution

of male children had slightly heavier tails than the binomial, meaning the observed distribution is
overdispersed. We can see this in the goodfit() plot shown in Figure 3.22 (left), and even
more clearly in the distribution diagnostic plot produced by distplot() in the right panel of
Figure 3.22. For a binomial distribution, we call this distribution plot a “binomialness plot.”

Table 3.12: Plot parameters for five discrete distributions. In each case the count metameter, φ(n∗k)
is plotted against k, yielding a straight line when the data follow the given distribution. {tab:distparms}

Distribution
Probability
function, p(k)

Count)
metameter, φ(n∗k)

Theoretical
slope (b)

Theoretical
intercept (a)

Poisson e−λλk/k! log(k!n∗k/N) log(λ) -λ

Binomial
(
n
k

)
pk(1− p)n−k log

(
n∗k/N

(
n
k

))
log
(

p
1−p

)
n log(1− p)

Negative bino-
mial

(
n+k−1

k

)
pn(1− p)k log

(
n∗k/N

(
n+k−1

k

))
log(1− p) n log(p)

Geometric p(1− p)k log (n∗k/N) log(1− p) log(p)

Log series θk/[−k log(1− θ)] log (kn∗k/N) log(θ) − log (− log(1− θ))
Source: adapted from Hoaglin and Tukey (1985), Table 9-15.
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Figure 3.22: Diagnostic plots for males in Saxony families. Left: goodfit() plot; right:
distplot() plot. Both plots show heavier tails than in a binomial distribution. {fig:distplot3}

> plot(goodfit(Saxony, type = "binomial", par = list(size=12)),
+ shade=TRUE, legend=FALSE,
+ xlab = "Number of males")
> distplot(Saxony, type = "binomial", size = 12,
+ xlab = "Number of males")

The weight of evidence is thus that, as simple as the binomial might be, it is inadequate to fully
explain the distribution of sex ratios in this large sample of families of 12 children. To understand
this data better, it is necessary to question the assumptions of the binomial (births of males are
independent Bernoulli trials with constant probability p) as a model for this birth distribution and/or
find a more adequate model.17 4

{ex:federalist-distplot}

EXAMPLE 3.22: Federalist Papers
In Example 3.16 we carried out GOF tests for the Poisson and negative binomial models with

the Federalist Papers data; Figure 3.16 showed the corresponding rootogram plots. Figure 3.23
compares these two using the diagnostic plots of this section. Again the Poisson shows systematic
departure from the linear relation required in the Poissonness plot, while the negative binomial
model provides an acceptable fit to these data.

> distplot(Federalist, type = "poisson", xlab = "Occurrences of 'may'")
> distplot(Federalist, type = "nbinomial", xlab = "Occurrences of 'may'")

4

17On these questions, Edwards (1958) reviews numerous other studies of these Geissler’s data, and fits a so-called β-
binomial model proposed by Skellam (1948), where p varies among families according to a β distribution. He concludes
that there is evidence that p varies between families of the same size. One suggested explanation is that family decisions to
have a further child is influenced by the balance of boys and girls among their earlier children.
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Figure 3.23: Diagnostic plots for the Federalist Papers data. Left: Poissonness plot; right: negative
binomialness plot. {fig:distplot5}

3.6 Fitting discrete distributions as generalized linear
models?

{sec:fitglm}
In Section 3.2.6, we described how the common discrete distributions are all members of the general
power series family. This provides the basis for the generalized distribution plots described in
Section 3.5.4. Another general family of distributions—the exponential family—includes most of
the common continuous distributions: the normal, gamma, exponential, and others, and is the basis
of the class of generalized linear models (GLMs) fit by glm().

A clever approach by Lindsey and Mersch (1992), Lindsey (1995, Section 6.1) shows how var-
ious discrete (and continuous) distributions can be fit to frequency data using generalized linear
models for log frequency (which are equivalent to Poisson loglinear models). The uniform, geomet-
ric, binomial, and the Poisson distributions may all be fit easily in this way, but the idea extends to
some other distributions, such as the double binomial distribution, that allows a separate parameter
for overdispersion relative to the binomial. A clear advantage is that this method gives estimated
standard errors for the distribution parameters as well as estimated confidence intervals for fitted
probabilities.

The essential idea is that, for frequency data, any distribution in the exponential family may be
represented by a linear model for the logarithm of the cell frequency, with a Poisson distribution for
errors, otherwise known as a “Poisson loglinear regression model.” These have the form

log(Nπk) = offset + β0 + βTS(k) ,

where N is the total frequency, πk is the modeled probability of count k, S(k) is a vector of zero
or more sufficient statistics for the canonical parameters of the exponential family distribution, and
the offset term is a value that does not depend on the parameters.

Table 3.13 shows the sufficient statistics and offsets for several discrete distributions. See Lind-
sey and Mersch (1992) for further details, and definitions for the double-binomial distribution,18

18In R, the double binomial distribution is implemented in the rmutil package, providing the standard complement of
density function (ddoublebinom()), CDF (pdoublebinom()), quantiles (qdoublebinom()), and random genera-
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Table 3.13: Poisson loglinear representations for some discrete distributions{tab:expfamily}

Distribution Sufficient statistics Offset
Geometric k

Poisson k − log(k!)

Binomial k log
(
n
k

)
Double binomial k, k log(k) + (n− k) log(n− k) log

(
n
k

)

and Lindsey (1995, pp. 130–133) for his analysis of the Saxony data using this distribution. Lind-
sey and Altham (1998) provide an analysis of the complete Geissler data (provided in the data set
Geissler in vcdExtra) using several different models to handle overdispersion. {ex:saxony2}

EXAMPLE 3.23: Families in Saxony
The binomial distribution and the double binomial can both be fit to frequency data as a Poisson

regression via glm() using log
(
n
k

)
as an offset. First, we convert Saxony into a numeric data

frame for use with glm().

> data("Saxony", package = "vcd")
> Males <- as.numeric(names(Saxony))
> Families <- as.vector(Saxony)
> Sax.df <- data.frame(Males, Families)

To calculate the offset for glm() in R, note that choose(12,0:12) returns the binomial
coefficients, and lchoose(12,0:12) returns their logs.

> # fit binomial (12, p) as a glm
> Sax.bin <- glm(Families ~ Males, offset = lchoose(12, 0:12),
+ family = poisson, data = Sax.df)
>
> # brief model summaries
> LRstats(Sax.bin)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

Sax.bin 191 192 97 11 7e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> coef(Sax.bin)

(Intercept) Males
-0.069522 0.076898

As we have seen, this model fits badly. The parameter estimate for Males, β1 = 0.0769 is
actually estimating the logit of p, log p/(1−p), so the inverse transformation gives p̂ = exp(β1)

1+exp(β1)
=

0.5192, as we had before.
The double binomial model can be fitted as follows. The term YlogitY calculates k log(k) +

(n− k) log(n− k), the second sufficient statistic for the double binomial (see Table 3.13) fitted via
glm().

tion (rdoublebinom()). This package is not on CRAN, but is available at http://www.commanster.eu/rcode.
html.
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> # double binomial, (12, p, psi)
> Sax.df$YlogitY <-
+ Males * log(ifelse(Males == 0, 1, Males)) +
+ (12-Males) * log(ifelse(12-Males == 0, 1, 12-Males))
>
> Sax.dbin <- glm(Families ~ Males + YlogitY, offset = lchoose(12,0:12),
+ family = poisson, data = Sax.df)
> coef(Sax.dbin)

(Intercept) Males YlogitY
-3.096918 0.065977 0.140205

> LRstats(Sax.bin, Sax.dbin)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

Sax.bin 191 192 97.0 11 7e-16 ***
Sax.dbin 109 111 13.1 10 0.22
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the above, we can see that the double binomial model Sax.dbin with one more param-
eter is significantly better than the simple binomial and represents an adequate fit to the data. The
table below displays the fitted values and standardized residuals for both models.

> results <- data.frame(Sax.df,
+ fit.bin = fitted(Sax.bin), res.bin = rstandard(Sax.bin),
+ fit.dbin = fitted(Sax.dbin), res.dbin = rstandard(Sax.dbin))
> print(results, digits = 2)

Males Families YlogitY fit.bin res.bin fit.dbin res.dbin
1 0 3 30 0.93 1.70 3.0 0.026
2 1 24 26 12.09 3.05 23.4 0.136
3 2 104 24 71.80 3.71 104.3 -0.036
4 3 286 23 258.48 1.87 307.8 -1.492
5 4 670 22 628.06 1.94 652.9 0.778
6 5 1033 22 1085.21 -1.87 1038.5 -0.202
7 6 1343 22 1367.28 -0.75 1264.2 2.635
8 7 1112 22 1265.63 -5.09 1185.0 -2.550
9 8 829 22 854.25 -1.03 850.1 -0.846
10 9 478 23 410.01 3.75 457.2 1.144
11 10 181 24 132.84 4.23 176.8 0.371
12 11 45 26 26.08 3.42 45.2 -0.039
13 12 7 30 2.35 2.45 6.5 0.192

Finally, Figure 3.24 shows the rootogram for the double binomial, which can be compared with
the binomial model shown in Figure 3.22. We can see that the fit is now quite good, particularly in
the tails. The positive coefficient for the term YlogitY gives additional weight in the tails.

> with(results, vcd::rootogram(Families, fit.dbin, Males,
+ xlab = "Number of males"))

4

3.6.1 Covariates, overdispersion, and excess zeros
All of the examples in this chapter are somewhat special, in that in each case the data consist only
of a one-way frequency distribution of a basic count variable. In more general and realistic settings,
there may also be one or more explanatory variables or covariates that influence the frequency
distributions of the counts. For example, in the Saxony data, the number of boys in families
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Figure 3.24: Rootogram for the double binomial model for the Saxony data. This now fits well in
the tails of the distribution.{fig:sax-glm5}

of size 12 was aggregated over the years 1876–1885, and it is possible that any deviation from a
binomial distribution could be due to variation over time or unmeasured predictors (e.g., rural vs.
urban, age of parents).

This is where the generalized linear model approach introduced here (treated in detail in Chap-
ter 11), begins to shine—because it allows such covariates to be taken into account, and then ques-
tions regarding the form of the distribution pertain only to the variation of the frequencies not fitted
by the model. The next example illustrates what can go wrong when important predictors are omit-
ted from the analysis. {ex:phdpubs0}

EXAMPLE 3.24: Publications of PhD candidates
Long (1990, 1997) gave data on the number of publications by 915 doctoral candidates in bio-

chemistry in the last three years of their PhD studies, contained in the data set PhdPubs in vcdEx-
tra. The data set also includes information on gender, marital status, number of young children,
prestige of the doctoral department, and number of publications by the student’s mentor. The fre-
quency distribution of number of publications by these students is shown below.

> data("PhdPubs", package = "vcdExtra")
> table(PhdPubs$articles)

0 1 2 3 4 5 6 7 8 9 10 11 12 16 19
275 246 178 84 67 27 17 12 1 2 1 1 2 1 1

The naive approach, ignoring the potential predictors, is just to try fitting various probability
models to this one-way distribution. Rootograms for the simpler Poisson distribution and the nega-
tive binomial that allows for overdispersion are shown in Figure 3.25.
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Figure 3.25: Hanging rootograms for publications by PhD candidates, comparing the Poisson and
negative binomial models. The Poisson model clearly does not fit. The the negative binomial is
better, but still has significant lack of fit.{fig:phdpubs-rootogram}

> library(vcd)
> plot(goodfit(PhdPubs$articles), xlab = "Number of Articles",
+ main = "Poisson")
> plot(goodfit(PhdPubs$articles, type = "nbinomial"),
+ xlab = "Number of Articles", main = "Negative binomial")

From these plots it is clear that the Poisson distribution doesn’t fit well at all, because there is
a large excess of zero counts—candidates with no publications, and most of the counts of four or
more publications are larger than the Poisson model predicts. The fit of the negative binomial model
in the right panel of Figure 3.25 looks much better, except that for eight or more publications, there
is a systematic tendency of overfitting for 8–10 and underfittting for the observed counts of 12 or
more. This lack of fit is confirmed by the formal test.

> summary(goodfit(PhdPubs$articles, type = "nbinomial"))

Goodness-of-fit test for nbinomial distribution

X^2 df P(> X^2)
Likelihood Ratio 31.098 12 0.0019033

The difficulty with this simple analysis is not only that it ignores the possible predictors of
publishing by these PhD candidates, but also, by doing so, it prevents a better, more nuanced ex-
planation of the phenomenon under study. This example is re-visited in Chapter 11, Example 11.1,
where we consider generalized linear models taking potential predictors into account, as well as
extended zero-inflated models allowing special consideration of zero counts. 4

3.7 Chapter summary
{sec:ch03-summary}

• Discrete distributions typically involve basic counts of occurrences of some event occurring
with varying frequency. The ideas and methods for one-way tables described in this chapter are
building blocks for the analysis of more complex data.

• The most commonly used discrete distributions include the binomial, Poisson, negative bino-
mial, geometric, and logarithmic series distributions. Happily, these are all members of a family
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called the power series distributions. Methods of fitting an observed data set to any of these dis-
tributions are described, and implemented in the goodfit() function.

• After fitting an observed distribution it is useful to plot the observed and fitted frequencies.
Several ways of making these plots are described, and implemented in the rootogram()
function.

• A heuristic graphical method for identifying which discrete distribution is most appropriate for
a given set of data involves plotting ratios knk/nk−1 against k. These plots are constructed by
the function Ord_plot().

• A more robust plot for a Poisson distribution involves plotting a count metameter, φ(nk) against
k, which gives a straight line (whose slope estimates the Poisson parameter) if the data follow
a Poisson distribution. This plot provides robust confidence intervals for individual points and
provides a means to assess the influence of individual points on the Poisson parameter. These
plots are provided by the function distplot().

• The ideas behind the Poissonness plot can be applied to the other discrete distributions.

3.8 Lab exercises
{sec:ch03-labs}{lab:3.1}

Exercise 3.1 The Arbuthnot data in HistData (Example 3.1) also contains the variable Ratio,
giving the ratio of male to female births.

(a) Make a plot of Ratio over Year, similar to Figure 3.1. What features stand out? Which plot
do you prefer to display the tendency for more male births?

(b) Plot the total number of christenings, Males + Females or Total (in 000s) over time.
What unusual features do you see?

{lab:3.2}

Exercise 3.2 Use the graphical methods illustrated in Section 3.2 to plot a collection of geometric
distributions for p = 0.2, 0.4, 0.6, 0.8, over a range of values of k = 0, 1, . . . 10.

(a) With xyplot(), try the different plot formats using points connected with lines, as in Fig-
ure 3.9, or using points and lines down to the origin, as in the panels of Figure 3.10.

(b) Also with xyplot(), produce one version of a multi-line plot in a single panel that you think
shows well how these distributions change with the probability p of success.

(c) Do the same in a multi-panel version, conditional on p.
{lab:3.3}

Exercise 3.3 Use the data set WomenQueue to:

(a) Produce plots analogous to those shown in Section 3.1 (some sort of bar graph of frequencies).
(b) Check for goodness-of-fit to the binomial distribution using the goodfit() methods de-

scribed in Section 3.3.2.
(c) Make a reasonable plot showing departure from the binomial distribution.
(d) Suggest some reasons why the number of women in queues of length 10 might depart from a

binomial distribution, Bin(n = 10, p = 1/2).
{lab:3.4}

Exercise 3.4 Continue Example 3.13 on the distribution of male children in families in Saxony by
fitting a binomial distribution, Bin(n = 12, p = 1

2 ), specifying equal probability for boys and girls.
[Hint: you need to specify both size and prob values for goodfit().]

(a) Carry out the GOF test for this fixed binomial distribution. What is the ratio of χ2/df? What
do you conclude?
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(b) Test the additional lack of fit for the model Bin(n = 12, p = 1
2 ) compared to the model

Bin(n = 12, p = p̂) where p̂ is estimated from the data.
(c) Use the plot.gootfit() method to visualize these two models.

{lab:3.5}

Exercise 3.5 For the Federalist data, the examples in Section 3.3.1 and Section 3.3.2 showed
the negative binomial to provide an acceptable fit. Compare this with the simpler special case of
geometric distribution, corresponding to n = 1.

(a) Use goodfit() to fit the geometric distribution. [Hint: use type="nbinomial", but
specify size=1 as a parameter.]

(b) Compare the negative binomial and the geometric models statistically, by a likelihood-ratio
test of the difference between these two models.

(c) Compare the negative binomial and the geometric models visually by hanging rootograms or
other methods.

{lab:3.6}

Exercise 3.6 Mosteller and Wallace (1963, Table 2.4) give the frequencies, nk, of counts k =
0, 1, . . . of other selected marker words in 247 blocks of text known to have been written by Alexan-
der Hamilton. The data below show the occurrences of the word upon, that Hamilton used much
more than did James Madison.

> count <- 0 : 5
> Freq <- c(129, 83, 20, 9, 5, 1)

(a) Read these data into R and construct a one-way table of frequencies of counts or a matrix or
data frame with frequencies in the first column and the corresponding counts in the second
column, suitable for use with goodfit().

(b) Fit and plot the Poisson model for these frequencies.
(c) Fit and plot the negative binomial model for these frequencies.
(d) What do you conclude?

{lab:3.7}

Exercise 3.7 The data frame Geissler in the vcdExtra package contains the complete data from
Geissler’s (1889) tabulation of family sex composition in Saxony. The table below gives the number
of boys in families of size 11.

boys 0 1 2 3 4 5 6 7 8 9 10 11
Freq 8 72 275 837 1,540 2,161 2,310 1,801 1,077 492 93 24

(a) Read these data into R.
(b) Following Example 3.13, use goodfit() to fit the binomial model and plot the results. Is

there an indication that the binomial does not fit these data?
(c) Diagnose the form of the distribution using the methods described in Section 3.4.
(d) Try fitting the negative binomial distribution, and use distplot() to diagnose whether the

negative binomial is a reasonable fit.
{lab:3.8}

Exercise 3.8 The data frame Bundesliga gives a similar data set to that for UK soccer scores
(UKSoccer) examined in Example 3.9, but over a wide range of years. The following lines calcu-
late a two-way table, BL1995, of home-team and away-team goals for the 306 games in the year
1995.

> data("Bundesliga", package = "vcd")
> BL1995 <- xtabs(~ HomeGoals + AwayGoals, data = Bundesliga,
+ subset = (Year == 1995))
> BL1995
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AwayGoals
HomeGoals 0 1 2 3 4 5 6

0 26 16 13 5 0 1 0
1 19 58 20 5 4 0 1
2 27 23 20 5 1 1 1
3 14 11 10 4 2 0 0
4 3 5 3 0 0 0 0
5 4 1 0 1 0 0 0
6 1 0 0 1 0 0 0

(a) As in Example 3.9, find the one-way distributions of HomeGoals, AwayGoals, and
TotalGoals = HomeGoals + AwayGoals.

(b) Use goodfit() to fit and plot the Poisson distribution to each of these. Does the Poisson
seem to provide a reasonable fit?

(c) Use distplot() to assess fit of the Poisson distribution.
(d) What circumstances of scoring goals in soccer might cause these distributions to deviate from

Poisson distributions?
{lab:3.9}

Exercise 3.9 ? Repeat the exercise above, this time using the data for all years in which there was
the standard number (306) of games, that is for Year>1965, tabulated as shown below.

> BL <- xtabs(~ HomeGoals + AwayGoals, data = Bundesliga,
+ subset = (Year > 1965))

{lab:3.10}

Exercise 3.10 Using the data CyclingDeaths introduced in Example 3.6 and the one-way fre-
quency table CyclingDeaths.tab = table(CyclingDeaths$deaths),

(a) Make a sensible plot of the number of deaths over time. For extra credit, add a smoothed curve
(e.g., using lines(lowess(...))).

(b) Test the goodness of fit of the table CyclingDeaths.tab to a Poisson distribution statisti-
cally using goodfit().

(c) Continue this analysis using a rootogram() and distplot().
(d) Write a one-paragraph summary of the results of these analyses and your conclusions.

{lab:3.11}

Exercise 3.11 ? The one-way table, Depends, in vcdExtra and shown below gives the frequency
distribution of the number of dependencies declared in 4, 983 R packages maintained on the CRAN
distribution network on January 17, 2014. That is, there were 986 packages that had no dependen-
cies, 1, 347 packages that depended on one other package, . . . up to 2 packages that depended on 14
other packages.

Depends 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Pkgs 986 1,347 993 685 375 298 155 65 32 19 9 4 9 4 2

(a) Make a bar plot of this distribution.
(b) Use Ord_plot() to see if this method can diagnose the form of the distribution.
(c) Try to fit a reasonable distribution to describe dependencies among R packages.

{lab:3.12}

Exercise 3.12 ? How many years does it take to get into the baseball Hall of Fame? The Lah-
man (Friendly, 2014b) package provides a complete record of historical baseball statistics from
1871 to the present. One table, HallOfFame, records the history of players nominated to the Base-
ball Hall of Fame, and those eventually inducted. The table below, calculated in help(HallOfFame,
package="Lahman"), records the distribution of the number of years taken (from first nomina-
tion) for the 109 players in the Hall of Fame to be inducted (1936–present). Note that years==0
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does not, and cannot, occur in this table, so the distribution is restricted to positive counts. Such
distributions are called zero-truncated distributions. Such distributions are like the ordinary ones,
but with the probability of zero being zero. Thus the other probabilities are scaled up (i.e., divided
by 1− Pr(Y = 0)) so they sum to 1.

years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
inducted 46 10 8 7 8 4 2 4 6 3 3 1 4 1 2

(a) For the Poisson distribution, show that the zero-truncated probability function can be ex-
pressed in the form

Pr{X = k | k > 0}) =
1

1− e−λ
× e−λ λk

k!
k = 1, 2, . . .

(b) Show that the mean is λ/(1− exp(−λ)).
(c) Enter these data into R as a one-way table, and use goodfit() to fit the standard Poisson

distribution, as if you hadn’t encountered the problem of zero truncation.
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