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{ch:mosaic}
Mosaic displays help to visualize the pattern of associations among variables in two-

way and larger tables. Extensions of this technique can reveal partial associations, marginal
associations, and shed light on the structure of loglinear models themselves.

5.1 Introduction
{sec:mosaic-intro}
Little boxes on the hillside, little boxes made of ticky tacky,
Little boxes on the hillside, little boxes all the same.

There’s a green one and a pink one, and a blue one and a yellow one,
And they’re all made out of ticky tacky, and they all look just the same.

Words and music by Malvina Reynolds, ©Schroder Music Company 1962, 1990;
recorded by Pete Seeger

In Chapter 4, we described a variety of graphical techniques for visualizing the pattern of asso-
ciation in simple contingency tables. These methods are somewhat specialized for particular sizes
and shapes of tables: 2 x 2 tables (fourfold display), R x C tables (tile plot, sieve diagram), square
tables (agreement charts), R x 3 tables (trilinear plots), and so forth.

This chapter describes the mosaic display and related graphical methods for n-way frequency
tables, designed to show various aspects of high-dimensional contingency tables in a hierarchical
way. These methods portray the frequencies in an n-way contingency table by a collection of rect-
angular “tiles” whose size (area) is proportional to the cell frequency. In this respect, the mosaic
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{ex:haireye2a}

162 5. Mosaic Displays for n-Way Tables

display is similar to the sieve diagram (Section 4.5). However, mosaic plots and related methods
described here:

 generalize more readily to n-way tables. One can usefully examine 3-way, 4-way, and even
larger tables, subject to the limitations of resolution in any graph;

e are intimately connected to loglinear models, generalized linear models, and generalized non-
linear models for frequency data;

* provide a method for fitting a series of sequential loglinear models to the various marginal totals
of an n-way table; and

* can be used to illustrate the relations among variables that are fitted by various loglinear models.

The basic ideas behind these graphical methods are explained for two-way tables in Section 5.2;
the strucplot framework on which these are based is described in Section 5.3. The graphical ex-
tension of mosaic plots to three-way and large tables (Section 5.4) is quite direct. However, the
details require a brief introduction to loglinear models and some terminology for different types of
“independence” in such tables, also described in this section. Mosaic methods are further extended
to all-pairwise plots in Section 5.6 and 3D plots in Section 5.7.

5.2 Two-way tables

The mosaic display (Friendly, 1992, 1994, 1997, Hartigan and Kleiner, 1981, 1984) is like a grouped
barchart, where the heights (or widths) of the bars show the relative frequencies of one variable,
and widths (heights) of the sections in each bar show the conditional frequencies of the second
variable, given the first. This gives an area-proportional visualization of the frequencies composed
of tiles corresponding to the cells created by successive vertical and horizontal splits of rectangle,
representing the total frequency in the table. The construction of the mosaic display, and what it
reveals, are most easily understood for two-way tables.

EXAMPLE 5.1: Hair color and eye color
Consider the data shown earlier in Table 4.2, showing the relation between hair color and eye
color among students in a statistics course. The basic mosaic display for this 4 x 4 table is shown
in Figure 5.1.

> data("HairEyeColor", package = "datasets")
> haireye <- margin.table (HairEyeColor, 1 : 2)
> mosaic (haireye, labeling = labeling_values)

For such a two-way table, the mosaic in Figure 5.1 is constructed by first dividing a unit square
in proportion to the marginal totals of one variable, say, hair color.
For these data, the marginal frequencies and proportions of hair color are calculated below:

> (hair <- margin.table (haireye, 1))

Hair
Black Brown Red Blond
108 286 71 127

> prop.table (hair)

Hair
Black Brown Red Blond
0.18243 0.48311 0.11993 0.21453



{fig:haireye-mosl1 }

5.2: Two-way tables
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Figure 5.1: Basic mosaic display for hair color and eye color data. The area of each rectangle is
proportional to the observed frequency in that cell, shown as numbers.

These frequencies can be shown as the mosaic for the first variable (hair color), with the unit
square split according to the marginal proportions as in Figure 5.2 (left). The rectangular tiles are
then shaded to show the residuals (deviations) from a particular model as shown in the right panel
of Figure 5.2. The details of the calculations for shading are:

* The one-way table of marginal totals can be fit to a model, in this case, the (implausible) model
that all hair colors are equally probable. This model has expected frequencies m; = 592/4 =

148:

> expected <- rep(sum(hair) / 4,
> names (expected) <- names (hair)
> expected

Black Brown Red Blond
148 148 148 148

e The Pearson residuals from this model, r;

> (residuals <- (hair - expected)

Hair
Black Brown Red Blond
-3.2880 11.3435 -6.3294 -1.7262

4)

(ng —m;)//m;, are:

/ sqrt (expected))

and these values are shown by color and shading as shown in the legend in Figure 5.3. The high
positive value for brown hair indicates that people with brown hair are much more frequent in
this sample than the equiprobability model would predict; the large negative residual for red
hair shows that redheads are much less common. Further details of the schemes for shading are
described below, but essentially we use increasing intensities of blue (red) for positive (negative)

residuals.
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Figure 5.2: First step in constructing a mosaic display. Left: splitting the unit square according
to frequencies of hair color; right: shading the tiles according to residuals from a model of equal
marginal probabilities.

In the next step, the rectangle for each hair color is subdivided in proportion to the relative
(conditional) frequencies of the second variable—eye color, giving the following conditional row
proportions:

> round (addmargins (prop.table (haireye, 1), 2), 3)

Eye
Hair Brown Blue Hazel Green Sum
Black 0.630 0.185 0.139 0.046 1.000
Brown 0.416 0.294 0.189 0.101 1.000
Red 0.366 0.239 0.197 0.197 1.000
Blond 0.055 0.740 0.079 0.126 1.000

The proportions in each row determine the width of the tiles in the second mosaic display in
Figure 5.3.

* Again, the cells are shaded in relation to standardized Pearson residuals, r;; = (n;;—m;)/ NaCT
from a model. For a two-way table, the model is that hair color and eye color are independent in
the population from which this sample was drawn. These residuals are calculated as shown be-
low using independence_table () to calculate the expected values m,;; under this model

(m” = ’I’L++7T7;+7T+j):

> exp <- independence_table (haireye)
> resids <- (haireye - exp) / sqrt(exp)
> round (resids, 2)

Eye
Hair Brown Blue Hazel Green
Black 4.40 -3.07 -0.48 -1.95
Brown 1.23 -1.95 1.35 -0.35
Red -0.07 -1.73 0.85 2.28
Blond -5.85 7.05 -2.23 0.61

e Thus, in Figure 5.3, the two tiles shaded deep blue correspond to the two cells, (Black, Brown)
and (Blond, Blue), whose residuals are greater than +4, indicating much greater frequency in
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Figure 5.3: Second step in constructing the mosaic display. Each rectangle for hair color is sub-
divided in proportion to the relative frequencies of eye color, and the tiles are shaded in relation to

{fig:haireye-mosg)  residuals from the model of independence.

those cells than would be found if hair color and eye color were independent. The tile shaded

deep red, (Blond, Brown), corresponds to the largest negative residual =

combination is extremely rare under the hypothesis of independence.

—5.85, indicating this

 The overall Pearson y? statistic for the independence model is just the sum of squares of the

residuals, with degrees of freedom (r — 1) x (¢ — 1).

> (chisg <- sum(resids *~ 2))

[1] 138.29
> (df <- prod(dim(haireye) - 1))
[1]1 9

> pchisq(chisqg, df, lower.tail = FALSE)

[1] 2.3253e-25

* These results are of course identical to what chisqg.test () provides. Note that the latter can

be used to retrieve the residuals:

> chisq.test (haireye)

Pearson's Chi-squared test

data: Thaireye
X-squared = 138, df = 9, p-value <2e-16
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> round (residuals (chisq.test (haireye)), 2)

Eye
Hair Brown Blue Hazel Green
Black 4.40 -3.07 -0.48 -1.95
Brown 1.23 -1.95 1.35 -0.35
Red -0.07 -1.73 0.85 2.28
Blond -5.85 7.05 -2.23 0.61

5.2.1 Shading levels

A variety of schemes for shading the tiles are available in the strucplot framework (Section 5.3),
but the simplest (and default) shading patterns for the tiles are based on the sign and magnitude of
the standardized Pearson residuals, using shades of blue for positive residuals and red for negative
residuals, and two threshold values for their magnitudes, |r;;| > 2 and |r;;| > 4.

Because the standardized residuals are approximately unit-normal N (0, 1) values, this corre-
sponds to highlighting cells whose residuals are individually significant at approximately the .05
and .0001 level, respectively. Other shading schemes described later provide tests of significance,
but the main purpose of highlighting cells is to draw attention to the pattern of departures of the
data from the assumed model of independence.

5.2.2 Interpretation and reordering

To interpret the association between hair color and eye color, consider the pattern of positive (blue)
and negative (red) tiles in the mosaic display. We interpret positive values as showing cells whose
observed frequency is substantially greater than would be found under independence; negative val-
ues indicate cells that occur less often than under independence.

The interpretation can often be enhanced by reordering the rows or columns of the two-way
table so that the residuals have an opposite corner pattern of signs. This usually helps us interpret
any systematic patterns of association in terms of the ordering of the row and column categories.

In this example, a more direct interpretation can be achieved by reordering the eye colors as
shown in Figure 5.4. Note that in this rearrangement both hair colors and eye colors are ordered
from dark to light, suggesting an overall interpretation of the association between hair color and eye
color.

> # re-order eye colors from dark to light
> haireye2 <- as.table (haireye[, c("Brown", "Hazel", "Green", "Blue")])
> mosaic (haireye2, shade = TRUE)

In general, the levels of a factor in mosaic displays are often best reordered by arranging them
according to their scores on the first (largest) correspondence analysis dimension (Friendly, 1994);
see Chapter 6 for details. Friendly and Kwan (2003) use this as one example of effect ordering for
data displays, illustrated in Chapter 1.

Thus, the mosaic in Figure 5.4 shows that the association between hair and eye color is essen-
tially that:

* people with dark hair tend to have dark eyes,
¢ those with light hair tend to have light eyes,
* people with red hair and green eyes do not quite fit this pattern.
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Figure 5.4: Two-way mosaic for hair color and eye color, reordered. The eye colors were reordered
(fig:haireye-mos9)  from dark to light, enhancing the interpretation.

5.3 The strucplot framework
{sec:mosaic-strucplot}

Mosaic displays have much in common with sieve plots and association plots described in Chapter 4
and with related graphical methods such as doubledecker plots described later in this chapter. The
main idea is to visualize a contingency table of frequencies by “tiles” corresponding to the table
cells arranged in rectangular form. For multiway tables with more than two factors, the variables are
nested into rows and columns using recursive conditional splits, given the table margins. The result
is a “flat” representation that can be visualized in ways similar to a two-dimensional representation
of a table. The structable () function described in Section 2.5 gives the tabular version of a
strucplot. The description below follows Meyer et al. (2006), also included as a vignette (accessible
from R as vignette ("strucplot", pkg = "vcd")),invcd (Meyer et al., 2015).

Rather than implementing each of these methods separately, the strucplot framework in the
vcd package provides a general class of methods of which these are all instances. This framework
defines a class of conditional displays, which allows for granular control of graphical appearance
aspects, including:

* the content of the tiles, e.g., observed or expected frequencies

¢ the split direction for each dimension, horizontal or vertical

* the graphical parameters of the tiles’ content, e.g., color or other visual attributes
* the spacing between the tiles

o the labeling of the tiles

5.3.1 Components overview

.. . . . . . . {sec:strucplot_overview}
The strucplot framework is highly modularized: Figure 5.5 shows the hierarchical relationship be-

tween the various components. For the most part, you will directly use the convenience and related
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Leve| 4 Re|ated pairs (), cotabplot ()

mosaic(), sieve(), assoc(), tile(), doubledecker ()
strucplot ()

Graphical appearance control (“grapcon”) functions / generators
for strucplot () (Only the generators are shown below)

struc_mosaic (), struc_sieve(),
— Strucplot core| siruc assoc()
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Workhorse
Functions

Parameter
Functions

Figure 5.5: Components of the strucplot framework. High-level functions use those at lower levels

top

rovide a general system for tile-based plots of frequency tables.

functions at the top of the diagram, but it is more convenient to describe the framework from the
bottom up.

1.

On the lowest level, there are several groups of workhorse and parameter functions that directly
or indirectly influence the final appearance of the plot (see Table 5.1 for an overview). These
are examples of graphical appearance control functions (called grapcon functions). They are
created by generating functions (grapcon generators), allowing flexible parameterization and
extensibility (Figure 5.5 only shows the generators). The generator names follow the naming
convention group_foo (), where group reflects the group the generators belong to (strucplot
core, labeling, legend, shading, or spacing).

e The workhorse functions (created by struc_rfoo()) are labeling_foo(), and
legend_foo (). These functions directly produce graphical output (i.e., “add ink to
the canvas”), for labels and legends respectively.

e The parameter functions (created by spacing_foo () and shading_foo()) com-
pute graphical parameters used by the others. The grapcon functions returned by
struc_foo () implement the core functionality, creating the tiles and their content.

. On the second level of the framework, a suitable combination of the low-level grapcon func-

tions (or, alternatively, corresponding generating functions) is passed as “hyperparameters” to
strucplot (). This central function sets up the graphical layout using grid viewports, and
coordinates the specified core, labeling, shading, and spacing functions to produce the plot.

. On the third level, vcd provides several convenience functions such as mosaic (), sieve (),

assoc(),tile(),and doubledecker () whichinterfaceto strucplot () through sen-
sible parameter defaults and support for model formulae.

Finally, on the fourth level, there are “related” vcd functions (such as cotabplot () and the

{fig:struc}
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Table 5.1: Available graphical appearance control (grapcon) generators in the strucplot framework

Group Grapcon generator Description
strucplot | struc_assoc () core function for association plots
core struc_mosaic () core function for mosaic plots (also used for tile plots)
struc_sieve () core function for sieve plots
labeling | labeling_border () border labels
labeling_cboxed () centered labels with boxes, all labels clipped,
and on top and left border
labeling_cells () cell labels
labeling_conditional () border labels for conditioning variables
and cell labels for conditioned variables
labeling_doubledecker () | draws labels for doubledecker plot
labeling_lboxed () left-aligned labels with boxes
labeling_left () left-aligned border labels
labeling_left2() left-aligned border labels, all labels on top and left border
labeling_list () draws a list of labels under the plot
labeling_residuals () show residuals in cells
labeling_value () show values (observed, expected) in cells
shading shading_binary () visualizes the sign of the residuals
shading Friendly () implements Friendly shading (based on HSV colors)
shading_hcl () shading based on HCL colors
shading_hsv () shading based on HSV colors
shading_max () shading visualizing the maximum test statistic
(based on HCL colors)
shading_sieve () implements Friendly shading customized for sieve plots
(based on HCL colors)
spacing | spacing_conditional () increasing spacing for conditioning variables,
equal spacing for conditioned variables
spacing_dimequal () equal spacing for each dimension
spacing_equal () equal spacing for all dimensions
spacing_highlighting () increasing spacing, last dimension set to zero
spacing_increase () increasing spacing
legend legend_fixed() creates a fixed number of bins (similar to mosaicplot ())
legend_resbased () suitable for an arbitrary number of bins
(also for continuous shadings)

pairs () methods for table objects) arranging collections of plots of the strucplot framework
into more complex displays (e.g., by means of panel functions).

5.3.2 Shading schemes

Unlike other graphics functions in base R, the strucplot framework allows almost full control over
the graphical parameters of all plot elements. In particular, in association plots, mosaic plots, and
sieve plots, you can modify the graphical appearance of each tile individually.

Built on top of this functionality, the framework supplies a set of shading functions choosing
colors appropriate for the visualization of loglinear models. The tiles’ graphical parameters are set
using the gp argument of the functions of the strucplot framework. This argument basically expects
an object of class "gpar" whose components are arrays of the same shape (length and dimensional-
ity) as the data table.

For added generality, however, you can also supply a grapcon function that computes such
an object given a vector of residuals, or, alternatively, a generating function that takes certain argu-

{tab:grapcons}

{sec:mosaic-shading}
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ments and returns such a grapcon function (see Table 5.1). vcd provides several shading functions,
including support for both HSV (hue-saturation-value) and HCL (hue-chroma-luminance) colors,
and visualization of significance tests.

5.3.2.1 Specifying graphical parameters for strucplot displays

Strucplot displays in vcd are built using the grid graphics package (Murrell, 2011). There are many
graphical parameters that can be set using gp = gpar (...) ina call to a high-level strucplot
function. Among these, the following are often most useful to control the drawing components:

col Color for lines and borders.

fill Color for filling rectangles, polygons, ...
alpha Alpha channel for transparency of fill color.
1ty Line type for lines and borders.

lwd Line width for lines and borders.

In addition, a number of parameters control the display of text labels in these displays:

fontsize The size of text (in points)

cex Multiplier applied to fontsize
fontfamily The font family (serif, sans, mono, ...)
fontface The font face (bold, italic, ...)

See help (gpar) for a complete list and help (par) for further details.

We illustrate this capability below using the hair color and eye color data as reordered in Fig-
ure 5.4. The following example produces a Marimekko chart, or a “poor-man’s mosaic display” as
shown in the left panel of Figure 5.6. This is essentially a divided bar chart where the eye colors
within each horizontal bar for the hair color group are all given the same color. In the example, the
matrix £111_colors is constructed to conform to the haireye?2 table, using color values that
approximate the eye colors.'

> # color by hair color
> fill colors <- c("brownd", "#acba72", "green", "lightblue")
> (fill_colors_mat <- t(matrix(rep(fill_colors, 4), ncol = 4)))

[,1] [,2] [,31] [,4]
] "brownd" "#acba72" "green" "lightblue"
[2,] "brown4d" "#acba72" "green" "lightblue"
]
]

[3,] "brown4" "#acba72" "green" "lightblue"
[4,] "brown4" "#acba72" "green" "lightblue"
> mosaic (haireye2, gp = gpar (fill = fill colors_mat, col = 0))

Alternatively, we could have used the convenience function shading_Marimekko () in vcd:

> mosaic (haireye2, gp = shading_Marimekko (haireye2))

Note that because the hair colors and eye colors are both ordered, this shows the decreasing preva-
lence of light hair color amongst those with brown eyes and the increasing prevalence of light hair
with blue eyes.

Alternatively, for some purposes,” we might like to use color to highlight the pattern of diagonal
cells, and the off-diagonals 1, 2, 3 steps removed. The R function toeplitz () returns such a

2

Actually, the £i11_colors vector could be directly used since values are recycled as needed by mosaic ().
2For example, this would be appropriate for a square table, showing agreement between row and column categories, as
in Section 4.7.



5.3: The strucplot framework 171

patterned matrix, and we can use this to calculate the fill_colors by indexing the result of
the rainbow_hcl () palette function in colorspace (Ihaka et al., 2015) (generating better colors
than palette ()). The code below produces the right panel in Figure 5.6.

> # toeplitz designs
> library (colorspace)
> toeplitz (1 : 4)

> fill colors <- rainbow_hcl(8) [1 + toeplitz (1l : 4)]
> mosaic (haireye2, gp = gpar (fill = fill colors, col = 0))

Brown Hazel Green Blue Brown Hazel Green Blue

Black
Black

Brown
Brown

Hair
Hair

Red
Red

Figure 5.6: Mosaic displays for the haireye2 data, using custom colors to fill the tiles. Left:
Marimekko chart, using colors to reflect the eye colors; right: Toeplitz-based colors, reflecting the
diagonal strips in a square table. (fig:HE-fill}

Blond
Blond

Again, vcd offers a convenience function for this purposes, shading_diagonal ():

> mosaic (haireye2, gp = shading_diagonal (haireye2))

More simply, to shade a mosaic according to the levels of one variable (typically a response
variable), you can use the highlight ing arguments of mosaic (). The first call below gives a
result similar to the left panel of Figure 5.6. Alternatively, using the formula method formosaic (),
specify the response variable as the left-hand side.

> mosaic (haireye2, highlighting = "Eye", highlighting fill = £ill_colors)
> mosaic (Eye ~ Hair, data = haireye2, highlighting_ fill = fill colors)

5.3.2.2 Residual-based shading

The important idea that differentiates mosaic and other strucplot displays from the “poor-man’s,”
Marimekko versions (Figure 5.6) often shown in other software, is that rather than just using shading
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color to identify the cells, we can use these attributes to show something more—residuals from some
model, whose pattern helps to explain the association between the table variables.

As described above, the strucplot framework includes a variety of shading_ functions, and
these can be customized with optional arguments. Zeileis et al. (2007) describe a general approach
to residual-based shadings for area-proportional visualizations, used in the development of the struc-

{ex:interp)  Plot framework in ved.

EXAMPLE 5.2: Interpolation options
One simple thing to do is to modify the interpolate option passed to the default shading_hcl
function, as shown in Figure 5.7.

# more shading levels
mosaic (haireye2, shade = TRUE, gp_args = list (interpolate = 1 : 4))

# continuous shading
interp <- function(x) pmin(x / 6, 1)
mosaic (haireye2, shade = TRUE, gp_args = list (interpolate = interp))
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Figure 5.7: Interpolation options for shading levels in mosaic displays. Left: four shading levels;
(fig:HE-interp)  Tight: continuous shading.

For the left panel of Figure 5.7, a numeric vector is passed as interpolate=1:4, defining
the boundaries of a step function mapping the absolute values of residuals to saturation levels in the
HCL color scheme. For the right panel, a user-defined function, interp (), is created which maps
the absolute residuals to saturation values in a continuous way (up to a maximum of 6).

Note that these two interpolation schemes produce quite similar results, differing mainly in the
shading level of residuals within 1 and in the legend. In practice, the default discrete interpolation,
using cutoffs of +2, +4 usually works quite well. A

{ex:shading}

EXAMPLE 5.3: Shading functions
Alternatively, the names of shading functions can be passed as the gp argument, as shown below,
producing Figure 5.8. Two shading function are illustrated here:

* The left panel of Figure 5.8 uses the classical Friendly (1994) shading scheme, shading Friendly
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with HSV colors® of blue and red and default cutoffs for absolute residuals, 2, 4, corre-
sponding to interpolate = c (2, 4). In this shading scheme, all tiles use an outline
color (col) corresponding to the sign of the residual. As well, the border line type (1ty) dis-
tinguishes positive and negative residuals, which is useful if a mosaic plot is printed in black
and white.

The right panel uses the shading_max () function, based on the ideas of Zeileis et al. (2007)
on residual-based shadings for area-proportional visualizations. Instead of using the cutoffs 2
and 4, it employs the critical values, M, for the maximum absolute Pearson residual statistic,

M = max|ryl,
2%

by default at @ = 0.10 and 0.01.* Only those residuals with |r;;| > M, are colored in the
plot, using two levels for Value (“lightness”) in HSV color space. Consequently, all color in
the plot signals a significant departure from independence at 90% or 99% significance level,
respectively.’

> mosaic (haireye2, gp = shading_Friendly, legend = legend_fixed)
set.seed (1234)
> mosaic (haireye2, gp = shading_max)

\

Eye Eye
Brown HazeGreen Blue Brown HazeGreen Blue

""""" Pearson
residuals:
7.0

Black
Black

Brown
Brown
NN
o~

Hair
Hair

Red
Red

Blond
Blond

| [ ]
I| I/

Pearson
residuals:

Figure 5.8: Shading functions for mosaic displays. Left: shading_Friendly using fixed cut-
offs and the “Friendly” color scheme and an alternative legend style (Legend_fixed); right:
shading_max, using a permutation-based test to determine significance of residuals.

In this example, the difference between these two shading schemes is largely cosmetic, in that
the pattern of association is similar in the two panels of Figure 5.8, and the interpretation would be
the same. This is not always the case, as we will see in the next example. AN

3shadinq_FriendlyZ () is a variant based on HCL colors.

4These default significance levels were chosen because this leads to displays where fully colored cells are clearly signif-
icant (p < 0.01), cells without color are clearly non-significant (p > 0.1), and cells in between can be considered to be
weakly significant (0.01 < p < 0.1).

SThis computation uses the vcd function coindep_test () to calculate generalized tests of (conditional) indepen-
dence by simulation from the marginal distribution of the input table under (conditional) independence. In these examples
using shading_max, the function set .seed () is used to initialize the random number generators to a given state for
reproducibility.

{fig:HE-shading }



{fig:arth-mosaic}

174 5. Mosaic Displays for n-Way Tables

EXAMPLE 5.4: Arthritis treatment

This example uses the Arthritis data, illustrated earlier (Example 2.2), on the relation be-
tween treatment and outcome for rheumatoid arthritis. To confine this example to a two-way table,
we use only the (larger) female patient group.

> art <- xtabs(~ Treatment + Improved, data = Arthritis,
+ subset = Sex == "Female")
> names (dimnames (art) ) [2] <- "Improvement"

The calls to mosaic () below compare shading_Friendly and shading_max, giving
the plots shown in Figure 5.9.

> mosaic (art, gp = shading_Friendly, margin = c(right = 1),

+ labeling = labeling_residuals, suppress = 0, digits = 2)
> set.seed (1234)

> mosaic (art, gp = shading_max, margin = c(right = 1))

Improvement Improvement
None Some Marked None Some Marked

Pearson
residuals:
m 19

Pearson
residuals:

19
[ 16
12

Placebo

1.48 019 || -172 |

Placebo

Treatment

Treated
T
o
o
Treatment

-161 1 -021 ! 1.87

Treated

u* -1.2
= -17

p-value =
0.01

Figure 5.9: Mosaic plots for the female patients in the Art hritis data. Left: Fixed shading levels
via shading_Friendly;right: shading levels determined by significant maximum residuals via
shading_max.

This data set is somewhat paradoxical, in that the standard chisqg.test () for association
with these data gives a highly significant result, x?(2) = 11.3,p = 0.0035, while the shading
pattern using shading_Friendly in the left panel of Figure 5.9 shows all residuals within £2,
and thus unshaded.

On the other hand, the shading_max shading in the right panel of Figure 5.9 shows that
significant deviations from independence occur in the four corner cells, corresponding to more
of the treated group showing marked improvement, and more of the placebo group showing no
improvement.

Some details behind the shading_max method are shown below. The Pearson residuals for
this table are calculated as:

{ex:arth-mosaic}
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> residuals (chisq.test (art))

Improvement
Treatment None Some Marked
Placebo 1.47752 0.19267 -1.71734
Treated -1.60852 -0.20975 1.86960

The shading_max () function then calls coindep_test (art) to generate n = 1000
random tables with the same margins, and computes the maximum residual statistic for each. This
gives a non-parametric p-value for the test of independence, p = 0.011 shown in the legend.

> set.seed (1243)
> art_max <- coindep_test (art)
> art_max

Permutation test for conditional independence

data: art
f(x) = 1.87, p-value = 0.011

Finally, the 0.90 and 0.99 quantiles of the simulation distribution are used as shading levels,
passed as the value of the interpolate argument.

> art_max$qdist (c (0.90, 0.99))

90% 99%
1.2393 1.9167

A

The converse situation can also arise in practice. An overall test for association using Pearson’s
x? may not be significant, but the maximum residual test may highlight one or more cells worthy of
greater attention, as illustrated in the following example. {ex:soccer2)

EXAMPLE 5.5: UK soccer scores
In Example 3.9, we examined the distribution of goals scored by the home team and the away
team in 380 games in the 1995/96 season by the 20 teams in the UK Football Association, Pre-
mier League. The analysis there focused on the distribution of the total goals scored, under the
assumption that the number of goals scored by the home team and the away team were independent.
Here, the rows and columns of the table UKSoccer are both ordered, so it is convenient and
compact to carry out all the CMH tests taking ordinality into account.

> data ("UKSoccer", package = "vcd")
> CMHtest (UKSoccer)

Cochran-Mantel-Haenszel Statistics for Home by Away

AltHypothesis Chisg Df Prob
cor Nonzero correlation 1.01 1 0.315
rmeans Row mean scores differ 5.63 4 0.229
cmeans Col mean scores differ 7.42 4 0.115
general General association 18.65 16 0.287

All of these are non-significant, so that might well be the end of the story, as far as indepen-
dence of goals in home and away games is concerned. Yet, one residual, 4o = 3.08 stands out,
corresponding to 4 or more goals by the home team and only 2 goals by the away team, which
accounts for nearly half of the x?(16) = 18.7 for general association. The mosaic plot is shown in
Figure 5.10.
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> set.seed (1234)
> mosaic (UKSoccer, gp = shading_max, labeling = labeling_residuals,

<+ digits = 2)
Away
0 1 2 3 4
17 Pearson
residuals:
© e 3.1
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Figure 5.10: Mosaic display for UK soccer scores, highlighting one cell that stands out for further
{fig:UKsoccer-mosaic} — attention.

This occurrence may or may not turn out to have some explanation, but at least the mosaic plot
draws it to our attention, and is consistent with the (significant) result from coindep_test ().
A

5.4 Three-way and larger tables

{sec:mosaic-threeway }
The mosaic displays and other graphical methods within the strucplot framework extend quite nat-
urally to three-way and higher-way tables. The essential idea is that for the variables in a multiway
table in a given order, each successive variable is used to subdivide the tile(s) in proportion to the rel-
ative (conditional) frequencies of that variable, given all previous variables. This process continues
recursively until all table variables have been included.

For simplicity, we continue with the running example of hair color and eye color. Imagine that
each cell of the two-way table for hair and eye color is further classified by one or more additional
variables—sex and level of education, for example. Then each rectangle can be subdivided hor-
izontally to show the proportion of males and females in that cell, and each of those horizontal
portions can be subdivided vertically to show the proportions of people at each educational level in

{ex:HEC1} the hair—eye-sex group.

EXAMPLE 5.6: Hair color, eye color, and sex
Figure 5.11 shows the mosaic for the three-way table, with hair and eye color groups divided
according to the proportions of males and females. As explained in the next section (Section 5.4.2)
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there are now different models for “independence” we could investigate, not just the (mutual) inde-
pendence of all factors. Here, for example, we could examine whether the additional variable (Sex)

is independent from the joint relationship between Hair and Eye.

> HEC <- HairEyeColor([, c("Brown", "Hazel", "Green", "Blue"),]

> mosaic (HEC, rot_labels = c(right = -45))
Eye
Brown Hazel Green Blue
1,
. [ -
<
o )
|:| /))%
%%
c
=
=
_a
T 3
T % (%)
’))%
|| || | Z%
I
| | | %,

|
Rl “
=

Blond

Figure 5.11: Three-way mosaic for hair color, eye color, and sex.

In Figure 5.11 it is easy to see that there is no systematic association between sex and the
combinations of hair and eye color—the proportion of male/female students is roughly the same in
almost all hair/eye color groups. Yet, among blue-eyed blonds, there seems to be an overabundance
of females, and the proportion of blue-eyed males with brown hair also looks suspicious. A

These and other hypotheses are best tested within the framework of loglinear models, allowing you
to flexibly specify various independence models for any number of variables, and analyze them
similarily to classical ANOVA models. This general topic is discussed in detail in Chapter 9. For
the present purposes, we give a short introduction in the following section.

5.4.1 A primer on loglinear models

The essential idea behind loglinear models is that the multiplicative relationships among expected
frequencies under independence (shown as areas in sieve diagrams and mosaic plots) become ad-
ditive models when expressed as models for log frequency, and we briefly explain this connection
here for two-way tables.

To see this, consider two discrete variables, A and B, with n;; observations in each cell 7, j
of an R x C contingency table, and use n;4 = ¥;n;; and ny; = 3;n,; for the row and column

{figtHEC-moslb}

{sec:loglinprimer }
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marginal totals, respectively. The total frequency is ny = 3;;n;;. Analogously, we use m;; for
the expected frequency under any model and also use a subscript + to represent summation over
that dimension.
Then, the hypothesis of independence means that the expected frequencies, m;;, obey
mi; = Dt Py
M4
This multiplicative model can be transformed to an additive (linear) model by taking logarithms of
both sides:
log(1myy) = log(mys) + log(m.y;) — log(m.+) -

This is usually re-expressed in an equivalent form in terms of model parameters y, A* and )\f
log(mij) = p+ A + AP = [A][B]. (5.1

Model Eqn. (5.1) asserts that the row and column variables are independent because there is no term
that depends on both A and B.

In contrast, a model for a two-way table that allows an arbitrary association between the vari-
ables is the saturated model, including an additional term, )\;‘}B :

log(mij) = p+ A+ AP + AP = [AB]. (5.2)

Except for the difference in notation, model Eqn. (5.2) is formally the same as a two-factor
ANOVA model with an interaction, typically expressed as E(y;;) = pu+a;+3;+(af3);;. Hence, as-
sociations between variables in loglinear models are analogous to interactions in ANOVA models.®
In contrast to ANOVA, the “main effects,” \/* and )\f, are rarely of interest—a typical log-linear
analysis focuses only on the interaction (association) terms.

Models such as Eqn. (5.1) and Eqn. (5.2) are examples of hierarchical models. This means that
the model must contain all lower-order terms contained within any high-order term in the model.
Thus, the saturated model, Eqn. (5.2) contains /\{}B, and therefore must contain )\{‘ and /\f. As a
result, hierarchical models may be identified by the shorthand notation that lists only the high-order
terms: model Eqn. (5.2) is denoted [AB], while model Eqn. (5.1) is [A][B].

In R, the most basic function for fitting loglinear models is 1oglin () in the stats package.
It is designed to work with the frequency data in table form, and a model specified in terms of the
(high-order) table margins to be fitted. For example, the independence model Eqn. (5.1) is specified
as

> loglin (mytable, margin = list(1, 2))

meaning that variables 1 and 2 are independent, whereas the saturated model Eqn. (5.2) would be
specified as

> loglin (mytable, margin = list(c(1l, 2)))
The function 1oglm () in MASS (Ripley, 2015) provides a more convenient front-end to
loglin () to allow loglinear models to be specified using a model formula. With table variables

A and B, the independence model can be fit using Loglm () as

> loglm(~ A + B, data = mytable)

and the saturated model in either of the following equivalent forms:

The use of superscripted symbols, /\f‘

s )\JB, )\;‘}B, rather than separate Greek letters is a convention in loglinear models,
and useful mainly for multiway tables.
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> loglm (~

+ B + A : B, data = mytable)
> loglm (~ *

A
A B, data = mytable)

In such model formulas, A :B indicates an interaction term )\;‘;B, while A+B is expanded to also
include the terms A + B.

EXAMPLE 5.7: Hair color, eye color, and sex
Getting back to our running example of hair and eye color, we start casting the classical test of
independence used in Section 5.2 as log-linear model analysis. Using the haireye two-way table,
the independence of Hair and Eye is equivalent to the model [Hair][Eye] and formulated in R
using loglm () as:

> loglm(~ Hair + Eye, data = haireye)

Call:
loglm(formula = ~Hair + Eye, data = haireye)
Statistics:

X*2 df P (> X"2)
Likelihood Ratio 146.44 9 0
Pearson 138.29 9 0

The output includes both the y? and the deviance test statistics, both significant, indicating
strong lack of fit. We now extend the analysis by including Sex, i.e., use the full HairEyeColor
data set. In the section’s introductory example, this was visualized using a mosaic plot, leading to
the hypothesis whether Hair and Eye were jointly independent of Sex. To test this formally, we
fit the corresponding model [HairEye][Sex] to the data:

> HE_S <- loglm(~ Hair x Eye + Sex, data = HairEyeColor)
> HE_S

Call:
loglm(formula = ~Hair % Eye + Sex, data = HairEyeColor)

Statistics:

X"2 df P (> X"2)
Likelihood Ratio 19.857 15 0.17750
Pearson 19.567 15 0.18917

giving a non-significant Pearson x?(15) = 19.567, p = 0.189. The residuals from this model could
be retrieved using

> residuals (HE_S, type = "pearson")

for further inspection. Mosaic plots can conveniently be used for this purpose, either by specify-
ing the residuals with the residuals= argument, or by providing the 1oglm model formula as
the expected= argument, letting mosaic () calculate them by calling 1oglm (). In the call to
mosaic () below, the model of joint independence is specified as expected = ~ Hair * Eye
+ Sex, giving Figure ??. The strucplot labeling function labeling_residuals is used to dis-
play the residuals in the highlighted cells.

> HEC <- HairEyeColor[, c("Brown", "Hazel", "Green", "Blue"),]
> mosaic (HEC, expected = ~ Hair * Eye + Sex,

+ labeling = labeling_residuals,

+ digits = 2, rot_labels = c(right = -45))

Although non-significant, the two largest residuals highlighted in the plot account for nearly half
(—2.15% + 2.03% = 8.74) of the lack of fit, and so are worthy of attention here. An easy (probably
facile) interpretation is that among the blue-eyed blonds, some of the females benefited from hair
products. A

{ex:HEC2}
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Figure 5.12: Three-way mosaic for hair color, eye color, and sex. Residuals from the model of joint
independence, [HE][S] are shown by shading.

5.4.2 Fitting models

When three or more variables are represented in a table, we can fit several different models of
types of “independence” and display the residuals from each model. We treat these models as
null or baseline models, which may not fit the data particularly well. The deviations of observed
frequencies from expected ones, displayed by shading, will often suggest terms to be added to an
explanatory model that achieves a better fit.

For a three-way table, with variables A, B and C, some of the hypothesized models that can
be fit are described below and summarized in Table 5.2. Here we use [e] notation to list the high-
order terms in a hierarchical loglinear model; these correspond to the margins of the table that are
fitted exactly, and which translate directly into R formulas used in 1oglm () and mosaic (...,
expected=).

The notation [AB][AC], for example, is shorthand for the model Loglm (~ AxB + AxC) that
implies

log(mije) =+ A+ A7 + A7 + 257 + 007 (5.3)

and reproduces the { AB} and { AC'} marginal subtables.” That is, the calculated expected frequen-
cies in these margins are always equal to the corresponding observed frequencies, m;;+ = n;;4
and Mitk = Ni+k-

In this table, A | B is read, “A is independent of B.” The independence interpretation of the
model Eqn. (5.3)is B L C'| A, which can be read as “B is independent of C, given (conditional on)
A Table 5.2 also depicts the relations among variables as an association graph, where associated

"The notation here uses curly braces, {®} to indicate a marginal subtable summed over all other variables.

{figtHEC-mos1}
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Table 5.2: Fitted margins, model symbols, and interpretations for some hypotheses for a three-way

table
Fitted Model Independence Association
Hypothesis margins symbol interpretation graph
H, Nit+ Nt jt, Ntk [A][BIC] ALB1C @
Hy  ngje,nain [AB][C] (A,B) L C
Hj Toitk, Nk [AC][BC] ALl B|C 0 G
H, Nijy,Nivk, Nk [AB]J[AC][BC] NA

variables are connected by an edge and variables that are asserted to be independent are uncon-
nected. In mosaic-like displays, other associations present in the data will appear in the pattern of
residuals.

For a three-way table, there are four general classes of independence models illustrated in Ta-
ble 5.2, as described below.® Not included here is the saturated model, [ABC], which fits the
observed data exactly.

H;: Complete independence. The model of complete (mutual) independence, symbolized A |
B 1 C, with model formula ~ 2 + B + C, asserts that all joint probabilities are products of
the one-way marginal probabilities:

Tijk = Tit+ T+ T4k

for all ¢, j, k in a three-way table. This corresponds to the log-linear model [A][B][C]. Fit-
ting this model puts all higher terms, and hence all association among the variables, into the
residuals.

Hs: Joint independence. Another possibility is to fit the model in which variable C' is jointly
independent of variables A and B, ({4, B} L C), with model formula ~ AxB + C, where

Tijk = Tij+ T4+k -

This corresponds to the loglinear model [AB][C]. Residuals from this model show the extent to
which variable C is related to the combinations of variables A and B but they do not show any

8For H> and H3, permutation of the variables A, B, and C gives other members of each class.
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association between A and B, since that association is fitted exactly. For this model, variable
C' is also independent of A and B in the marginal { AC'} table (collapsing over B) and in the
marginal { BC'}.

Hj: Conditional independence. Two variables, say A and B, are conditionally independent given
the third (C') if A and B are independent when we control for C, symbolized as A L B | C, and
model formula ~ A«C + B*C(or ~ (A + B) x C). This means that conditional proba-
bilities, 74z, obey

Tijlk = Tit|k T4j|k »

where 7, = Tijk/Tijrs Titlk = Tith/Tirs> and Ty = 74 jx /Ty ;4. The corresponding
loglinear models is denoted [AC][BC]. When this model is fit, the mosaic display shows the
conditional associations between variables A and B, controlling for C', but does not show the
associations between A and C, or B and C.

H,: No three-way interaction. For this model, no pair is marginally or conditionally independent,
so there is no independence interpretation. Nor is there a closed-form expression for the cell
probabilities. However, the association between any two variables is the same at each level of
the third variable. The corresponding loglinear model formula is [AB][AC][BC], indicating that
all two-way margins are fit exactly and so only the three-way association is shown in the mosaic
residuals.

EXAMPLE 5.8: Hair color, eye color, and sex

We continue with the analysis of the Hai rEyeColor data from Example 5.6 and Example 5.7.
Figure 5.12 showed the fit of the joint-independence model [HairEye][Sex], testing whether the joint
distribution of hair color and eye color is associated with sex.

Any other model fit to this table will have the same size tiles in the mosaic since the areas depend
on the observed frequencies; the residuals, and hence the shading of the tiles will differ. Figure 5.13
shows mosaics for two other models. Shading in the left panel shows residuals from the model
of mutual independence, [Hair][Eye][Sex], and so includes all sources of association among these
three variables. The right panel shows the conditional independence model, [HairSex][EyeSex],
testing whether hair color and eye color are independent, given sex. Note that the pattern of residuals
here is similar to that in the two-way display, Figure 5.4, that collapsed over sex.

> abbrev <- list (abbreviate = c (FALSE, FALSE, 1))

> mosaic (HEC, expected = ~ Hair + Eye + Sex, labeling_args = abbrev,

1F main = "Model: ~ Hair + Eye + Sex")

> mosaic (HEC, expected = ~ Hair x Sex + Eye * Sex, labeling args = abbrev,
+ main="Model: ~ Hair*Sex + EyexSex")

Compared with Figure 5.12 for the joint independence model, [HairEye][Sex], it is easy to see that
both of these models fit very poorly.

We consider loglinear models in more detail in Chapter 9, but for now note that these models
are fit using loglm () in the MASS package, with the model formula given in the expected
argument. The details of these models can be seen by fitting these models explicitly, and the fit of
several models can be summarized compactly using LRstats () in vcdExtra (Friendly, 2015).

> library (MASS)

> # three types of independence:

> modl <- loglm(~ Hair + Eye + Sex, data = HEC) # mutual

> mod2 <- loglm(~ Hair x Sex + Eye =* Sex, data = HEC) # conditional
> mod3 <- loglm(~ Hair x Eye + Sex, data = HEC) # joint

>

LRstats (modl, mod2, mod3)
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Figure 5.13: Mosaic displays for other models fit to the data on hair color, eye color, and sex. Left:

Mutual independence model; right: Conditional independence of hair color and eye color given sex.

Likelihood summary table:
AIC BIC LR Chisg Df Pr (>Chisq)

modl 321 333 166.3 24 <2e-16 %%

mod2 324 344 156.7 18 <2e-16 *%*%*

mod3 193 218 19.9 15 0.18

Signif. codes: 0 'x%x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " " 1

Alternatively, you can get the Pearson and likelihood ratio (LR) tests for a given model using
anova (), or compare a set of models using LR tests on the difference in LR x? from one model
to the next, when a list of models is supplied to anova ().

> anova (modl)

Call:
loglm(formula = ~Hair + Eye + Sex, data = HEC)
Statistics:
X*2 df P (> X"2)
Likelihood Ratio 166.30 24 0
Pearson 164.92 24 0
> anova (modl, mod2, mod3, test = "chisqg")

LR tests for hierarchical log-linear models

Model 1:

~Hair + Eye + Sex
Model 2:

~Hair » Sex + Eye * Sex
Model 3:

~Hair » Eye + Sex

Deviance df Delta (Dev) Delta(df) P (> Delta (Dev)

Model 1 166.300 24
Model 2 156.678 18 9.6222 6 0.14149
Model 3 19.857 15 136.8213 3 0.00000

Saturated 0.000 O 19.8566 15 0.17750
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A

5.5 Model and plot collections

This section describes a few special circumstances in which a collection of mosaic plots and related
loglinear models can be used in a complementary fashion to understand the nature of associations
in three-way and larger tables.

5.5.1

As described in Section 5.2, we can think of the mosaic display for an n-way table as being con-
structed in stages, with the variables listed in a given order, and the unit tile decomposed recursively
as each variable is entered in turn. This process turns out to have the useful property that it provides
an additive (hierarchical) decomposition of the total association in a table, in a way analogous to
sequential fitting with Type I sum of squares in regression models.

Typically, we just view the mosaic and fit models to the full n-way table, but it is useful to
understand the connection with models for the marginal subtables, defined by summing over all
variables not yet entered. For example, for a three-way table with variables A, B, C, the marginal
subtables { A} and { AB} are calculated in the process of constructing the three-way mosaic. The
{A} marginal table can be fit to a model where the categories of variable A are equiprobable as
shown in Figure 5.2 (or some other discrete distribution); the independence model can be fit to the
{AB} subtable as in Figure 5.2, and so forth.

This connection can be seen in the following formula that decomposes the joint cell probability
in an n-way table with variables vy, va, . .. v, as a sequential product of conditional probabilities,

Sequential plots and models

{viv2}

——
Dijkt- = Di X Pjli X Prlij X Dejijk X+ X Dnlijk--- 5.4
—_————

{’U1 U2U3}

In Eqn. (5.4), the first term corresponds to the one-way mosaic for vy, the first two terms to the
mosaic for v; and vs, the first three terms to the mosaic for vy, v9, and vs, and so forth.
It can be shown (Friendly, 1994) that this sequential product of probabilities corresponds to a set

of sequential models of joint independence, whose likelihood ratio G? statistics provide an additive

decomposition of the total association, G[2v1][v2]...[vn] for the mutual independence model in the full

table:

2 2 2 2 2
Glogval..fon] = Glonliva] T Glorvallvs] T Clonvavglio] T+ Glogona)pon) - G5

For example, for the hair-eye data, the mosaic displays for the [Hair] [Eye] marginal table (Fig-
ure 5.4) and the [HairEye] [Sex] table (Figure 5.12) can be viewed as representing the partition of
G? shown as a table below:

Model ~ Model symbol df G?
Marginal [Hair] [Eye] 9 146.44
Joint [Hair, Eye] [Sex] 15 19.86
Mutual [Hair] [Eye] [Sex] 24 166.30

The decomposition in this table reflecting Eqn. (5.5) is shown as a visual equation in Figure 5.14.
You can see from the shading how the two sequential submodels contribute to overall association in
the model of mutual independence.

Although sequential models of joint independence have the nice additive property illustrated
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Figure 5.14: Visual representation of the decomposition of the G2 for mutual independence (total)
as the sum of marginal and joint independence.

above, other classes of sequential models are possible, and sometimes of substantive interest. The
main types of these models are illustrated in Table 5.3 for 3-, 4-, and 5-way tables, with variables
A, B, ..., E. In all cases, the natural model for the one-way margin is the equiprobability model, and
that for the two-way margin is [A][B].

Table 5.3: Classes of sequential models for n-way tables

function 3-way 4-way 5-way

mutual [AT[BIIC] [A][B]IC][D] [A][B][C][D]IE]
joint [AB] [C] [ABC] [D] [ABCE] [E]

joint (with=1) [A] [BC] [A] [BCD] [A] [BCDE]
conditional [AC][BC] [AD][BD][CD] [AE][BE][CE][DE]
conditional (with=1) [AB][AC] [AB][AC][AD] [AB][AC][AD][AE]
markov (order=1) [AB] [BC] [AB][BC][CD] [AB][BC][CD] [DE]
markov (order=2) [A][B][C] [ABC][BCD] [ABC] [BCD] [CDE]
saturated [ABC] [ABCD] [ABCDE]

The vcdExtra package provides a collection of convenience functions that generate the loglinear
model formulae symbolically, as indicated in the function column. The functions mutual (),
joint (), conditional (), markov () and so forth simply generate a list of terms suitable for
a model formula for loglin (). See help (loglin-utilities) for further details.

Wrapper functions 1loglin2string () and loglin2formula () convert these to charac-
ter strings or model formulae, respectively, for use with 1oglm () and mosaic () -related func-
tions in vcdExtra. Some examples are shown below.

> for(nf in 2 : 5) {
+ print (loglin2string (joint (nf, factors = LETTERS[1:5])))

+}
(11 "[ay [se1"
(11 "[a,B] [C]"

]
]

(11 "[a,B,C] [D]"
! "[a,B,C,D] [E]"

> for(nf in 2 : 5) {
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+ print (loglin2string (conditional (nf, factors = LETTERS[1:5]),
dL sep — nn))

+ 1}

[1] "[A] [BI"

[1] "[AC] [BC]"

[1] "[AD] [BD] [CD]"

[1] "[AE] [BE] [CE] [DE]"

> for(nf in 2 : 5b) {

+ print (loglin2formula (conditional (nf, factors = LETTERS[1:5])))
+ )

~A + B

~A:C + B:C

~A:D + B:D + C:D

~A:E + B:E + C:E + D:E

Applied to data, these functions take a table argument, and deliver the string or formula
representation of a type of model for that table:

> loglin2formula (joint (3, table = HEC))
~Hair:Eye + Sex
> loglin2string (joint (3, table = HEC))

[1] "[Hair,Eye] [Sex]"
Their main use, however, is within higher-level functions, such as seq_loglm (), which fit

the collection of sequential models of a given type.

> HEC.mods <- seq_loglm (HEC,
> LRstats (HEC.mods)

type = "joint")

Likelihood summary table:

AIC BIC LR Chisg Df Pr (>Chisq)
model.l 194 194 165.6 3 <2e-16 %%
model.2 241 246 146.4 9 <2e-16 *xx
model.3 193 218 19.9 15 0.18
Signif. codes: 0 'x%x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

In this section we have described a variety of models that can be fit to higher-way tables, some
relations among those models, and the aspects of lack of fit that are revealed in the mosaic displays.
The following discussion illustrates the process of model fitting, using the mosaic as an interpretive
guide to the nature of associations among the variables. In general, we start with a minimal baseline
model.” The pattern of residuals in the mosaic will suggest associations to be added to an adequate
explanatory model. As the model achieves better fit to the data, the degree of shading decreases, so
we may think of the process of model fitting as “cleaning the mosaic.”

5.5.2 Causal models

The sequence of models of joint independence has another interpretation when the ordering of the
variables is based on a set of ordered hypotheses involving causal relationships among variables

When one variable, R, is a response, this normally is the model of joint independence, [E1Es ... [R], where
E1,Es,... are the explanatory variables. Better-fitting models will often include associations of the form [E; R],
[E;E;R). ..



5.5: Model and plot collections 187

(Goodman, 1973, Fienberg, 1980, Section 7.2). Suppose, for example, that the causal ordering of
four variables is A — B — C' — D, where the arrow means “is antecedent to.” Goodman suggests
that the conditional joint probabilities of B, C, and D given A can be characterized by a set of
recursive logit models that treat (a) B as a response to A, (b) C' as a response to A and B jointly,
and (c) D as a response to A, B and C.

These are equivalent to the loglinear models that we fit as the sequential baseline models of joint
independence, namely [A][B], [AB][C], and [ABC][D]. The combination of these models with the
marginal probabilities of A gives a characterization of the joint probabilities of all four variables,
as in Eqn. (5.4). In application, residuals from each submodel show the associations that remain
unexplained.

EXAMPLE 5.9: Marital status and pre- and extramarital sex
A study of divorce patterns in relation to premarital and extramarital sex by Thornes and Collard
(1979) reported the 2# table shown below, and included in vcd as PreSex.

> data("PreSex", package = "vcd")
> structable (Gender + PremaritalSex + ExtramaritalSex ~ MaritalStatus,
+ data = PreSex)

Gender Women Men
PremaritalSex Yes No Yes No
ExtramaritalSex Yes No Yes No Yes No Yes No
MaritalStatus
Divorced 17 54 36 214 28 60 17 68
Married 4 25 4 322 11 42 4 130

These data were analyzed by Agresti (2013, Section 6.1.7) and by Friendly (1994, 2000), from
which this account draws. A sample of about 500 people who had petitioned for divorce, and a
similar number of married people, were asked two questions regarding their pre- and extramarital
sexual experience: (1) “Before you married your (former) husband/wife, had you ever made love
with anyone else?,” (2) “During your (former) marriage (did you) have you had any affairs or brief
sexual encounters with another man/woman?” The table variables are thus gender (), reported
premarital (P) and extramarital (E) sex, and current marital status (M).

In this analysis we consider the variables in the order G, P, F/, and M, and first reorder the table
variables for convenience.

> PreSex <- aperm(PreSex, 4 : 1) # order variables G, P, E, M

That is, the first stage treats P as a response to GG and examines the [Gender][Pre] mosaic to
assess whether gender has an effect on premarital sex. The second stage treats £ as a response to
G and P jointly; the mosaic for [Gender, Pre] [Extra] shows whether extramarital sex is related to
either gender or premarital sex. These are shown in Figure 5.15.

# (Gender Pre)
mosaic (margin.table (PreSex, 1 : 2), shade = TRUE,
main = "Gender and Premarital Sex")

## (Gender Pre) (Extra)

mosaic (margin.table (PreSex, 1 : 3),
expected = ~ Gender x PremaritalSex + ExtramaritalSex,
main = "Gender*Pre + ExtramaritalSex")

+ +V VYV + VYV

Finally, the mosaic for [Gender, Pre, Extra] [Marital] is examined for evidence of the depen-
dence of marital status on the three previous variables jointly. As noted above, these models are

{ex:maritall }
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Gender*Pre + ExtramaritalSex

Gender and Premarital Sex PremaritalSex
Yes No
3 Pearson
PremaritalSex > residuals:
Yes No 5.6
Pearson
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Figure 5.15: Mosaic displays for the first two marginal tables in the PreSex data. Left: Gender and
premarital sex; right: fitting the model of joint independence with extramarital sex, [GP][E]. {fig:presex2}

equivalent to the recursive logit models whose path diagram is G — P — E — M.'"% The G?
values for these models shown below provide a decomposition of the G for the model of complete
independence fit to the full table.

Model df G?

[G]I[P] 1  75.259
[GP][E] 3 48929
[GPE] [M] 7 107.956

[G] [P][E] [M] 11 232.142

The [Gender] [Pre] mosaic in the left panel of Figure 5.15 shows that men are much more likely
to report premarital sex than are women; the sample odds ratio is 3.7. We also see that women are
about twice as prevalent as men in this sample. The mosaic for the model of joint independence,
[Gender Pre] [Extra] in the right panel of Figure 5.15, shows that extramarital sex depends on gender
and premarital sex jointly. From the pattern of residuals in Figure 5.15 we see that men and women
who have reported premarital sex are far more likely to report extramarital sex than those who have
not. In this three-way marginal table, the conditional odds ratio of extramarital sex given premarital
sex is nearly the same for both genders (3.61 for men and 3.56 for women). Thus, extramarital sex
depends on premarital sex, but not on gender.

> loddsratio (margin.table (PreSex, 1 : 3), stratum = 1, log = FALSE)
odds ratios for Gender and PremaritalSex by ExtramaritalSex

Yes No
0.28269 0.28611

Four-way mosaic plots for two models are shown in Figure 5.16.

10 Agresti (2013, Figure 6.1) considers a slightly more complex, but more realistic model in which premarital sex affects
both the propensity to have extramarital sex and subsequent marital status.
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+ 4+ +VV A+t +VV

Gender

## (Gender Pre Extra) (Marital)
mosaic (PreSex,

##

expected = ~ Gender * PremaritalSex x ExtramaritalSex
+ MaritalStatus,
main = "GenderxPrexExtra + MaritalStatus")

(GPE) (PEM)

mosaic (PreSex,

Women

Men

expected = ~ Gender * PremaritalSex x ExtramaritalSex
+ MaritalStatus % PremaritalSex * ExtramaritalSex,
main = "GxP*E + PxExM")

Gender*Pre*Extra + MaritalStatus G*P*E + P*E*M
PremaritalSex PremaritalSex
Yes No Yes No
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Figure 5.16: Four-way mosaics for the PreSex data. The left panel fits the model [GPE][M]. The
pattern of residuals suggests other associations with marital status. The right panel fits the model
[GPE][PEM]. {fig:presex3}

A

5.5.3 Partial association

{sec:mospart}

In a three-way (or larger) table it may be that two variables, say A and B, are associated at some
levels of the third variable, C, but not at other levels of C'. More generally, we may wish to explore
whether and how the association among two (or more) variables in a contingency table varies over
the levels of the remaining variables. The term partial association refers to the association among
some variables within the levels of the other variables.

Partial association represents a useful “divide and conquer” statistical strategy: it allows you to
refine the question you want to answer for complex relations by breaking it down to smaller, easier
questions.!! It is a statistically happy fact that an answer to the larger, more complex question can
be expressed as an algebraic sum of the answers to the smaller questions, just as was the case with
sequential models of joint independence.

For concreteness, consider the case where you want to understand the relationship between
attitude toward corporal punishment of children by parents or teachers (Never, Moderate use OK)
and memory that the respondent had experienced corporal punishment as a child (Yes, No). But you
also have measured other variables on the respondents, including their level of education and age

'I'This is an analog, for categorical data, of the ANOVA strategy for “probing interactions” by testing simple effects at the
levels of one or more of the factors involved in a two- or higher-way interaction.
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category. In this case, the question of association among all the table variables may be complex, but
we can answer a highly relevant, specialized question precisely, “Is there an association between
attitude and memory, controlling for education and age?’ The answer to this question can be
thought of as the sum of the answers to the simpler question of association between attitude and
memory across all combinations of the education and age categories.

A simpler version of this idea is considered first below (Example 5.10): among workers who
were laid off due to either the closure of a plant or business vs. replacement by another worker,
the (conditional) relationship of employment status (new job vs. still unemployed) and duration of
unemployment can be studied as a sum of the associations between these focal variables over the
separate tables for cause of layoff.

To make this idea precise, consider for example the model of conditional independence, A L
B | C for a three-way table. This model asserts that A and B are independent within each level of C'.
Denote the hypothesis that A and B are independent at level C(k) by A L B|C(k),k=1,... K.
Then one can show (Andersen, 1991) that

K
Gilplc = Z GALB|o®) - (5.6)
k

That is, the overall likelihood ratio G* for the conditional independence model with (1 —1)(J—1)K
degrees of freedom is the sum of the values for the ordinary association between A and B over the
levels of C' (each with (I — 1)(J — 1) degrees of freedom). The same additive relationship holds
for the Pearson x? statistics: x% | 5 o= ZkK Xailn (k)

Thus, (a) the overall G2 (x?) may be decomposed into portions attributable to the AB associ-
ation in the layers of C, and (b) the collection of mosaic displays for the dependence of A and B
for each of the levels of C' provides a natural visualization of this decomposition. These provide an
analog, for categorical data, of the conditioning plot, or coplot, that Cleveland (1993) has shown to
be an effective display for quantitative data. See Friendly (1999a) for further details.

Mosaic and other displays in the strucplot framework for partial association can be produced in
several different ways. One way is to use a model formula in the call to mosaic () which lists the
conditioning variables after the " | " (given) symbol, as in

~ Memory + Attitude | Age + Education

Another way is to use cotabplot (). This takes the same kind of conditioning model formula,
but presents each panel for the conditioning variables in a separate frame within a trellis-like grid.'

EXAMPLE 5.10: Employment status data
Data from a 1974 Danish study of 1,314 employees who had been laid off are given in the data
table Employment in vcd (from Andersen (1991, Table 5.12)). The workers are classified by:
(a) their employment status, on January 1, 1975 ("NewJob" or still "Unemployed"), (b) the
length of their employment at the time of layoff, (c) the cause of their layoff ("Closure", etc., or
"Replaced").

> data ("Employment", package = "vcd")
> structable (Employment)

EmploymentLength <1Mo 1-3Mo 3-12Mo 1-2Yr 2-5Yr >5Yr
EmploymentStatus LayoffCause

NewJob Closure 8 35 70 62 56 38
Replaced 40 85 181 85 118 56
Unemployed Closure 10 42 86 80 67 35
Replaced 24 42 41 16 27 10

12Depending on your perspective, this has the advantage of adjusting for the total frequency in each conditional panel, or
the disadvantage of ignoring these differences.



5.5: Model and plot collections 191

In this example, it is natural to regard EmploymentStatus (variable A) as the response
variable, and EmploymentLength (B) and LayoffCause (C') as predictors. In this case, the
minimal baseline model is the joint independence model, [A] [BC] , which asserts that employment
status is independent of both length and cause. This model fits quite poorly, as shown in the output
from loglm () below.

> loglm(~ EmploymentStatus + EmploymentLength  LayoffCause,

+ data = Employment)
Call:
loglm(formula = ~EmploymentStatus + EmploymentLength x LayoffCause,

data = Employment)

Statistics:

X*2 df P (> X"2)
Likelihood Ratio 172.28 11 0
Pearson 165.70 11 0

The residuals, shown in Figure 5.17, indicate an opposite pattern for the two categories of
LayoffCause: those who were laid off as a result of a closure are more likely to be unemployed,
regardless of length of time they were employed. Workers who were replaced, however, apparently
are more likely to be employed, particularly if they were employed for 3 months or more.

> # baseline model [A] [BC]

> mosaic (Employment, shade = TRUE,

ol expected = ~ EmploymentStatus + EmploymentLength x LayoffCause,
+ main = "EmploymentStatus + Length x Cause")

EmploymentStatus + Length * Cause
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Figure 5.17: Mosaic display for the employment status data, fitting the baseline model of joint

independence. {figremploy-mos1 }

Beyond this baseline model, it is substantively more meaningful to consider the conditional in-
dependence model, A L B |C, (or [AC][BC] in shorthand notation), which asserts that employment
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status is independent of length of employment, given the cause of layoff. We fit this model as shown
below:

> loglm(~ EmploymentStatus * LayoffCause + EmploymentLength x LayoffCause,
+ data = Employment)

Call:
loglm(formula = ~EmploymentStatus % LayoffCause + EmploymentLength =*
LayoffCause, data = Employment)

Statistics:

X*2 df P (> X"2)
Likelihood Ratio 24.630 10 0.0060927
Pearson 26.072 10 0.0036445

This model fits far better (G2(10) = 24.63), but the lack of fit is still significant. The residuals,
shown in Figure 5.18, still suggest that the pattern of association between employment and length
is different for replaced workers and those laid off due to closure of their workplace.

> mosaic (Employment, shade = TRUE, gp_args = list (interpolate = 1 : 4),

+ expected = ~ EmploymentStatus x LayoffCause +
+ EmploymentLength % LayoffCause,
- main = "EmploymentStatus x Cause + Length * Cause")

EmploymentStatus * Cause + Length * Cause
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Figure 5.18: Mosaic display for the employment status data, fitting the model of conditional inde-
pendence, [AC][BC].

To explain this result better, we can fit separate models for the partial relationship between
EmploymentStatus and EmploymentLength for the two levels of LayoffCause. In
R, with the Employment data as in table form, this is easily done using apply () over the
LayoffCause margin, giving a list containing the two Loglm () models.
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> mods.list <-

1 apply (Employment, "LayoffCause",

+ function (x) loglm(~ EmploymentStatus + EmploymentLength,
+ data = x))

> mods.list

SClosure
Call:
loglm(formula = ~EmploymentStatus + EmploymentLength, data = x)
Statistics:
X~2 df P (> X"2)
Likelihood Ratio 1.4786 5 0.91553
Pearson 1.4835 5 0.91497
SReplaced
Call:
loglm(formula = ~EmploymentStatus + EmploymentLength, data = x)
Statistics:

X~2 df P(> X"2)
Likelihood Ratio 23.151 5 0.00031578
Pearson 24.589 5 0.00016727

Extracting the model fit statistics for these partial models and adding the fit statistics for the
overall model of conditional independence, [AC][BC], gives the table below, illustrating the additive
property of G2 and x? (Eqn. (5.6)).

Model df  G? %
ALB|IC; 5 149 148
ALB|Cy 5 2315 2439
AL B|C 10 24.63 26.07

One simple way to visualize these results is to call mosaic () separately for each of the layers
corresponding to LayoffCause. The result is shown in Figure 5.19.

> mosaic (Employment[,, "Closure"], shade = TRUE,

+ gp_args = list(interpolate = 1 : 4),

+ margin = c(right = 1), main = "Layoff: Closure")
> mosaic (Employment[,, "Replaced"], shade = TRUE,

+ gp_args = list (interpolate = 1 : 4),

+ margin = c(right = 1), main = "Layoff: Replaced")

The simple summary from this example is that for workers laid off due to closure of their com-
pany, length of previous employment is unrelated to whether or not they are re-employed. However,
for workers who were replaced, there is a systematic pattern: those who had been employed for three
months or less are likely to remain unemployed, while those with longer job tenure are somewhat
more likely to have found a new job. AN

The statistical methods and R techniques described above for three-way tables extend naturally
to higher-way tables, as can be seen in the next example. {ex:punish)

EXAMPLE 5.11: Corporal punishment data
Here we use the Punishment data from vcd, which contains the results of a study by the
Gallup Institute in Denmark in 1979 about the attitude of a random sample of 1,456 persons towards
corporal punishment of children (Andersen, 1991, pp. 207-208). As shown below, this data set is a
frequency data frame representing a 2 X 2 x 3 x 3 table, with table variables (a) att itude toward
use of corporal punishment (approve of “moderate” use or “no” approval); (b) memory of whether
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Figure 5.19: Mosaic displays for the employment status data, with separate panels for cause of
layoff.

the respondent had experienced corporal punishment as a child (yes/no); (c) education level of
respondent (elementary, secondary, high); and (d) age category of respondent.

> data ("Punishment", package = "vcd")
> str (Punishment, vec.len = 2)
'data.frame': 36 obs. of 5 variables:
$ Freqg :num 1 3 20 2 8
$ attitude : Factor w/ 2 levels "no","moderate": 1 1 1 1 1
$ memory : Factor w/ 2 levels "yes","no": 1 1 1 1 1
$ education: Factor w/ 3 levels "elementary","secondary",..: 1 1 1 2 2
$ age : Factor w/ 3 levels "15-24","25-39",..: 1 2 3 1 2

Of main interest here is the association between attitude toward corporal punishment as an adult
(A) and memory of corporal punishment as a child (B), controlling for age (C') and education (D);
that is, the model A 1 B|(C, D), or [ACD][BCD] in shorthand notation.

As noted above, this conditional independence hypothesis can be decomposed into the 3 x 3
partial tests of A L B| (Cy, Dy).

These tests and the associated graphics are somewhat easier to carry out with the data in table
form (pun) constructed below. While we’re at it, we recode the variable names and factor levels for
nicer graphical displays.

> pun <- xtabs(Freq ~ memory + attitude + age + education,
+ data = Punishment)

> dimnames (pun) <- list(

+ Memory = c("yes", "no"),

+ Attitude = c("no", "moderate"),

+ Age = c("15-24", "25-39", "40+"),

+ Education = c("Elementary", "Secondary", "High"))

Then, the overall test of conditional independence can be carried using 1oglm () out as

\%

(mod.cond <- loglm(~ Memory * Age % Education +
i Attitude * Age x Education, data = pun))

{figremploy-mos3}
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Call:
loglm(formula = ~Memory * Age * Education + Attitude x Age =
Education, data = pun)

Statistics:

X~2 df P(> X"2)
Likelihood Ratio 39.679 9 8.6851e-06
Pearson 34.604 9 6.9964e-05

Alternatively, coindep_test () in vcd provides tests of conditional independence of two
variables in a contingency table by simulation from the marginal permutation distribution of the
input table. The version reporting a Pearson x? statistic is given by

> set.seed (1071)
> coindep_test (pun, margin = c("Age", "Education"),
+ indepfun = function(x) sum(x ~ 2), aggfun = sum)

Permutation test for conditional independence

data: pun
f(x) = 34.6, p-value <2e-16

These tests all show substantial association between attitude and memory of corporal punish-
ment. How can we understand and explain this?

As in Example 5.10, we can partition the overall G2 or x? to show the contributions to this
association from the combinations of age and education. The call to apply () below fits an inde-
pendence model for Memory and Att itude for each stratum defined by the combinations of Age
and Educat ion, and extracts the Pearson x? statistics. The result is returned as a 3 x 3 matrix.

> mods.list <- apply(pun, c("Age", "Education"),
+ function (x) loglm(~ Memory + Attitude, data = x)$pearson)

One visual analog of this table of \? statistics is a cot abplot () of the (conditional) associa-
tion of attitude and memory over the age and education cells, shown in Figure 5.20. cotabplot ()
is very general, allowing a variety of functions of the residuals to be used for shading (Zeileis et al.,
2007). Here we use the (Pearson) sum of squares statistic, » k.t Xi, ‘-

set.seed (1071)
pun_cotab <- cotab_coindep (pun, condvars = 3 : 4, type = "mosaic",
varnames = FALSE, margins = c(2, 1, 1, 2),
test = "sumchisqg", interpolate = 1 : 2)
cotabplot (~ Memory + Attitude | Age + Education,
data = pun, panel = pun_cotab)

+ VvV + + VvV Vv

Alternatively, the pattern of conditional association can be shown somewhat more directly in
a conditional mosaic plot (Figure 5.21), using the same model formula to condition on age and
education. This simply organizes the display to split on the conditioning variables first, with larger
spacings.

> mosaic (~ Memory + Attitude | Age + Education, data = pun,
o shade = TRUE, gp_args = list (interpolate = 1 : 4))

Both Figure 5.20 and Figure 5.21 reveal that the association between attitude and memory be-
comes stronger with increasing age among those with the lowest education (first column). Among
those in the highest age group (bottom row), the strength of association decreases with increasing
education. These two displays differ in that in the cotabplot () of Figure 5.20, the marginal
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Figure 5.20: Conditional mosaic plot of the Punishment data for the model of conditional indepen-
dence of attitude and memory, given age and education. Shading of tiles is based on the sum of
squares statistic.

frequencies of age and education are not shown, whereas in the mosaic () of Figure 5.21 they
determine the relative sizes of the tiles for the combinations of age and education.

The divide-and-conquer strategy of partial association using statistical tests and visual displays
now provides a simple, coherent explanation for this table: memory of experienced violence as a
child tends to engender a more favorable attitude toward corporal punishment as an adult, but this
association varies directly with both age and education. A

5.6 Mosaic matrices for categorical data

One reason for the wide usefulness of graphs of quantitative data has been the development of
effective, general techniques for dealing with high-dimensional data sets. The scatterplot matrix
shows all pairwise (marginal) views of a set of variables in a coherent display, whose design goal
is to show the interdependence among the collection of variables as a whole. It combines multiple

{fig:punish-cond1-bis}
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Figure 5.21: Conditional mosaic plot of the Punishment data for the model of conditional inde-
pendence of attitude and memory, given age and education. This plot explicitly shows the total
frequencies in the cells of age and education by the areas of the main blocks for these variables.

views of the data into a single display, which allows detection of patterns that could not readily
be discerned from a series of separate graphs. In effect, a multivariate data set in p dimensions
(variables) is shown as a collection of p(p — 1) two-dimensional scatterplots, each of which is the
projection of the cloud of points on two of the variable axes. These ideas can be readily extended to
categorical data.

A multiway contingency table of p categorical variables, A, B, C, ..., contains the interdepen-
dence among the collection of variables as a whole. The saturated loglinear model, [ABC'. . ] fits
this interdependence perfectly, but is often too complex to describe or understand.

By summing the table over all variables except two, A and B, say, we obtain a two-variable
(marginal) table, showing the bivariate relationship between A and B, which is also a projection of
the p-variable relation into the space of two (categorical) variables. If we do this for all p(p — 1)
unordered pairs of categorical variables and display each two-variable table as a mosaic, we have a
categorical analog of the scatterplot matrix, called a mosaic matrix. Like the scatterplot matrix, the
mosaic matrix can accommodate any number of variables in principle, but in practice is limited by
the resolution of our display to three or four variables.

In R, the main implementation of this idea is in the generic function pairs (). The vcd
package extends this to mosaic matrices with methods for "table" and "structable" objects. The
gpairs (Emerson and Green, 2014) package provides a generalized pairs plot, with appropriate
graphics for a mixture of quantitative and categorical variables.

{fig:punish-cond2}
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5.6.1 Mosaic matrices for pairwise associations

EXAMPLE 5.12: Bartlett data on plum-root cuttings

The simplest example of what you can see in a mosaic matrix is provided by the 2 x 2 x 2
table used by Bartlett (1935) to illustrate a method for testing for no three-way interaction in a
contingency table (hypothesis H, in Table 5.2).

The data set Bartlett in VCdEXira gives the result of an agricultural experiment to investi-
gate the survival of plum-root cuttings (Alive) in relation to two factors: Time of planting and
the Length of the cutting. In this experiment, 240 cuttings were planted for each of the 2 x 2
combinations of these factors, and their survival (Alive, Dead) was later recorded.

> pairs (Bartlett, gp = shading_Friendly2)

Alive
Alive
378 582
Dead
Time
Now
480 480
Spring
Length
Long
480 480

Short

Figure 5.22: Mosaic pairs plot for the Bartlett data. Each panel shows the bivariate marginal
relation between the row and column variables.

The mosaic matrix for these data, showing all two-way marginal relations, is shown in Fig-
ure 5.22. It can immediately be seen that Time and Length are independent by the design of the
experiment; we use gp=shading_Friendly here to emphasize this.

The top row and left column show the relation of survival to each of time of planting and cutting
length. It is easily seen that greater survival is associated with cuttings taken now (vs. spring) and
those cut long (vs. short), and the degree of association is stronger for planting time than for cutting
length. A
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EXAMPLE 5.13: Marital status and pre- and extramarital sex
In Example 5.9 we examined a series of models relating marital status to reported premarital and
extramarital sexual activity and gender in the PreSex data. Figure 5.23 shows the mosaic matrix

for these data. The diagonal panels show the labels for the category levels as well as the one-way
marginal totals.

> data("PreSex", package = "vcd")
> pairs (PreSex, gp = shading_ Friendly2, space = 0.25,
+ gp_args = list (interpolate = 1 : 4),
+ diag_panel_args = list (offset_varnames = -0.5))
MaritalStatus
Divorced
294 || 542 I _______________
Married ExtramaritalSex
Yes
' 2 915

No

PremaritalSex
Yes
241 795

No Gender
77777777 Women

Men

Figure 5.23: Mosaic pairs plot for the PreSex data. Each panel shows the bivariate marginal relation
between the row and column variables.

If we view gender, premarital sex, and extramarital sex as explanatory, and marital status (Di-
vorced vs. still Married) as the response, then the mosaics in row 1 (and in column 1)'* show how
marital status depends on each predictor marginally. The remaining panels show the relations within
the set of explanatory variables.

Thus, we see in row 1, column 4, that marital status is independent of gender (all residuals equal
zero, here), by design of the data collection. In the (1, 3) panel, we see that reported premarital sex is
more often followed by divorce, while non-report is more prevalent among those still married. The

13Rows and columns in a mosaic matrix are identified as in a table or numerical matrix, with row 1, column 1 in the upper
left corner.

{fig:marital-pairs }
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(1, 2) panel shows a similar, but stronger relation between extramarital sex and marriage stability.
These effects pertain to the associations of P and E with marital status (M)—the terms [PM] and
[EM] in the loglinear model. We saw earlier that an interaction of P and E (the term [PEM]) is
required to fully account for these data. This effect is not displayed in Figure 5.23.

Among the background variables (the loglinear term [GPE]), the (2, 3) panel shows a strong
relation between premarital sex and subsequent extramarital sex, while the (2, 4) and (3, 4) panels
show that men are far more likely to report premarital sex than women in this sample, and also more
likely to report extramarital sex.

Even though the mosaic matrix shows only pairwise, bivariate associations, it provides an inte-
grated view of all of these together in a single display.

A

EXAMPLE 5.14: Berkeley admissions

In Chapter 4 we examined the relations among the variables Admit, Gender, and Department in
the Berkeley admissions data (Example 4.1, Example 4.11, Example 4.15) using fourfold displays
(Figure 4.5 and Figure 4.6) and sieve diagrams (Figure 4.13). These displays showed either a
marginal relation (e.g., Admit, Gender) or the full three-way table.

In contrast, Figure 5.24 shows all pairwise marginal relations among these variables, produced
using pairs (). Some additional arguments are used to control the details of labels for the diagonal
and off-diagonal panels.

> largs <- list (labeling = labeling_border (varnames = FALSE,

+ labels = ¢(T, T, F, T), alternate_labels = FALSE))

> dargs <- list (gp_varnames = gpar (fontsize = 20), offset_varnames = -1,
+ labeling = labeling_border (alternate_labels = FALSE))

> pairs (UCBAdmissions, shade = TRUE, space = 0.25,

s diag_panel_args = dargs,

<+ upper_panel_args = largs, lower_panel_args = largs)

The panel in row 2, column 1 shows that Admission and Gender are strongly associated marginally,
as we saw in Figure 4.5, and overall, males are more often admitted. The diagonally opposite panel
(row 1, column 2) shows the same relation, splitting first by gender.'*

The panels in the third column (and third row) provide the explanation for the paradoxical result
(see Figure 4.6) that, within all but department A, the likelihood of admission is equal for men and
women, yet, overall, there appears to be a bias in favor of admitting men (see Figure 4.5). The (1,
3) and (3, 1) panels show the marginal relation between Admission and Department; that is, how
admission rate varies across departments. Departments A and B have the greatest overall admission
rate, departments E and F the least. The (2, 3) and (3, 2) panels show how men and women apply
differentially to the various departments. It can be seen that men apply in much greater numbers to
departments A and B, with higher admission rates, while women apply in greater numbers to the
departments C—F, with the lowest overall rate of admission.

A

5.6.2 Generalized mosaic matrices and pairs plots

We need not show only the marginal relation between each pair of variables in a mosaic matrix.
Friendly (1999b) describes the extension of this idea to conditional, partial, and other views of a
contingency table.

14Note that this is different than just the transpose or interchange of horizontal and vertical dimensions as in a scatterplot
matrix, because the mosaic display splits the total frequency first by the horizontal variable and then (conditionally) by the
vertical variable. The areas of all corresponding tiles are the same in each diagonally opposite pair, however, as are the
residuals shown by color and shading.
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Figure 5.24: Mosaic matrix of the UCBAdmissions data showing bivariate marginal relations.

Inpairs.table (), different panel functions can be used to specify what is displayed in the
upper, lower, and diagonal panels. For the off-diagonal panels, a t ype argument can be used to
plot mosaics showing various kinds of independence relations:

type = "pairwise" — Shows bivariate marginal relations, collapsed over all other variables.

type = "total" — Shows mosaic plots for mutual independence.

type = "conditional" - Shows mosaic plots for conditional independence given all other
variables.

type = "joint" — Shows mosaic plots for joint independence of all pairs of variables from the
others.

EXAMPLE 5.15: Berkeley admissions
Figure 5.25 shows the generalized mosaic matrix for the UCBAdmissions data, using 3-way
mosaics for all the off-diagonal cells. The observed frequencies, of course, are the same in all these
cells. However, in the lower panels, the tiles are shaded according to models of joint independence,
while in the upper panels, they are shaded according to models of mutual independence.

> pairs (UCBAdmissions, space = 0.2,
o lower_panel = pairs_mosaic (type = "joint"),
<+ upper_panel = pairs_mosaic (type "total"))

In this example, it is more useful to fit and display the models of conditional independence for
each pair of row, column variables given the remaining one, as shown in Figure 5.26.

{ex:berkeley4b}
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Figure 5.25: Generalized mosaic matrix of the UCBAdmissions data. The above-diagonal plots fit
models of joint independence; below-diagonal plots fit models of mutual independence.

> pairs (UCBAdmissions, type = "conditional", space = 0.2)

Thus, the shading in the (1, 2) and (2, 1) panels shows the fit of the model [Admit, Dept]
[Gender, Dept], which asserts that Admission and Gender are independent, given (controlling for)
Department. Except for Department A, this model fits quite well, again indicating lack of gender
bias. The (1, 3) and (3, 1) panels show the relation between admission and department controlling
for gender, highlighting the differential admission rates across departments.

A

Beyond this, the framework of pairs plots can be further generalized to mixtures of quantita-
tive and categorical variables, as first described in Friendly (2003) and then in a wider context by
Emerson et al. (2013) and Friendly (2013). The essential idea is to consider the combination of
two variables, each of which can be either categorical (C) or quantitative (Q), and various ways to
render that combination in a graphical display:

CC: mosaic display, sieve diagram, doubledecker plot, faceted or divided bar chart;
CQ: side-by-side boxplots, stripplots, faceted histograms, aligned density plots;

QQ: scatterplot, corrgram, data ellipses, etc.

In R some of these possibilities are provided in the gpairs package (using grid graphics and the

{fig:berk-pairs2}
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Figure 5.26: Generalized mosaic matrix of the UCBAdmissions data. The off-diagonal plots fit
(fig:berk-pairs3)  models of conditional indpendence.

ved strucplot framework), and the GGally (Schloerke et al., 2014) package (an extension to gg-
{excarthritis-gpairs]  PIOt2 (Wickham and Chang, 2015)).

EXAMPLE 5.16: Arthritis treatment
We illustrate these ideas with the Art hritis data using the gpairs package in Figure 5.27. In
this data, the variables Treatment, Sex, and Improved are categorical, and Age is quantitative.
The call to gpairs () below reorders the variables to put the response variable Improved in row
1, column 1. Various options can be passed to mosaic () using the mosaic.pars argument.

library (gpairs)
data ("Arthritis", package = "vcd")
gpairs (Arthritis[,c(5, 2, 3, 4)1,
diag.pars = list (fontsize = 20),
mosaic.pars = list(gp = shading_Friendly,
gp_args = list (interpolate = 1 : 4)))

+ + + V VvV V

gpairs () provides a variety of options for the CQ and QQ combinations, as well as the
diagonal cells, but only the defaults are used here. The bottom row, corresponding to Age, uses
boxplots to show the distributions of age for each of the categorical variables. The last column
shows these same variables as stripplots (or “barcodes’), which show all the individual observations.
In the (1, 4) and (4, 1) panels, it can be seen that younger patients are more likely to report no



{sec:3D}

204 5. Mosaic Displays for n-Way Tables

30 40 50 60 70

Placebo Treated
,,,,,,,,,,,,,,,,,,, | | | | |
] - '
Improved : :i 3 1 II 1 Lrn IIIIII None
] - ' [ R R
L
oo = \ Some
,,,,,,,,,, H Lo [ e
T T
] ] 1 ' 1"l Marked
. _ b T ([T TTTNTIT
2 Treatment |
8 o T N
o |
.y | FAR {1t 1 11
e B wmm
o
2| |
g T KT
=
iiiiiiiiiiiiiiiiiiiii L O
: ‘ Sex | o
' . emale
! ' TR ||||u |||
' L e TR
' |
,,,,,,,,,
B O . Male
| HEE : Ll
e | |
s | [
- e —
70 A ccmo mmmm e h R L
: : ; - : : Age
=
50 — .
KR T ;
' ' N '
40 T ° ' ' H !
' ° 1 , ' 1
30 ° 8 : : SR |
1 o . O e
o P P, o o
None Some  Marked Female Male

Figure 5.27: Generalized pairs plot of the Arthritis data. Combinations of categorical and quantita-
tive variables can be rendered in various ways.

improvement. The other panels in the first row (and column) show that improvement is more likely
in the treated condition and greater among women than men. A

5.7 3D mosaics

Mosaic-like displays use the idea of recursive partitioning of a unit square to portray the frequencies
in an n-way table by the area of rectangular tiles with (x,y) coordinates. The same idea extends
naturally to a 3D graphic. This starts with a unit cube, which is successively subdivided into 3D
cuboids along (z, y, z) dimensions, and the frequency in a table cell is then represented by volume.

As in the 2D versions, each cuboid can be shaded to represent some other feature of the data,
typically the residual from some model of independence. In principle, the display can accommodate
more than 3 variables by using a sequence of split directions along the (x,y, z) axes.

One difficulty in implementing this method is that, short of using a 3D printer, the canvas for a
3D plot on a screen or printer is still projected on a two-dimensional surface, and graphical elements
(volumes, lines, text) toward the front of the view will obscure those in the back. In R, a major
advance in 3D graphics is available in the rgl (Adler and Murdoch, 2014) package, which mitigates

{fig:arth-gpairs}
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these problems by: (a) providing an interactive graphic window that can be zoomed and rotated
manually with the mouse; (b) allowing dynamic graphics under program control, for example to
animate a plot or make a movie; (c) providing control of the details of 3D rendering, including
transparency of shapes, surface shading, lighting, and perspective.

The vcdExtra package implements 3D mosaics using rgl graphics. mosaic3d () provides
methods for "loglm" as well as "table" (or "structable") objects. At the time of writing, only some
features of 2D mosaics are available.

EXAMPLE 5.17: Bartlett data on plum-root cuttings
In Example 5.12 we showed the mosaic matrix for the Bart lett, fitting the model of mutual
independence to show all associations among the table variables, Alive, Time of planting, and
Length of cutting. Figure 5.28 shows the 3D version, produced using mosaic3d ():

> mosaic3d (Bartlett)

Dead

Timelow Alive

Alive

Figure 5.28: 3D mosaic plot of the Bartlett data, according to the model of mutual independence.

In the view of this figure, it can be seen that cuttings are more likely to be alive when planted
Now and when cut Long. These relations can more easily be appreciated by rotating the 3D display.
A

5.8 Visualizing the structure of loglinear models

For quantitative response data, it is easy to visualize a fitted model—for linear regression, this is
just a plot of the fitted line; for multiple regression or nonlinear regression with two predictors, this
is a plot of the fitted response surface. For a categorical response variable, an analog of such plots
is provided by effect plots, described later in this book.

For contingency table data, mosaic displays can be used in a similar manner to illuminate the
relations among variables in a contingency table represented in various loglinear models, a point

{ex:bartlett-3d}

{figimos3d-bartlett}

{sec:mosaic-struc}
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described by Theus and Lauer (1999). In fact, each of the model types depicted in Table 5.2 has a
characteristic shape and structure in a mosaic display. This, in turn, leads to a clearer understanding
of the structure that appears in real data when a given model fits, the relations among the models,
and the use of mosaic displays. The essential idea is a simple extension of what we do for more
traditional models: show the expected (fitted) frequencies under a given model rather than observed
frequencies in a mosaic-like display.

To illustrate, we use some artificial data on the relations among age, sex, and symptoms of some
disease shown in the 2 x 2 x 2 table st ruc below.

struc <- array(c(6, 10, 312, 44,
37, 31, 192, 76),

dim = c(2, 2, 2),

dimnames = list (Age = c("Young", "0O1d"),
Sex = C("F", "M"),
Disease = c("No", "Yes"))

)
struc <- as.table(struc)
structable (struc)

VV A+ A+ o+ttt

Sex F M
Age Disease

Young No 6 312
Yes 37 192
0ld No 10 44
Yes 31 76

First, note that there are substantial associations in this table, as shown in Figure 5.29, fitting the
(default) mutual independence model.

> mosaic (struc, shade = TRUE)

Sex

Pearson
residuals:
7.3

4.0

2.0

Age
Disease

0.0

Yes

No

-4.0

-4.8
p-value =
<2e-16

Old

Young
I Il |
No

Yes

Figure 5.29: Mosaic display for the data on age, sex, and disease. Observed frequencies are shown
(fig:struc-mos1) 1 the plot, and residuals reflect departure from the model of mutual independence.
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The first split by Age shows strong partial associations between Sex and Disease for both
young and old. However, the residuals have an opposite pattern for young and old, suggesting a
more complex relationship among these variables.

In this section we are asking a different question: what would mosaic displays look like if
the data were in accord with simpler models? One way to do this is simply to use the expected
frequencies to construct the tiles, as in sieve diagrams. The result, in Figure 5.30, shows that the
tiles for sex and disease align for each of the age groups, but it is harder to see the relations among
all three variables in this plot.

> mosaic (struc, type = "expected")
Sex
F M
o
z
2
3
2
n 0
9
| E
z

Figure 5.30: Mosaic display for the data on age, sex, and disease, using expected frequencies under
mutual independence. {fig:struc-mos2 }

We can visualize the model-implied relations among all variables together more easily using
mosaic matrices.

5.8.1 Mutual independence

For example, to show the structure of a table that exactly fits the model of mutual independence,
H1, use the 1oglm () to find the fitted values, £it, as shown below. The function fitted ()
extracts these from the "loglm" object.

> mutual <- loglm(~ Age + Sex + Disease, data = struc, fitted = TRUE)
> fit <- as.table(fitted (mutual))
> structable (fit)

Sex F M

Age Disease
Young No 34.0991 253.3077
Yes 30.7992 228.7940
0ld No 10.0365 74.5567
Yes 9.0652 67.3416

These fitted frequencies then have the same one-way margins as the data in struc, but
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have no two-way or higher associations. Then pairs () for this table, using type="total",
shows the three-way mosaic for each pair of variables, giving the result in Figure 5.31. We use
gp=shading_Friendly to explicitly indicate the zero residuals in the display,

> pairs (fit, gp = shading Friendly2, type = "total")
Age
Young
547 161

:
i

1[I -

Old
Sex
F
C 100 C 000
84 624
M
Disease
No
H M D H M D 372 336
Yes

Figure 5.31: Mosaic matrix for fitted values under mutual independence. In all panels the joint
frequencies conform to the one-way margins.

In this figure the same data are shown in all the off-diagonal panels and the mutual independence
model was fitted in each case, but with the table variables permuted. All residuals are exactly zero
in all cells, by construction. We see that in each view, the four large tiles corresponding to the first
two variables align, indicating that these two variables are marginally independent. For example, in
the (1, 2) panel, age and sex are independent, collapsed over disease.

Moreover, comparing the top half to the bottom half in any panel we see that the divisions
by the third variable are the same for both levels of the second variable. In the (1, 2) panel, for
example, age and disease are independent for both males and females. This means that age and sex
are conditionally independent given disease (age L sex | disease).

Because this holds in all six panels, we see that mutual independence implies that all pairs of
variables are conditionally independent, given the remaining one, (X L Y | Z) for all permutations
of variables. A similar argument can be used to show that joint independence also holds, i.e.,
((X,Y) L Z) for all permutations of variables.

Alternatively, you can also visualize these relationships interactively in a 3D mosaic using
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mosaic3d () that allows you to rotate the mosaic to see all views. In Figure 5.32, all of the 3D
tiles are unshaded and you can see that the 3D unit cube has been sliced according to the marginal
frequencies.

> mosaic3d (fit)

Sex Young Age

Figure 5.32: 3D mosaic plot of frequencies according to the model of mutual independence. The
one-way margins are slices through the unit cube. {fig:struct-mos3d1}

5.8.2 Joint independence

The model of joint independence, Hs : (A, B) L C, or equivalently, the loglinear model [AB][C]
may be visualized similarly by a mosaic matrix in which the data are replaced by fitted values under
this model. We illustrate this for the model [Age Sex][Disease], calculating the fitted values in a
similar way as before.

> joint <- loglm(~ Age x Sex + Disease, data = struc, fitted = TRUE)
> fit <- as.table(fitted(joint))
> structable (fit)

Sex I M

Age Disease
Young No 22.593 264.814
Yes 20.407 239.186
0ld No 21.542 63.051
Yes 19.458 56.949

Thepairs.table () plot, now using simpler pairwise plots (t ype="pairwise™"), is shown
in Figure 5.33.

> pairs (fit, gp = shading_Friendly?2)

This shows, in row 3 and column 3, the anticipated independence of both age and sex with
disease, collapsing over the remaining variable. The (1, 2) and (2, 1) panels show that age and sex
are still associated when disease is ignored.
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Age
Young

547 161

IL'. LI

Old

84| 624

Disease

Yes

Figure 5.33: Mosaic matrix for fitted values under joint independence for the model [Age
Sex][Disease].

5.9 Related visualization methods

A variety of other graphical methods provide the means for visualizing relationships in multiway
frequency tables. We briefly describe a few of these here, without much detail, to give a sense of
some alternatives.

5.9.1 Doubledecker plots

Doubledecker plots visualize the dependence of one categorical (typically binary) variable on fur-
ther categorical variables. Formally, they are mosaic plots with vertical splits for all dimensions
(predictors) except the last one, which represents the dependent variable (outcome). The last vari-
able is visualized by horizontal splits, no space between the tiles, and separate colors for the levels.

They have the advantage of making it easier to “read” the differences among the conditional
response proportions in relation to combinations of the explanatory variables. Moreover, for a
binary response, the difference in these conditional proportions for any two columns has a direct
relation to the odds ratio for a positive response in relation to those predictor levels (Hofmann,
2001).

The doubledecker () function in vcd takes a formula argument of the formR ~ E1 + E2
+ ... where R is the response variable and E1, E2, ... are the predictors in the contingency table
in array form. The shorthand notation, R ~ . means that all variables other than R are taken as
predictors, in their order in the array.

EXAMPLE 5.18: Berkeley admissions
Figure 5.34 shows the doubledecker plot for the UCBAdmi ssions data. By default, the levels

{fig:struc-mos4}

{sec:related}
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of the response (Admit) are taken in their order in the array and shaded to highlight the last level
(Rejected). We want to highlight Admitted, so we reverse this dimension in the call below.

> doubledecker (Admit ~ Dept + Gender, data = UCBAdmissions[2:1, , 1)

Admit
Rejecte
.—- Admitte

[Fe Mae [ [Male Female Male Female Ma Female Male ‘Female Gender
A | [C Dept

Figure 5.34: Doubledecker plot for the UCBAdmissions data.

In Figure 5.34, it is easy to see the effects of both Dept and Gender on Admit. Admission
rate declines across departments A—E, and within departments, the proportion admitted is roughly
the same, except for department A, where more female applicants are admitted. A

EXAMPLE 5.19: Titanic data
Figure 5.35 shows the doubledecker plot for the Titanic data. The levels of the response
(Survived) are shaded in increasing grey levels, highlighting the proportions of survival.

> doubledecker (Survived ~ Class + Age + Sex, Titanic)

UI

‘ Swvwed

Male Female || [Male i [E Male Female Male [E sex
| [Adult [ [Adult ] [Chilc [Adult | [Adult Age
[Ist [2nd ] [Brd_ ] [Crew Class

Figure 5.35: Doubledecker plot for the Titanic data.

This order of variables makes it easiest to compare survival of men and women within each
age—class combination, but you can also see that survival of adult women decreases with class, and
survival among men was greatest in first class. Some additional visualizations of these relationships
are illustrated using the next topic in Example 5.21.

A

{fig:berkeley-doubledecker}

{ex:titanic-ddecker}

{fig:titanic-doubledecker}
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Figure 5.36: Generalized odds ratios for an R x C' table. Left: local odds ratios for adjacent
categories. Right: odds ratios with respect to a reference category (the last). Each log odds ratio is
a contrast of the log frequencies, shown by the cell weights.

5.9.2 Generalized odds ratios*

In Example 4.12, we used fourfold displays (Figure 4.7) to analyze the odds ratio between breath-
lessness and wheeze in coal miners as a function of age. Figure 4.8 showed that a plot of the odds
ratio directly against age gave a simplified description of this three-way relationship.

Odds ratios for 2 x 2 tables can be generalized to R x C' tables in a variety of ways, and these
can also be calculated for n-way tables by treating all but the first two dimensions as strata. Plots of
these generalized odds ratios can be quite informative, perhaps more so than in the 2 x 2 x k case.

Consider an R x C table with frequencies n;;. Then a set of (R — 1) x (C' — 1) local odds
ratios, 0; ;, can be calculated as the odds ratios for adjacent pairs of rows and columns as shown in
the left panel of Figure 5.36.

nij/ni+1,j Nij X M41,5+1 1= 1,2,...,R—1

0;; = =
J , . .
ni,j+1/ni+1,j+1 Nir1,5 X N j41 J=12..., C-1

These odds ratios correspond to “profile contrasts” (or sequential contrasts or successive differ-
ences) for ordered categories. Similarly, if one row category and one column category (say, the
last) are considered baseline or reference categories, odds ratios with respect to contrasts with those
categories (Figure 5.36, right panel) are defined as
Nij; X NR,C Z':LQ,...,Rfl
97;]‘ = s X .
ni,can,j jZl,Q,...,C—l
Note that all such parameterizations are equivalent, in that one can derive all other possible odds
ratios from any non-redundant set, but substance-driven contrasts will be easier to interpret.

This calculation is simple in terms of log odds ratios, because it corresponds to a contrast among
the log frequencies, with weights &1 for the four relevant cells. For local odds ratios, these are

T
10g(91j> = ( 1 -1 -1 1 )10g< Nij  Mg4+1,5 Mg 41 Ti41,5+1 )

Consider an R x C' x Ky x Ky x ... frequency table n;;..., with factors K, K> . .. taken as strata.
Let n = vec(n;;...) be the N x 1 vectorization of the frequency table. Then, all log odds ratios and
their asymptotic covariance matrix can be calculated as:

~

log(6) = Clog(n)
S =V[log(8)] = Cdiag(n)™'CT

{sec:oddsratio}
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where C' is an N-column matrix containing all zeros, except for two +1 elements and two —1
elements in each row that select the four cells involved in each log lodds ratio."

The function loddsratio () in vcd calculates these values for the categories of the first
two dimensions of an n-way table, together with their asymptotic covariance matrix. Additional
dimensions are treated as strata. The as.array () and as.data.frame () methods can be
used to convert a 1oddsratio object to a form suitable for plotting or further analysis.

EXAMPLE 5.20: Corporal punishment data
Example 5.11 used mosaic displays to describe the relationship between attitude toward cor-
poral punishment of children in relationship to memory of having experienced that as a child and
education and age of the respondent. Given that att it ude is the response, we could examine the
odds ratios among this variable and any one predictor, treating the other variables as strata. Contin-
uing the analysis of Example 5.11, we calculate log odds ratios for the association of attitude
and memory, stratified by age and education.

> data ("Punishment", package = "vcd")
> pun_lor <- loddsratio(Freq ~ memory + attitude | age + education,
+ data = Punishment)

The as.data. frame () method converts this to a data frame, and adds standard errors (ASE).

> pun_lor_df <- as.data.frame (pun_lor)

The plot method for 1oddsratio objects conveniently plots the log odds ratio (LOR) against
the strata variables, age or education, and by default also adds error bars. The result is shown
in Figure 5.37.

> plot (pun_lor)

log odds ratios for memory and attitude by age, education

3 education
L 2 e elementary
2 4 B secondary
s A high L
U e i
e
(O]
E -2 -
X
O -3
-
_4 —
| | |
15-24 25-39 40—

age

Figure 5.37: Log odds ratio for the association between attitude and memory of corporal punish-
ment, stratified by age and education. Error bars show +1 standard error.

15Some additional theory and applications of generalized odds ratios for ordered variables is given by Goodman (1983).
Hofmann (2001) describes some connections between odds ratios, loglinear models, and visual modeling using doubledecker
plots and mosaic plots.

{ex:punish2}

{fig:pun-lor-plot}
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Compared to Figure 5.20, the differences among the age and education groups are now clear.
For respondents less than age 40, increasing education increases the association (log odds ratio)
between attitude and memory: those who remembered corporal punishment as a child are more
likely to approve of it as their education increases. This result is reversed for those over 40, where
all log odds ratios are negative: memory of corporal punishment makes it less likely to approve, and
this effect becomes stronger with increased education.

Because log odds ratios have an approximate normal distribution under the null hypothesis that
all log 0;; = 0, you can treat these values as data, and carry out a rough analysis of the effects of the
stratifying variables using ANOVA, with weights inversely proportional to the estimated sampling
variances.'® In the analysis shown below, we have treated age and education as ordered (numeric)
variables.

> pun_mod <- 1Im(LOR ~ age x education, data = pun_lor_df,
+ weights = 1 / ASE"2)
> anova (pun_mod)

Analysis of Variance Table

Response: LOR

Df Sum Sg Mean Sqg F value Pr (>F)
age 1 1.04 1.04 2.72 0.160
education 1 1.84 1.84 4.79 0.080 .
age:education 1 5.04 5.04 13.13 0.015 =
Residuals 5 1.92 0.38
Signif. codes: 0 '"xxx' 0.001 '"%%' 0.01 '«' 0.05 '.'" 0.1 ' " 1

This confirms the interaction of age and education on the association between attitude and mem-
ory that we described from visual inspection of Figure 5.37. A

EXAMPLE 5.21: Titanic data

For the Titanic data, it is useful to examine the odds ratios for survival in relation to age or
sex, using the remaining variables as strata. Some preprocessing is nececessary first: These data
contain structural zeros as there were no children in the crew. Accordingly, we set the correspond-
ing cell entries to NA to avoid the calculation of nonsensical values. (Problems of zero frequencies
in frequency tables are discussed in more detail in Section 9.5). Additionally, we reverse the order
of the levels so that Survived=="Yes" and Age=="Adult" are first. The values calculated
below then give the log odds of survival for an adult compared to a child in the combinations sex
and class.

Titanic2 <- Titanic[, , 2:1, 2:1]

Titanic2["Crew", , "Child", ] <- NA

titanic_lorl <- loddsratio(~ Survived + Age | Class + Sex,
data = Titanic?2)

VvV + V V V

titanic_lorl
log odds ratios for Survived and Age by Class, Sex

Sex
Class Male Female
1st -3.12102 2.342518
2nd -5.50154 -1.510269
3rd -0.66874 0.031104
Crew NA NA

16This ignores the covariances among the log odds ratios, which are not independent. A proper analysis uses generalized
least squares with a weight matrix S—1, where S = V[log(8)] is the covariance matrix.
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Similarly, for survival and sex, we obtain the log odds ratios of survival for males versus females,
for the combinations of age and class.

> titanic_lor2 <- loddsratio(~ Survived + Sex | Class t+ Age,
+ data = Titanic?2)
> titanic_lor2

log odds ratios for Survived and Sex by Class, Age

Age
Class Adult Child
1st -4.1643 1.29928
2nd -4.1516 -0.16034
3rd -1.4786 -0.77879
Crew -3.0156 NA

The plots for both tables are shown in Figure 5.38.

log odds ratios for Survived and Age by Class, Sex log odds ratios for Survived and Sex by Class, Age
Sex 6 Age
e Male e Adult
B Female M Child

LOR(Survived / Age)
LOR(Survived / Sex)

1st 2nd 3rd Crew 1st 2nd 3rd Crew

Class Class

Figure 5.38: Log odds ratio plots for the Titanic data. Left: Odds ratios for survival and age, by
sex and class. Right: for survival and sex, by age and class. Error bars show 41 standard error. {fig:titanic-lor-plot}

In the left panel of Figure 5.38 you can see that the odds ratio of survival for adults relative to
children was always greater for females as compared to males, but much less so in 37 class. In the
right panel, the odds ratio of survival for males versus females was always greater for children than
adults, again less so in 37d ¢lass. A

Other examples and plots for log odds ratios are shown in help (loddsratio).

5.10 Chapter summary
{sec:mosaic-summary }
* The mosaic display depicts the frequencies in a contingency table by a collection of rectangular
“tiles” whose area is proportional to the cell frequency. The residual from a specified model is
portrayed by shading the tile to show the sign and magnitude of the deviation from the model.

* For two-way tables, the tiles for the second variable align at each level of the first variable when
the two variables are independent (see Figure 5.10).
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* The perception and understanding of patterns of association (deviations from independence)
are enhanced by reordering the rows or columns to give the shading of the residuals a more
coherent pattern. An opposite-corner pattern “explains” the association in terms of the ordering
of the factor levels.

* For three-way and larger tables, a variety of models can be fit and visualized. Starting with a
minimal baseline model, the pattern of residuals will often suggest additional terms that must
be added to “clean the mosaic.”

* It is often useful to examine the sequential mosaic displays for the marginal subtables with the
variables in a given order. Sequential models of joint independence provide a breakdown of
the total association in the full table, and are particularly appropriate when the last variable is a
response.

 Partial association, which refers to the associations among a subset of variables, within the
levels of other variables, may be easily studied by constructing separate mosaics for the subset
variables for the levels of the other, “given” variables. These displays provide a breakdown of
a model of conditional association for the whole table, and serve as an analog of coplots for
quantitative data.

* Mosaic matrices, consisting of all pairwise plots of an n-way table, provide a way to visualize
all marginal, joint, or conditional relations simultaneously. Doubledecker plots and plots of
generalized odds ratios provide other methods to visualize n-way tables.

* The structural relations among model terms in various loglinear models themselves can also be
visualized by mosaic matrices showing the expected, rather than observed, frequencies under
different models.

 Related visualization techniques include doubledecker plots for binary response models and line
plots for generalized odds ratios.

5.11 Lab exercises
{lub:?m‘sgic— ;Iiihi?ag%
sec.mosaic-lat . .
Exercise 5.1 The data set criminal in the package logmult (Bouchet-Valat, 2015) gives the 4 x 5
table below of the number of men aged 15-19 charged with a criminal case for whom charges were

dropped in Denmark from 1955-1958.

> data("criminal", package = "logmult")
> criminal

Age
Year 15 16 17 18 19
1955 141 285 320 441 427
1956 144 292 342 441 396
1957 196 380 424 462 427
1958 212 424 399 442 430

(a) Use loglm () to test whether there is an association between Year and Age. Is there evi-
dence that dropping of charges in relation to age changed over the years recorded here?

(b) Usemosaic () with the option shade=TRUE to display the pattern of signs and magnitudes
of the residuals. Compare this with the result of mosaic () using “Friendly shading,” from
the option gp=shading_Friendly. Describe verbally what you see in each regarding the
pattern of association in this table.
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Exercise 5.2 The data set A1 rCrash in vcdExtra gives a database of all crashes of commercial
airplanes between 1993-2015, classified by Phase of the flight and Cause of the crash. How can
you best show is the nature of the association between these variables in a mosaic plot? Start by
making a frequency table, aircrash.tab:

> data("AirCrash", package = "vcdExtra")
> aircrash.tab <- xtabs(~ Phase + Cause, data = AirCrash)

(a) Make a default mosaic display of the data with shade=TRUE and interpret the pattern of the
high-frequency cells.

(b) The default plot has overlapping labels due to the uneven marginal frequencies relative to
the lengths of the category labels. Experiment with some of the 1abeling_args options
(abbreviate, rot_labels, etc.) to see if you can make the plot more readable. Hint: a
variety of these are illustrated in Section 4.1 of vignette ("strucplot™")

(c) The levels of Phase and Cause are ordered alphabetically (because they are factors). Exper-
iment with other orderings of the rows/columns to make interpretation clearer, e.g., ordering
Phase temporally or ordering both factors by their marginal frequency.

Exercise 5.3 The Lahman (Friendly, 2014) package contains comprehensive data on baseball
statistics for Major League Baseball from 1871 through 2012. For all players, the Master ta-
ble records the handedness of players, in terms of throwing (L, R) and batting (B, L, R), where B
indicates “both.” The table below was generated using the following code:

> library (Lahman)
> data("Master", package = "Lahman")
> basehands <- with (Master, table(throws, bats))

Bats

Throws B L R
L | 177 2640 527
R [ 924 1962 10442

* Use the code above, or else enter these data into a frequency table in R.

* Construct mosaic displays showing the relation of batting and throwing handedness, split first
by batting and then by throwing.

» From these displays, what can be said about players who throw with their left or right hands
in terms of their batting handedness?

Exercise 5.4 * A related analysis concerns differences in throwing handedness among baseball
players according to the fielding position they play. The following code calculates such a frequency
table.

> library (Lahman)
> MasterFielding <- data.frame (merge (Master, Fielding, by = "playerID"))
> throwPOS <- with(MasterFielding, table(POS, throws))

(a) Make a mosaic display of throwing hand vs. fielding position.
(b) Calculate the percentage of players throwing left-handed by position. Make a sensible graph
of this data.

{lab:5.3}

{lab:5.4}
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(c) Re-do the mosaic display with the positions sorted by percentage of left-handers.
(d) Is there anything you can say about positions that have very few left-handed players?

Exercise 5.5 For the Bartlett data described in Example 5.12, fit the model of no three-way
association, H, in Table 5.2.

(a) Summarize the goodness of fit for this model, and compare to simpler models that omit one or
more of the two-way terms.
(b) Use a mosaic-like display to show the lack of fit for this model.

Exercise 5.6 Red core disease, caused by a fungus, is not something you want if you are a straw-
berry. The data set jansen.strawberry from the agridat (Wright, 2015) package gives a
frequency data frame of counts of damage from this fungus from a field experiment reported by
Jansen (1990). See the help file for details. The following lines create a 3 x 4 x 3 table of crossings
of 3 male parents with 4 (different) female parents, recording the number of plants in four blocks of
9 or 10 plants each showing red core disease in three ordered categories, C1, C2, or C3.

data (" jansen.strawberry", package = "agridat")

dat <- jansen.strawberry
dat <- transform(dat, category = ordered(category,
levels = c('Cl1l','C2','C3")))
levels (dat$male) <- pasteO("M", 1:3)
levels (dat$female) <- pasteO("F", 1:4)

jansen.tab <- xtabs(count ~ male + female + category, data = dat)
names (dimnames (jansen.tab)) <- c("Male parent", "Female parent",
"Disease category")

V+VVVVYV+VYVVYV

ftable (jansen.tab)

(a) Use pairs (Jjansen.tab, shade=TRUE) to display the pairwise associations among
the three variables. Describe how disease category appears to vary with male and female
parent. Why is there no apparent association between male and female parent?

(b) As illustrated in Figure 5.6, use mosaic () to prepare a 3-way mosaic plot with the tiles
colored in increasing shades of some color according to disease category. Describe the pattern
of category C3 in relation to male and female parent. (Hint: the highlighting arguments
are useful here.)

(c) With category as the response variable, the minimal model for association is [MF][C], or
~ 1%2 + 3. Fit this model using 1oglm () and display the residuals from this model with
mosaic (). Describe the pattern of lack of fit of this model.

Exercise 5.7 The data set caith in MASS gives another classic 4 x 5 table tabulating hair color
and eye color, this for people in Caithness, Scotland, originally from Fisher (1940). The data is
stored as a data frame of cell frequencies, whose rows are eye colors and whose columns are hair
colors.

> data("caith", package = "MASS")
> caith

fair red medium dark black

blue 326 38 241 110 3
light 688 116 584 188 4
medium 343 84 909 412 26

dark 98 48 403 681 85

{lab:5.5}
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(a) The 1oglm () and mosaic () functions don’t understand data in this format, so use Caith
<- as.matrix (caith) to convert to array form. Examine the result, and use
names (dimnames (Caith) ) <—c () to assign appropriate names to the row and column
dimensions.

(b) Fit the model of independence to the resulting matrix using loglm().

(c) Calculate and display the residuals for this model.

(d) Create a mosaic display for this data.

Exercise 5.8 The HairEyePlace data in vcdExtra gives similar data on hair color and eye
color, for both Caithness and Aberdeen as a 4 x 5 x 2 table.

(a) Prepare separate mosaic displays, one for each of Caithness and Aberdeen. Comment on any
difference in the pattern of residuals.

(b) Construct conditional mosaic plots, using the formula ~ Hair + Eye | Place and both
mosaic () and cotabplot (). It is probably more useful here to suppress the legend in
these plots. Comment on the difference in what is shown in the two displays.

Exercise 5.9 Bertin (1983, pp. 30-31) used a 4-way table of frequencies of traffic accident victims
in France in 1958 to illustrate his scheme for classifying data sets by numerous variables, each of
which could have various types and could be assigned to various visual attributes. His data are
contained in Accident in VCdEXtra, a frequency data frame representing his 5 x 2 x 4 x 2 table
of the variables age, result (died or injured), mode of transportation, and gender.

> data("Accident", package = "vcdExtra")
> str (Accident, vec.len=2)

'data.frame': 80 obs. of 5 variables:

$ age : Ord.factor w/ 5 levels "0-9"<"10-19"<..: 55 5 5 5

$ result: Factor w/ 2 levels "Died","Injured": 1 111

$ mode : Factor w/ 4 levels "4-Wheeled","Bicycle",..: 4 4 2 2 3
$ gender: Factor w/ 2 levels "Female","Male": 2 1 2 1 2

$ Freq : int 704 378 396 56 742

{lab:5.8}

{lab:mBgaic-accident}

(a) Use loglm () to fit the model of mutual independence, Freq ~ age+mode+gender+result

to this data set.

(b) Use mosaic () to produce an interpretable mosaic plot of the associations among all vari-
ables under the model of mutual independence. Try different orders of the variables in the mo-
saic. (Hint: the abbreviate component of the labeling_args argument to mosaic ()
will be useful to avoid some overlap of the category labels.)

(c) Treat result ("Died" vs. "Injured") as the response variable, and fit the model
Freq ~ agesmodexgender + result thatasserts independence of result from all
others jointly.

(d) Construct a mosaic display for the residual associations in this model. Which combinations of
the predictor factors are more likely to result in death?

Exercise 5.10 The data set Vietnamin vcdEXxtra gives a 2 x 5 x 4 contingency table in frequency
form reflecting a survey of student opinion on the Vietnam War at the University of North Carolina
in May 1967. The table variables are sex, year in school, and response, which has categories: (A)
Defeat North Vietnam by widespread bombing and land invasion; (B) Maintain the present pol-
icy; (C) De-escalate military activity, stop bombing and begin negotiations; (D) Withdraw military
forces immediately. How does the chosen response vary with sex and year?

> data("Vietnam", package = "vcdExtra")
> str (Vietnam)

{lab:mdBdic-vietnam}
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'data.frame': 40 obs. of 4 variables:

S sex : Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 11 1 1 ...
$ year cint 11 11222233 ...

$ response: Factor w/ 4 levels "A","B","C","D": 1 2 3 412 3412 ...
$ Freq : int 13 19 40 5 5 9 33 3 22 29 ...

(a) With response (R) as the outcome variable and year (Y) and sex (S) as predictors, the
minimal baseline loglinear model is the model of joint independence, [R][YS]. Fit this model,
and display it in a mosaic plot.

(b) Construct conditional mosaic plots of the response versus year separately for males and
females. Describe the associations seen here.

(c) Follow the methods shown in Example 5.10 to fit separate models of independence for the
levels of sex, and the model of conditional independence, R L Y| S. Verify that the decom-
position of G2 in Eqn. (5.6) holds for these models.

(d) Construct a useful 3-way mosaic plot of the data for the model of conditional independence.
{lab:5.11}

Exercise 5.11 Consider the models for 4-way tables shown in Table 5.3.

(a) For each model, give an independence interpretation. For example, the model of mutual inde-
pendence correspondsto A 1. B L C' 1L D.
(b) Use the functions shown in the table together with 1loglin2formula () to print the corre-
sponding model formulas for each.
{lab:mosaftatitani2 }
Exercise 5.12 The dataset Titanic classifies the 2,201 pasengers and crew of the Titanic by
Class (Ist, 2nd, 3rd, Crew), Sex, Age, and Survived. Treating Survived as the response
variable,

(a) Fitand display a mosaic plot for the baseline model of joint independence, [CGA][S]. Describe
the remaining pattern of associations.

(b) Do the same for a “main effects” model that allows two-way associations between each of C,
G, and A with S.

(c) What three-way association term should be added to this model to allow for greater survival
among women and children? Does this give an acceptable fit?

(d) Test and display models that allow additional three-way associations until you obtain a rea-
sonable fit.
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