
220



6
Correspondence Analysis

{ch:corresp}
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6.5 Biplots

Correspondence analysis provides visualizations of associations in a two-way contin-
gency table in a small number of dimensions. Multiple correspondence analysis extends
this technique to n-way tables. Other graphical methods, including mosaic matrices and
biplots, provide complementary views of loglinear models for two-way and n-way contin-
gency tables, but correspondence analysis methods are particularly useful for a simple
visual analysis.

6.1 Introduction

Whenever a large sample of chaotic elements is taken in hand and marshalled in the
order of their magnitude, an unsuspected and most beautiful form of regularity proves
to have been latent all along.

Sir Francis Galton, Natural Inheritance, London: Macmillan, 1889.

Correspondence analysis (CA) is an exploratory technique that displays the row and column
categories in a two-way contingency table as points in a graph, so that the positions of the points
represent the associations in the table. Mathematically, correspondence analysis is related to the
biplot, to canonical correlation, and to principal component analysis.

This technique finds scores for the row and column categories on a small number of dimensions
that account for the greatest proportion of the χ2 for association between the row and column
categories, just as principal components account for maximum variance of quantitative variables.
But CA does more—the scores provide a quantification of the categories, and have the property that
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222 6. Correspondence Analysis

they maximize the correlation between the row and column variables. For graphical display two or
three dimensions are typically used to give a reduced rank approximation to the data.

Correspondence analysis has a very large, multi-national literature and was rediscovered sev-
eral times in different fields and different countries. The method, in slightly different forms, is
also discussed under the names dual scaling, optimal scaling, reciprocal averaging, homogeneity
analysis, and canonical analysis of categorical data.

See Greenacre (1984) and Greenacre (2007) for an accessible introduction to CA methodology,
or Gifi (1981) and Lebart et al. (1984) for a detailed treatment of the method and its applications
from the Dutch and French perspectives. Greenacre and Hastie (1987) provide an excellent dis-
cussion of the geometric interpretation, while van der Heijden and de Leeuw (1985) and van der
Heijden et al. (1989) develop some of the relations between correspondence analysis and log-linear
methods for three-way and larger tables. Correspondence analysis is usually carried out in an ex-
ploratory, graphical way. Goodman (1981, 1985, 1986) has developed related inferential models,
the RC model (see Section 10.1.3) and the canonical correlation model, with close links to CA.

One simple development of CA is as follows: For a two-way table the scores for the row cat-
egories, namely X = {xim}, and column categories, Y = {yjm}, on dimension m = 1, . . . , M
are derived from a (generalized) singular value decomposition of (Pearson) residuals from inde-
pendence, expressed as dij/

√
n, to account for the largest proportion of the χ2 in a small number

of dimensions. This decomposition may be expressed as

dij√
n

=
nij −mij√
nmij

= XDλ Y
T =

M∑
m=1

λm xim yjm , (6.1){eq:cadij}

where mij is the expected frequency and where Dλ is a diagonal matrix with elements λ1 ≥ λ2 ≥
· · · ≥ λM , and M = min(I − 1, J − 1). In M dimensions, the decomposition Eqn. (6.1) is exact.
For example, an I × 3 table can be depicted exactly in two dimensions when I ≥ 3. The useful
result for visualization purposes is that a rank-d approximation in d dimensions is obtained from the
first d terms on the right side of Eqn. (6.1). The proportion of the Pearson χ2 accounted for by this
approximation is

n

d∑
m

λ2m
/
χ2 .

The quantity χ2/n =
∑
i

∑
j d

2
ij/n is called the total inertia and is identical to the measure of

association known as Pearson’s mean-square contingency, the square of the φ coefficient.
Thus, correspondence analysis is designed to show how the data deviate from expectation when

the row and column variables are independent, as in the sieve diagram, association plot, and mosaic
display. However, the sieve, association, and mosaic plots depict every cell in the table, and for
large tables it may be difficult to see patterns. Correspondence analysis shows only row and column
categories as points in the two (or three) dimensions that account for the greatest proportion of
deviation from independence. The pattern of the associations can then be inferred from the positions
of the row and column points.

6.2 Simple correspondence analysis
{sec:ca-simple}

6.2.1 Notation and terminology
{sec:ca-notation}

Because Correspondence analysis grew up in so many homes, the notation, formulae, and terms
used to describe the method vary considerably. The notation used here generally follows Greenacre
(1984, 1997, 2007).

The descriptions here employ the following matrix and vector definitions:
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• N = {nij} is the I×J contingency table with row and column totals ni+ and n+j , respectively.
The grand total n++ is also denoted by n for simplicity.

• P = {pij} = N/n is the matrix of joint cell proportions, called the correspondence matrix.

• r =
∑
j pij = P1 is the row margin of P ; c =

∑
i pij = P T1 is the column margin. r and c

are called the row masses and column masses.

• Dr and Dc are diagonal matrices with r and c on their diagonals, used as weights.

• R = D−1r P = {nij/n+j} is the matrix of row conditional probabilities, called row profiles.
Similarly, C = D−1c P T = {nij/ni+} is the matrix of column conditional probabilities or
column profiles.

• S = D
−1/2
r (P − rcT)D

−1/2
c is the matrix of standardized Pearson residuals from indepen-

dence (denoted dij in the introduction).

Two types of coordinates, X , Y for the row and column categories are defined, based on the
singular value decomposition (SVD) of S,

S = UDλV
T where UTU = V TV = I ,

and Dλ is the diagonal matrix of singular values λ1 ≥ λ2 ≥ · · · ≥ λM . U is the orthonormal
I ×M matrix of left singular vectors, and V is the J ×M matrix of right singular vectors.

The SVD of S is related to the eigenvalue–eigenvector decomposition of a square symmetric
matrix, in that SST = UD2

λU and STS = V D2
λV , so the values λ2 are the eigenvalues in both

cases and the singular vectors are the corresponding eigenvectors. In correspondence analysis, these
eigenvalues (squares of the singular values) are called the principal inertias, and are the values used
in the decomposition of the Pearson χ2 for the dimensions, χ2 = n

∑
m λ

2
m.

principal coordinates: The coordinates of the row (F ) and column (G) profiles with respect to
their own principal axes are defined so that the inertia along each axis is the corresponding
eigenvalue value, λm,

F = D−1/2r UD2
λ scaled so that F TDrF = D2

λ , (6.2) {eq:pcoord1}

G = D−1/2c V D2
λ scaled so that GTDcG = D2

λ . (6.3) {eq:pcoord2}

The joint plot in principal coordinates, F and G, is called the symmetric map because both row
and column profiles are overlaid in the same coordinate system.

standard coordinates: The standard coordinates (Φ,Γ) are a rescaling of the principal coordinates
to unit inertia along each axis,

Φ = D−1r U scaled so that ΦTDrΦ = I , (6.4) {eq:scoord1}

Γ = D−1c V scaled so that ΓTDcΓ = I . (6.5) {eq:scoord2}

These differ from the principal coordinates in Eqn. (6.2) and Eqn. (6.3) simply by the absence of
the scaling factors, D2

λ. An asymmetric map shows one set of points (say, the rows) in principal
coordinates and the other set in standard coordinates.

Thus, the weighted average of the squared principal coordinates for the rows or columns on a prin-
cipal axis equals the squared singular value, λ2 for that axis, whereas the weighted average of the
squared standard coordinates equals 1. The relative positions of the row or column points along any
axis is the same under either scaling, but the distances between points differ, because the axes are
weighted differentially in the two scalings.
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6.2.2 Geometric and statistical properties
{sec:ca-properties}

We summarize here some geometric and statistical properties of the Correspondence analysis solu-
tions that are useful in interpretation.

nested solutions: Because they use successive terms of the SVD Eqn. (6.1), correspondence anal-
ysis solutions are nested, meaning that the first two dimensions of a three-dimensional solution
will be identical to the two-dimensional solution.

centroids at the origin: In both principal coordinates and standard coordinates the points repre-
senting the row and column profiles have their centroids (weighted averages) at the origin.
Thus, in CA plots, the origin represents the (weighted) average row profile and column profile.

reciprocal averages: CA assigns scores to the row and column categories such that the column
scores are proportional to the weighted averages of the row scores, and vice-versa.

chi-square distances: In principal coordinates, the row coordinates may be shown equal to the
row profiles D−1r P , rescaled by the inverse by the square-root of the column masses, D−1/2c .
Distances between two row profiles, Ri and Ri′ , are most sensibly defined as χ2 distances,
where the squared difference [Rij −Ri′j ]

2 is inversely weighted by the column frequency, to
account for the different relative frequency of the column categories. The rescaling by D

−1/2
c

transforms this weighted χ2 metric into ordinary Euclidean distance. The same is true of the
column principal coordinates.

interpretation of distances: In principal coordinates, the distance between two row points may
be interpreted as described above, and so may the distance between two column points. The
distance between a row and column point, however, does not have a clear distance interpretation.

residuals from independence: The distance between a row and column point do have a rough
interpretation in terms of residuals or the difference between observed and expected frequencies,
nij −mij . Two row (or column) points deviate from the origin (the average profile) when their
profile frequencies have similar values. A row point appears in a similar direction away from
the origin as a column point when nij −mij > 0, and in an opposite different direction from
that column point when the residual is negative.

Because of these differences in interpretations of distances, there are different possibilities for
graphical display. A joint display of principal coordinates for the rows and standard coordinates for
the columns (or vice-versa), sometimes called an asymmetric map, is suggested by Greenacre and
Hastie (1987) and by Greenacre (1989) as the plot with the most coherent geometric interpretation
(for the points in principal coordinates) and is sometimes used in the French literature.

Another common joint display is the symmetric map of the principal coordinates in the same
plot. This is the default in the ca (Greenacre and Nenadic, 2014) package described below. In
the authors’ opinion, this produces better graphical displays, because both sets of coordinates are
scaled with the same weights for each axis. Symmetric plots are used exclusively in this book, but
that should not imply that these plots are universally preferred. Another popular choice is to avoid
the possibility of misinterpretation by making separate plots of the row and column coordinates.

6.2.3 R software for correspondence analysis
{sec:ca-R}

Correspondence analysis methods for computation and plotting are available in a number of R
packages including:
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MASS (Ripley, 2015): corresp(); the plot method calls biplot() for a 2-factor solution,
using a a symmetric biplot factorization that scales the row and column points by the square
roots of the the singular values. There is also an mca() function for multiple correspondence
analysis.

ca: ca(); provides 2D plots via the plot.ca() method and interactive (rgl (Adler and Mur-
doch, 2014)) 3D plots via plot3d.ca(). This package is the most comprehensive in terms of
plotting options for various coordinate types, plotting supplementary points (see Section 6.3.2),
and other features. It also provides mjca() for multiple and joint correspondence analysis of
higher-way tables.

FactoMineR (Husson et al., 2015): CA(); provides a wide variety of measures for the quality of
the CA representation and many options for graphical display

These methods also differ in terms of the types of input they accept. For example, MASS::corresp()
handles matrices, data frames, and "xtabs" objects, but not "table" objects. ca() is the most gen-
eral, with methods for two-way tables, matrices, data frames, and "xtabs" objects. In the following,
we largely use the ca package. {ex:haireye3}

EXAMPLE 6.1: Hair color and eye color
The script below uses the two-way table haireye from the HairEyeColor data, collapsed

over Sex. In this table, Hair colors form the rows, and Eye colors form the columns. By default,
ca() produces a two-dimensional solution. In this example, the complete, exact solution would
have M = min((I − 1), (J − 1)) = 3 dimensions, and you could obtain this using the argument
nd=3 in the call to ca().

> haireye <- margin.table(HairEyeColor, 1 : 2)
> library(ca)
> (haireye.ca <- ca(haireye))

Principal inertias (eigenvalues):
1 2 3

Value 0.208773 0.022227 0.002598
Percentage 89.37% 9.52% 1.11%

Rows:
Black Brown Red Blond

Mass 0.18243 0.48311 0.1199 0.2145
ChiDist 0.55119 0.15946 0.3548 0.8384
Inertia 0.05543 0.01228 0.0151 0.1508
Dim. 1 -1.10428 -0.32446 -0.2835 1.8282
Dim. 2 1.44092 -0.21911 -2.1440 0.4667

Columns:
Brown Blue Hazel Green

Mass 0.37162 0.3632 0.15710 0.10811
ChiDist 0.50049 0.5537 0.28865 0.38573
Inertia 0.09309 0.1113 0.01309 0.01608
Dim. 1 -1.07713 1.1981 -0.46529 0.35401
Dim. 2 0.59242 0.5564 -1.12278 -2.27412

In the printed output, the table labeled “Principal inertias (eigenvalues)” indicates that nearly
99% of the Pearson χ2 for association is accounted for by two dimensions, with most of that at-
tributed to the first dimension.

The summary method for "ca" objects gives a more nicely formatted display, showing a scree
plot of the eigenvalues, a portion of which is shown below.
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> summary(haireye.ca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.208773 89.4 89.4 **********************
2 0.022227 9.5 98.9 **
3 0.002598 1.1 100.0

-------- -----
Total: 0.233598 100.0
...

The Pearson χ2 for this table (given by chisq.test(haireye)) is 138.29. This value is n
(592) times the sum of the eigenvalues (0.2336) shown above.

The result returned by ca() can be plotted using the plot.ca()method. However, it is useful
to understand that ca() returns the CA solution in terms of standard coordinates, Φ (rowcoord)
and Γ (colcoord). We illustrate Eqn. (6.4) and Eqn. (6.5) using the components of the "ca" object
haireye.ca.

> # standard coordinates Phi (Eqn 6.4) and Gamma (Eqn 6.5)
> (Phi <- haireye.ca$rowcoord)

Dim1 Dim2 Dim3
Black -1.10428 1.44092 -1.08895
Brown -0.32446 -0.21911 0.95742
Red -0.28347 -2.14401 -1.63122
Blond 1.82823 0.46671 -0.31809

> (Gamma <- haireye.ca$colcoord)

Dim1 Dim2 Dim3
Brown -1.07713 0.59242 -0.423960
Blue 1.19806 0.55642 0.092387
Hazel -0.46529 -1.12278 1.971918
Green 0.35401 -2.27412 -1.718443

> # demonstrate orthogonality of std coordinates
> Dr <- diag(haireye.ca$rowmass)
> zapsmall(t(Phi) %*% Dr %*% Phi)

Dim1 Dim2 Dim3
Dim1 1 0 0
Dim2 0 1 0
Dim3 0 0 1

> Dc <- diag(haireye.ca$colmass)
> zapsmall(t(Gamma) %*% Dc %*% Gamma)

Dim1 Dim2 Dim3
Dim1 1 0 0
Dim2 0 1 0
Dim3 0 0 1

These standard coordinates are transformed internally within the plot function according to the
map argument, which defaults to map="symmetric", giving principal coordinates. The follow-
ing call to plot.ca() produces Figure 6.1.

> res <- plot(haireye.ca)

For use in further customizing such plots (as we will see in the next example), the function
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Figure 6.1: Correspondence analysis solution for the hair color and eye color data.{fig:ca-haireye-plot}

plot.ca() returns (invisibly) the coordinates for the row and column points actually plotted,
which we saved above as res:

> res

$rows
Dim1 Dim2

Black -0.50456 0.214820
Brown -0.14825 -0.032666
Red -0.12952 -0.319642
Blond 0.83535 0.069579

$cols
Dim1 Dim2

Brown -0.49216 0.088322
Blue 0.54741 0.082954
Hazel -0.21260 -0.167391
Green 0.16175 -0.339040

It is important to understand that in CA plots (and related biplots, Section 6.5), the interpretation
of distances between points (and angles between vectors) is meaningful. In order to achieve this,
the axes in such plots must be equated, meaning that the two axes are scaled so that the number of
data units per inch are the same for both the horizontal and vertical axes, or an aspect ratio = 1.1

The interpretation of the CA plot in Figure 6.1 is then as follows:

• Dimension 1, accounting for nearly 90% of the association between hair and eye color corre-
sponds to dark (left) vs. light (right) on both variables.

• Dimension 2 largely contrasts red hair and green eyes with the remaining categories, accounting
for an additional 9.5% of the Pearson χ2.

1In base R graphics, this is achieved with the plot() option asp=1.
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• With equated axes, and a symmetric map, the distances between row points and distances be-
tween column points are meaningful. Along Dimension 1, the eye colors could be considered
roughly equally spaced, but for the hair colors, Blond is quite different in terms of its frequency
profile.

4
{ex:mental3}

EXAMPLE 6.2: Mental impairment and parents’ SES
In Example 4.3 we introduced the data set Mental, relating mental health status to parents’

SES. As in Example 4.7, we convert this to a two-way table, mental.tab, to conduct a corre-
spondence analysis.

> data("Mental", package="vcdExtra")
> mental.tab <- xtabs(Freq ~ ses + mental, data = Mental)

We calculate the CA solution, and save the result in mental.ca:

> mental.ca <- ca(mental.tab)
> summary(mental.ca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.026025 93.9 93.9 ***********************
2 0.001379 5.0 98.9 *
3 0.000298 1.1 100.0

-------- -----
Total: 0.027702 100.0
...

The scree plot produced by summary(mental.ca) shows that the association between men-
tal health and parents’ SES is almost entirely 1-dimensional, with 94% of the χ2 (45.98, with 15 df)
accounted for by Dimension 1.

We then plot the solution as shown below, giving Figure 6.2. For this example, it is useful to
connect the row points and the column points by lines, to emphasize the pattern of these ordered
variables.

> res <- plot(mental.ca, ylim = c(-.2, .2))
> lines(res$rows, col = "blue", lty = 3)
> lines(res$cols, col = "red", lty = 4)

The plot of the CA scores in Figure 6.2 shows that diagnostic mental health categories are
well-aligned with Dimension 1. The mental health scores are approximately equally spaced, except
that the two intermediate categories are a bit closer on this dimension than the extremes. The SES
categories are also aligned with Dimension 1, and approximately equally spaced, with the exception
of the highest two SES categories, whose profiles are extremely similar, suggesting that these two
categories could be collapsed.

Because both row and column categories have the same pattern on Dimension 1, we may in-
terpret the plot as showing that the profiles of both variables are ordered, and their relation can be
explained as a positive association between high parents’ SES and higher mental health status of
children. A mosaic display of these data (Exercise 6.5) would show a characteristic opposite corner
pattern of association.

From a modeling perspective, we might ask how strong is the evidence for the spacing of cate-
gories noted above. For example, we might ask whether assigning integer scores to the levels of SES
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Figure 6.2: Correspondence analysis solution for the Mental health data.{fig:ca-mental-plot}

and mental impairment provides a simpler, but satisfactory account of their association. Questions
of this type can be explored in connection with loglinear models in Chapter 9.

4
{ex:victims2}

EXAMPLE 6.3: Repeat victimization
The data set RepVict in the vcd (Meyer et al., 2015) package gives an 8 × 8 table (from

Fienberg (1980, Table 2-8)) on repeat victimization for various crimes among respondents to a
U.S. National Crime Survey. A special feature of this data set is that row and column categories
reflect the same crimes, so substantial association is expected. Here we examine correspondence
analysis results in a bit more detail and also illustrate how to customize the displays created by
plot(ca(...)).

> data("RepVict", package = "vcd")
> victim.ca <- ca(RepVict)
> summary(victim.ca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.065456 33.8 33.8 ********
2 0.059270 30.6 64.5 ********
3 0.029592 15.3 79.8 ****
4 0.016564 8.6 88.3 **
5 0.011140 5.8 94.1 *
6 0.007587 3.9 98.0 *
7 0.003866 2.0 100.0

-------- -----
Total: 0.193474 100.0

...
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The results above show that, for this 8×8 table, 7 dimensions are required for an exact solution,
of which the first two account for 64.5% of the Pearson χ2. The lines below illustrate that the
Pearson χ2 is n times the sum of the squared singular values, n

∑
λ2i .

> chisq.test(RepVict)

Pearson's Chi-squared test

data: RepVict
X-squared = 11100, df = 49, p-value <2e-16

> (chisq <- sum(RepVict) * sum(victim.ca$sv^2))

[1] 11131

The default plot produced by plot.ca(victim.ca) plots both points and labels for the row
and column categories. However, what we want to emphasize here is the relation between the same
crimes on the first and second occurrence.

To do this, we label each crime just once (using labels=c(2,0)) and connect the two points
for each crime by a line, using segments(), as shown in Figure 6.3. The addition of a legend()
makes the plot more easily readable.

> res <- plot(victim.ca, labels = c(2, 0))
> segments(res$rows[,1], res$rows[,2], res$cols[,1], res$cols[,2])
> legend("topleft", legend = c("First", "Second"), title = "Occurrence",
+ col = c("blue", "red"), pch = 16 : 17, bg = "gray90")
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Figure 6.3: 2D CA solution for the repeat victimization data. Lines connect the category points for
first and second occurrence to highlight these relations.{fig:ca-victims-plot}
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In Figure 6.3 it may be seen that most of the points are extremely close for the first and second
occurrence of a crime, indicating that the row profile for a crime is very similar to its corresponding
column profile, with Rape and Pickpocket as exceptions.

In fact, if the table was symmetric, the row and column points in Figure 6.3 would be identical,
as can be easily demonstrated by analyzing a symmetric version.

> RVsym <- (RepVict + t(RepVict)) / 2
> RVsym.ca <- ca(RVsym)
> res <- plot(RVsym.ca)
> all.equal(res$rows, res$cols)

[1] TRUE

The first dimension appears to contrast crimes against the person (right) with crimes against
property (left), and it may be that the second dimension represents degree of violence associated
with each crime. The latter interpretation is consistent with the movement of Rape towards a higher
position and Pickpocket towards a lower one on this dimension.

4

6.2.4 Corespondence analysis and mosaic displays
For a two-way table, CA and mosaic displays give complementary views of the pattern of associ-
ation between the row and column variables, but both are based on the (Pearson) residuals from
independence. CA shows the row and column categories as points in a 2D (or 3D) space accounting
for the largest proportion of the Pearson χ2, while mosaics show the association by the pattern of
shading in the mosaic tiles. It is useful to compare them directly to see how associations can be
interpreted from these graphs. {ex:TV2}

EXAMPLE 6.4: TV viewing data
The data on television viewership from Hartigan and Kleiner (1984) was used as an example

of manipulating complex categorical data in Section 2.9. The main association here concerns how
viewership across days of the week varies by TV network, so we first collapse the TV data to a 5×3
two-way table.

> data("TV", package = "vcdExtra")
> TV2 <- margin.table(TV, c(1, 3))
> TV2

Network
Day ABC CBS NBC
Monday 2847 2923 2629
Tuesday 3110 2403 2568
Wednesday 2434 1283 2212
Thursday 1766 1335 5886
Friday 2737 1479 1998

In this case, the 2D CA solution is exact, meaning that two dimensions account for 100% of the
association.

> TV.ca <- ca(TV2)
> TV.ca

Principal inertias (eigenvalues):
1 2

Value 0.081934 0.010513
Percentage 88.63% 11.37%
...
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The plot of this solution is shown in the left panel of Figure 6.4, using lines from the origin to
the category points for the networks.

> res <- plot(TV.ca)
> segments(0, 0, res$cols[,1], res$cols[,2], col = "red", lwd = 2)
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Figure 6.4: CA plot and mosaic display for the TV viewing data. The days of the week in the
mosaic plot were permuted according to their order in the CA solution.{fig:TV-mosaic-ca}

An analogous mosaic display, informed by the CA solution, is shown in the right panel of
Figure 6.4. Here, the days of the week are reordered according to their positions on the first CA
dimension, another example of effect ordering.

> days.order <- order(TV.ca$rowcoord[,1])
> mosaic(t(TV2[days.order,]), shade = TRUE, legend = FALSE,
+ labeling = labeling_residuals, suppress=0)

In the CA plot, you can see that the dominant dimension separates viewing on Thursday, with
the largest share of viewers watching NBC, from the other weekdays. In the mosaic plot, Thursday
stands out as the only day with a higher than expected frequency for NBC, and this is the largest
residual in the entire table. The second dimension in the CA plot separates CBS, with its greatest
proportion of viewers on Monday, from ABC, with greater viewership on Wednesday and Friday.

Emerson (1998, Fig. 2) gives a table listing the shows in each half-hour time slot. Could the
overall popularity of NBC on Thursday have been due to Friends or Seinfeld? An answer to this and
similar questions requires analysis of the three-way table (Exercise 6.9) and model-based methods
for polytomous outcome variables described in Section 8.3.

4

6.3 Multi-way tables: Stacking and other tricks
{sec:ca-multiway}

A three- or higher-way table can be analyzed by correspondence analysis in several ways. Multiple
correspondence analysis (MCA), described in Section 6.4, is an extension of simple correspondence
analysis that analyzes simultaneously all possible two-way tables contained within a multiway table.
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Figure 6.5: Stacking approach for a three-way table. Two of the table variables are combined
interactively to form the rows of a two-way table.{fig:stacking}

Another approach, described here, is called stacking or interactive coding. This is a bit of a trick,
to force a multiway table into a two-way table for a standard correspondence analysis, but it is a
useful one.

A three-way table of size I × J ×K can be sliced into I two-way tables, each J ×K. If the
slices are concatenated vertically, the result is one two-way table, of size (I×J)×K, as illustrated
in Figure 6.5. In effect, the first two variables are treated as a single composite variable with IJ
levels, which represents the main effects and interaction between the original variables that were
combined. Van der Heijden and de Leeuw (1985) discuss this use of correspondence analysis for
multi-way tables and show how each way of slicing and stacking a contingency table corresponds
to the analysis of a specified loglinear model. Like the mosaic display, this provides another way to
visualize the relations in a loglinear model.

In particular, for the three-way table with variables A,B,C that is reshaped as a table of size
(I × J) × K, the correspondence analysis solution analyzes residuals from the log-linear model
[AB][C]. That is, for such a table, the I × J rows represent the joint combinations of variables A
and B. The expected frequencies under independence for this table are

m[ij]k =
nij+ n++k

n
, (6.6) {eq:mij-k}

which are the ML estimates of expected frequencies for the log-linear model [AB][C]. The χ2 that is
decomposed by correspondence analysis is the Pearson χ2 for this log-linear model. When the table
is stacked as I × (J ×K) or J × (I ×K), correspondence analysis decomposes the residuals from
the log-linear models [A][BC] and [B][AC], respectively, as shown in Table 6.1. In this approach,
only the associations in separate [ ] terms are analyzed and displayed in the correspondence analysis
maps. Van der Heijden and de Leeuw (1985) show how a generalized form of correspondence
analysis can be interpreted as decomposing the difference between two specific loglinear models,
so their approach is more general than is illustrated here.

6.3.1 Interactive coding in R
{sec:ca-interactiveR}

In the general case of an n-way table, the stacking approach is similar to that used by ftable()
and structable() in vcd as described in Section 2.5 to flatten multiway tables to a two-way,
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Table 6.1: Each way of stacking a three-way table corresponds to a loglinear model {tab:stacking}

Stacking structure Loglinear model
(I × J)×K [AB][C]
I × (J ×K) [A][BC]
J × (I ×K) [B][AC]

printable form, where some variables are assigned to the rows and the others to the columns. Both
ftable() and structable() have as.matrix() methods2 that convert their result into a
matrix suitable as input to ca().

With data in the form of a frequency data frame, you can easily create interactive coding using
interaction() or simply use paste() to join the levels of stacked variables together.

To illustrate, create a 4-way table of random Poisson counts (with constant mean, λ = 15) of
types of Pet, classified by Age, Color, and Sex.

> set.seed(1234)
> dim <- c(3, 2, 2, 2)
> tab <- array(rpois(prod(dim), 15), dim = dim)
> dimnames(tab) <- list(Pet = c("dog", "cat", "bird"),
+ Age = c("young", "old"),
+ Color = c("black", "white"),
+ Sex = c("male", "female"))

You can use ftable() to print this, with a formula that assigns Pet and Age to the columns
and Color and Sex to the rows.

> ftable(Pet + Age ~ Color + Sex, tab)

Pet dog cat bird
Age young old young old young old

Color Sex
black male 10 12 16 16 16 12

female 8 12 13 15 11 13
white male 18 11 12 18 13 20

female 13 13 16 15 12 15

Then, as.matrix() creates a matrix with the levels of the stacked variables combined with
some separator character. Using ca(pet.mat) would then calculate the CA solution for the
stacked table, analyzing only the associations in the loglinear model [Pet Age][Color Sex].3

> (pet.mat <- as.matrix(ftable(Pet + Age ~ Color + Sex, tab), sep = '.'))

Pet.Age
Color.Sex dog.young dog.old cat.young cat.old bird.young bird.old
black.male 10 12 16 16 16 12
black.female 8 12 13 15 11 13
white.male 18 11 12 18 13 20
white.female 13 13 16 15 12 15

With data in a frequency data frame, a similar result (as a frequency table) can be obtained using
interaction() as shown below. The result of xtabs() looks the same as pet.mat.

2This requires at least R version 3.1.0 or vcd 1.3-2 or later.
3The result would not be at all interesting here. Why?
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> tab.df <- as.data.frame(as.table(tab))
> tab.df <- within(tab.df,
+ {Pet.Age = interaction(Pet, Age)
+ Color.Sex = interaction(Color, Sex)
+ })
> xtabs(Freq ~ Color.Sex + Pet.Age, data = tab.df)

{ex:suicide1}

EXAMPLE 6.5: Suicide rates in Germany
To illustrate the use of correspondence analysis for the analysis for three-way tables, we use

data on suicide rates in West Germany classified by sex, age, and method of suicide used. The data,
from Heuer (1979, Table 1) have been discussed by Friendly (1991, 1994), van der Heijden and
de Leeuw (1985), and others.

The original 2 × 17 × 9 table contains 17 age groups from 10 to 90 in 5-year steps and 9
categories of suicide method, contained in the frequency data frame Suicide in vcd, with table
variables sex, age, and method. To avoid extremely small cell counts and cluttered displays,
this example uses a reduced table in which age groups are combined in the variable age.group,
a factor with 15-year intervals except for the last interval, which includes ages 70–90; the methods
“toxic gas” and “cooking gas” were collapsed (in the variable method2) giving the 2× 5× 8 table
shown in the output below. These changes do not affect the general nature of the data or conclusions
drawn from them.

In this example, we decided to stack the combinations of age and sex, giving an analysis of
the loglinear model [AgeSex][Method], to show how the age–sex categories relate to method of
suicide.

In the case of a frequency data frame, it is quite simple to join two or more factors to form
the rows of a new two-way table. Here we use paste() to form a new, composite factor, called
age_sex here, abbreviating sex for display purposes.

> data("Suicide", package = "vcd")
> # interactive coding of sex and age.group
> Suicide <- within(Suicide, {
+ age_sex <- paste(age.group, toupper(substr(sex, 1, 1)))
+ })

Then, use xtabs() to construct the two-way table suicide.tab:

> suicide.tab <- xtabs(Freq ~ age_sex + method2, data = Suicide)
> suicide.tab

method2
age_sex poison gas hang drown gun knife jump other
10-20 F 921 40 212 30 25 11 131 100
10-20 M 1160 335 1524 67 512 47 189 464
25-35 F 1672 113 575 139 64 41 276 263
25-35 M 2823 883 2751 213 852 139 366 775
40-50 F 2224 91 1481 354 52 80 327 305
40-50 M 2465 625 3936 247 875 183 244 534
55-65 F 2283 45 2014 679 29 103 388 296
55-65 M 1531 201 3581 207 477 154 273 294
70-90 F 1548 29 1355 501 3 74 383 106
70-90 M 938 45 2948 212 229 105 268 147

The results of the correspondence analysis of this table are shown below:

> suicide.ca <- ca(suicide.tab)
> summary(suicide.ca)
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Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.096151 57.2 57.2 **************
2 0.059692 35.5 92.6 *********
3 0.008183 4.9 97.5 *
4 0.002158 1.3 98.8
5 0.001399 0.8 99.6
6 0.000557 0.3 100.0
7 6.7e-050 0.0 100.0

-------- -----
Total: 0.168207 100.0

...

It can be seen that 92.6% of the χ2 for this model is accounted for in the first two dimensions.
Plotting these gives the display shown in Figure 6.6.

> plot(suicide.ca)
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Figure 6.6: 2D CA solution for the stacked [AgeSex][Method] table of the suicide data.{fig:ca-suicide-plot}

Dimension 1 in the plot separates males (right) and females (left), indicating a large difference
between suicide profiles of males and females with respect to methods of suicide. The second
dimension is mostly ordered by age with younger groups at the bottom and older groups at the top.
Note also that the positions of the age groups are roughly parallel for the two sexes. Such a pattern
indicates that sex and age do not interact in this analysis.

The relation between the age–sex groups and methods of suicide can be approximately inter-
preted in terms of similar distance and direction from the origin, which represents the marginal row
and column profiles. Young males are more likely to commit suicide by gas or a gun, older males
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by hanging, while young females are more likely to ingest some toxic agent and older females by
jumping or drowning. 4

{ex:suicide2}

EXAMPLE 6.6: Suicide rates in Germany — mosaic plot
For comparison, it is useful to see how to construct a mosaic display showing the same associ-

ations for the loglinear model [AS][M ] as in the correspondence analysis plot. To do this, we first
construct the three-way table, suicide.tab3,

> suicide.tab3 <- xtabs(Freq ~ sex + age.group + method2, data = Suicide)

As discussed in Chapter 5, mosaic plots are sensitive both to the order of variables used in
successive splits, and to the order of levels within variables and are most effective when these
orders are chosen to reflect the some meaningful ordering.

In the present example, method2 is an unordered table factor, but Figure 6.6 shows that the
methods of suicide vary systematically with both sex and age, corresponding to dimensions 1 and
2, respectively. Here we choose to reorder the table according to the coordinates on Dimension 1.
We also delete the low-frequency "other" category to simplify the display.

> # methods, ordered as in the table
> suicide.ca$colnames

[1] "poison" "gas" "hang" "drown" "gun" "knife"
[7] "jump" "other"

> # order of methods on CA scores for Dim 1
> suicide.ca$colnames[order(suicide.ca$colcoord[,1])]

[1] "drown" "jump" "poison" "knife" "other" "hang"
[7] "gas" "gun"

> # reorder methods by CA scores on Dim 1
> suicide.tab3 <- suicide.tab3[, , order(suicide.ca$colcoord[,1])]
> # delete "other"
> suicide.tab3 <- suicide.tab3[,, -5]
> ftable(suicide.tab3)

method2 drown jump poison knife hang gas gun
sex age.group
male 10-20 67 189 1160 47 1524 335 512

25-35 213 366 2823 139 2751 883 852
40-50 247 244 2465 183 3936 625 875
55-65 207 273 1531 154 3581 201 477
70-90 212 268 938 105 2948 45 229

female 10-20 30 131 921 11 212 40 25
25-35 139 276 1672 41 575 113 64
40-50 354 327 2224 80 1481 91 52
55-65 679 388 2283 103 2014 45 29
70-90 501 383 1548 74 1355 29 3

To construct the mosaic display for the same model analyzed by correspondence analysis, we
use the argument expected=~age.group*sex + method2 to supply the model formula.
For this large table, it is useful to tweak the labels for the method2 variable to reduce overplotting;
the labeling_args argument provides many options for customizing strucplot displays.

> library(vcdExtra)
> mosaic(suicide.tab3, shade = TRUE, legend = FALSE,
+ expected = ~ age.group * sex + method2,
+ labeling_args = list(abbreviate_labs = c(FALSE, FALSE, 5)),
+ rot_labels = c(0, 0, 0, 90))
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Figure 6.7: Mosaic display showing deviations from the model [AgeSex][Method] for the suicide
data. {fig:ca-suicide-mosaic}

This figure (Figure 6.7) again shows the prevalence of gun and gas among younger males and
decreasing with age, whereas use of hang increases with age. For females, these three methods are
used less frequently, whereas poison, jump, and drown occur more often. You can also see that
for females the excess prevalence of these high-frequency methods varies somewhat less with age
than it does for males.

4

6.3.2 Marginal tables and supplementary variables
{ca:marginal}

An n-way table in frequency form or case form is automatically collapsed over factors that are not
listed in the call to xtabs()when creating the table input for ca(). The analysis gives a marginal
model for the categorical variables that are listed.

The positions of the categories of the omitted variables may nevertheless be recovered, by treat-
ing them as supplementary variables, given as additional rows or columns in the two-way table. A
supplementary variable is ignored in finding the CA solution, but its categories are then projected
into that space. This is another useful trick to extend traditional CA to higher-way tables.

To illustrate, the code below lists only the age and method2 variables, and hence produces an
analysis collapsed over sex. This ignores not only the effect of sex itself, but also all associations
of age and method with sex, which are substantial. We don’t show the ca() result or the plot yet.

> # two way, ignoring sex
> suicide.tab2 <- xtabs(Freq ~ age.group + method2, data = Suicide)
> suicide.tab2
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method2
age.group poison gas hang drown gun knife jump other

10-20 2081 375 1736 97 537 58 320 564
25-35 4495 996 3326 352 916 180 642 1038
40-50 4689 716 5417 601 927 263 571 839
55-65 3814 246 5595 886 506 257 661 590
70-90 2486 74 4303 713 232 179 651 253

> suicide.ca2 <- ca(suicide.tab2)

To treat the levels of sex as supplementary points, we calculate the two-way table of sex and
method, and append this to the suicide.tab2 as additional rows:

> # relation of sex and method
> suicide.sup <- xtabs(Freq ~ sex + method2, data = Suicide)
> suicide.tab2s <- rbind(suicide.tab2, suicide.sup)

In the call to ca(), we then indicate these last two rows as supplementary:

> suicide.ca2s <- ca(suicide.tab2s, suprow = 6 : 7)
> summary(suicide.ca2s)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.060429 93.9 93.9 ***********************
2 0.002090 3.2 97.1 *
3 0.001479 2.3 99.4 *
4 0.000356 0.6 100.0

-------- -----
Total: 0.064354 100.0

...

This CA analysis has the same total Pearson chi-square, χ2(28) = 3422.5, as the result of
chisq.test(suicide.tab2). However, the scree plot display above shows that the associa-
tion between age and method is essentially one-dimensional, but note also that dimension 1 (“age–
method”) in this analysis has nearly the same inertia (0.0604) as the second dimension (0.0596) in
the analysis of the stacked table. We plot the CA results as shown below (see Figure 6.8), and add
a line connecting the supplementary points for sex.

> res <- plot(suicide.ca2s, pch = c(16, 15, 17, 24))
> lines(res$rows[6 : 7,])
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Figure 6.8: 2D CA solution for the [Age] [Method] marginal table. Category points for Sex are
shown as supplementary points. {fig:ca-suicide-sup}
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Comparing this graph with Figure 6.6, you can see that ignoring sex has collapsed the differences
between males and females, which were the dominant feature of the analysis including sex. The
dominant feature in Figure 6.8 is the Dimension 1 ordering of both age and method. However, as in
Figure 6.6, the supplementary points for sex point toward the methods that are more prevalent for
females and males.

6.4 Multiple correspondence analysis
{sec:mca}

Multiple correspondence analysis (MCA) is designed to display the relationships of the categories
of two or more discrete variables, but it is best used for multiway tables where the extensions of
classical CA described in Section 6.3 do not suffice. Again, this is motivated by the desire to provide
an optimal scaling of categorical variables, giving scores for the discrete variables in an n-way table
with desirable properties, and which can be plotted to visualize the relations among the category
points.

The most typical development of MCA starts by defining indicator (“dummy”) variables for
each category and reexpresses the n-way contingency table in the form of a cases-by-variables
indicator matrix, Z. Simple correspondence analysis for a two-way table can, in fact, be derived as
the canonical correlation analysis of the indicator matrix.

Unfortunately, the generalization to more than two variables follows a somewhat different path,
so that simple CA does not turn out to be precisely a special case of MCA in some respects, partic-
ularly in the decomposition of an interpretable χ2 over the dimensions in the visual representation.

Nevertheless, MCA does provide a useful graphic portrayal of the bivariate relations among any
number of categorical variables, and has close relations to the mosaic matrix (Section 5.6). If its
limitations are understood, it is helpful in understanding large, multivariate categorical data sets, in
a similar way to the use of scatterplot matrices and dimension-reduction techniques (e.g., principal
component analysis) for quantitative data.

6.4.1 Bivariate MCA
{sec:mca-bi}

For the hair color–eye color data, the indicator matrix Z has 592 rows and 4 + 4 = 8 columns. The
columns refer to the eight categories of hair color and eye color and the rows to the 592 students in
Snee’s 1974 sample.

For simplicity, we show the calculation of the indicator matrix below in frequency form, using
model.matrix() to compute the dummy (0/1) variables for the levels of hair color (Hair1–
Hair4) and eye color (Eye1–Eye4).

> haireye.df <- cbind(
+ as.data.frame(haireye),
+ model.matrix(Freq ~ Hair + Eye, data=haireye,
+ contrasts.arg=list(Hair=diag(4), Eye=diag(4)))[,-1]
+ )
> haireye.df

Hair Eye Freq Hair1 Hair2 Hair3 Hair4 Eye1 Eye2 Eye3 Eye4
1 Black Brown 68 1 0 0 0 1 0 0 0
2 Brown Brown 119 0 1 0 0 1 0 0 0
3 Red Brown 26 0 0 1 0 1 0 0 0
4 Blond Brown 7 0 0 0 1 1 0 0 0
5 Black Blue 20 1 0 0 0 0 1 0 0
6 Brown Blue 84 0 1 0 0 0 1 0 0
7 Red Blue 17 0 0 1 0 0 1 0 0
8 Blond Blue 94 0 0 0 1 0 1 0 0
9 Black Hazel 15 1 0 0 0 0 0 1 0
10 Brown Hazel 54 0 1 0 0 0 0 1 0



6.4: Multiple correspondence analysis 241

11 Red Hazel 14 0 0 1 0 0 0 1 0
12 Blond Hazel 10 0 0 0 1 0 0 1 0
13 Black Green 5 1 0 0 0 0 0 0 1
14 Brown Green 29 0 1 0 0 0 0 0 1
15 Red Green 14 0 0 1 0 0 0 0 1
16 Blond Green 16 0 0 0 1 0 0 0 1

Thus, the first row in haireye.df represents the 68 individuals having black hair (Hair1=1)
and brown eyes (Eye1=1). The indicator matrix Z is then computed by replicating the rows in
haireye.df according to the Freq value, using the function expand.dft. The result has 592
rows and 8 columns.

> Z <- expand.dft(haireye.df)[,-(1:2)]
> vnames <- c(levels(haireye.df$Hair), levels(haireye.df$Eye))
> colnames(Z) <- vnames
> dim(Z)

[1] 592 8

Note that if the indicator matrix is partitioned as Z = [Z1,Z2], corresponding to the two sets
of categories, then the contingency table is given by N = ZT

1 Z2.

> (N <- t(as.matrix(Z[,1:4])) %*% as.matrix(Z[,5:8]))

Brown Blue Hazel Green
Black 68 20 15 5
Brown 119 84 54 29
Red 26 17 14 14
Blond 7 94 10 16

With this setup, MCA can be described as the application of the simple correspondence analysis
algorithm to the indicator matrix Z. This analysis would yield scores for the rows of Z (the cases),
usually not of direct interest, and for the columns (the categories of both variables). As in simple
CA, each row point is the weighted average of the scores for the column categories, and each column
point is the weighted average of the scores for the row observations.4

Consequently, the point for any category is the centroid of all the observations with a response
in that category, and all observations with the same response pattern coincide. As well, the origin
reflects the weighted average of the categories for each variable. As a result, category points with
low marginal frequencies will be located further away from the origin, while categories with high
marginal frequencies will be closer to the origin. For a binary variable, the two category points
will appear on a line through the origin, with distances inversely proportional to their marginal
frequencies. {ex:haireye4}

EXAMPLE 6.7: Hair color and eye color
For expository purposes, we illustrate the analysis of the indicator matrix below for the hair

color–eye color data using ca(), rather than the function mjca(), which is designed for a more
general approach to MCA.

> Z.ca <- ca(Z)
> res <- plot(Z.ca, what = c("none", "all"))

In the call to plot.ca, the argument what is used to suppress the display of the row points
for the cases. The plot shown in Figure 6.9 is an enhanced version of this basic plot.

4Note that, in principle, this use of an indicator matrix could be extended to three (or more) variables. That extension is
more easily described using an equivalent form, the Burt matrix, described in Section 6.4.2.
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Figure 6.9: Correspondence analysis of the indicator matrix Z for the hair color–eye color data.
The category points are joined separately by lines for the hair color and eye color categories.{fig:mca-haireye1}

Dim1 Dim2 factor levels
1 -0.94250 1.09220 Hair Black
2 -0.27693 -0.16608 Hair Brown
3 -0.24194 -1.62513 Hair Red
4 1.56039 0.35376 Hair Blond
5 -0.91933 0.44905 Eye Brown
6 1.02254 0.42176 Eye Blue
7 -0.39712 -0.85105 Eye Hazel
8 0.30215 -1.72375 Eye Green

Comparing Figure 6.9 with Figure 6.1, we see that the general pattern of the hair color and eye
color categories is the same in the analysis of the contingency table (Figure 6.1) and the analysis
of the indicator matrix (Figure 6.9), except that the axes are scaled differently—the display has
been stretched along the second (vertical) dimension. The interpretation is the same: Dimension 1
reflects a dark–light ordering of both hair and eye colors, and Dimension 2 reflects something that
largely distinguishes red hair and green eyes from the other categories.

Indeed, it can be shown (Greenacre, 1984, 2007) that the two displays are identical, except for
changes in scales along the axes. There is no difference at all between the displays in standard
coordinates. Greenacre (1984, pp. 130–134) describes the precise relations between the geometries
of the two analyses.

4

Aside from the largely cosmetic difference in relative scaling of the axes, a major difference
between analysis of the contingency table and analysis of the indicator matrix is in the decompo-
sition of principal inertia and corresponding χ2 contributions for the dimensions. The plot axes
in Figure 6.9 indicate 24.3% and 19.2% for the contributions of the two dimensions, whereas Fig-
ure 6.1 shows 89.4% and 9.5%. This difference is the basis for the more general development of
MCA methods and is reflected in the mcja() function illustrated later in this chapter. But first,
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we describe a second approach to extending simple CA to the multivariate case based on the Burt
matrix.

6.4.2 The Burt matrix
{sec:mca-burt}

The same solution for the category points as in the analysis of the indicator matrix may be obtained
more simply from the so-called Burt matrix (Burt, 1950),

B = ZTZ =

[
N1 N
NT N2

]
,

where N1 and N2 are diagonal matrices containing the marginal frequencies of the two variables
(the column sums of Z1 and Z2). In this representation, the contingency table of the two variables,
N , appears in the off-diagonal block in this equation. This calculation is shown below.

> Burt <- t(as.matrix(Z)) %*% as.matrix(Z)
> rownames(Burt) <- colnames(Burt) <- vnames
> Burt

Black Brown Red Blond Brown Blue Hazel Green
Black 108 0 0 0 68 20 15 5
Brown 0 286 0 0 119 84 54 29
Red 0 0 71 0 26 17 14 14
Blond 0 0 0 127 7 94 10 16
Brown 68 119 26 7 220 0 0 0
Blue 20 84 17 94 0 215 0 0
Hazel 15 54 14 10 0 0 93 0
Green 5 29 14 16 0 0 0 64

The standard coordinates from an analysis of the Burt matrix B are identical to those of Z.
(However, the singular values of B are the squares of those of Z.) Then, the following code, using
the Burt matrix produces the same display of the category points for hair color and eye color as
shown for the indicator matrix Z in Figure 6.9.

> Burt.ca <- ca(Burt)
> plot(Burt.ca)

6.4.3 Multivariate MCA
{sec:mca-multi}

The coding of categorical variables in an indicator matrix and the relationship to the Burt matrix
provides a direct and natural way to extend this analysis to more than two variables. If there are Q
categorical variables, and variable q has Jq categories, then the Q-way contingency table, of size
J =

∏Q
q=1 Jq = J1 × J2 × · · · × JQ, with a total of n = n++··· observations, may be represented

by the partitioned (n× J) indicator matrix [Z1 Z2 . . . ZQ].
Then the Burt matrix is the symmetric partitioned matrix

B = ZTZ =


N1 N12 · · · N1Q

N21 N2 · · · N2Q

...
...

. . .
...

NQ1 NQ2 · · · NQ

 , (6.7) {eq:burt}

where again the diagonal blocks Ni contain the one-way marginal frequencies. The off-diagonal
blocks Nij contain the bivariate marginal contingency tables for each pair (i, j) of variables.

Classical MCA (see, e.g., Greenacre (1984), Gower and Hand (1996)) can then be defined as a
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singular value decomposition of the matrix B, which produces scores for the categories of all vari-
ables so that the greatest proportion of the bivariate, pairwise associations in all blocks (including
the diagonal blocks) is accounted for in a small number of dimensions.

In this respect, MCA resembles multivariate methods for quantitative data based on the joint
bivariate correlation or covariance matrix (Σ) and there is some justification for regarding the Burt
matrix as the categorical analog of Σ.5

There is a close connection between this analysis and the bivariate mosaic matrix (Section 5.6):
The mosaic matrix displays the residuals from independence for each pair of variables, and thus
provides a visual representation of the Burt matrix. The one-way margins shown (by default) in the
diagonal cells reflect the diagonal matrices Ni in Eqn. (6.7). The total amount of shading in all
the individual mosaics portrays the total pairwise associations decomposed by MCA. See Friendly
(1999) for further details.

For interpretation of MCA plots, we note the following relations (Greenacre, 1984, Section
5.2):6

• The inertia contributed by a given variable increases with the number of response categories.
• The centroid of the categories for each discrete variable is at the origin of the display.
• For a particular variable, the inertia contributed by a given category increases as the marginal

frequency in that category decreases. Low frequency points therefore appear further from the
origin.

• The category points for a binary variable lie on a line through the origin. The distance of each
point to the origin is inversely related to the marginal frequency.

{ex:marital3}

EXAMPLE 6.8: Marital status and pre- and extramarital sex
The data on the relation between marital status and reported premarital and extramarital sex was

explored earlier using mosaic displays in Example 5.9 and Example 5.13.
Using the ca package, an MCA analysis of the PreSex data is carried out using mjca(). This

function typically takes a data frame in case form containing the factor variables, but converts a table
to this form. This example analyzes the Burt matrix calculated from the PreSex data, specified as
lambda="Burt"

> data("PreSex", package = "vcd")
> PreSex <- aperm(PreSex, 4:1) # order variables G, P, E, M
> presex.mca <- mjca(PreSex, lambda = "Burt")
> summary(presex.mca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.149930 53.6 53.6 *************
2 0.067201 24.0 77.6 ******
3 0.035396 12.6 90.2 ***
4 0.027365 9.8 100.0 **

-------- -----
Total: 0.279892 100.0
...

The output from summary() seems to show that 77.6% of the total inertia is accounted for in
two dimensions. A basic, default plot of the MCA solution is provided by the plot() method for
"mjca" objects.

5For multivariate normal data, however, the mean vector and covariance matrix are sufficient statistics, so all higher-way
relations are captured in the covariance matrix. This is not true of the Burt matrix. Moreover, the covariance matrix is
typically expressed in terms of mean-centered variables, while the Burt matrix involves the marginal frequencies. A more
accurate statement is that the uncentered covariance matrix is analogous to the Burt matrix.

6This book, now out of print, is available for free download at http://www.carme-n.org/.



6.4: Multiple correspondence analysis 245

> plot(presex.mca)

This plotting method is not very flexible in terms of control of graphical parameters or the ability
to add additional annotations (labels, lines, legend) to ease interpretation. Instead, we use the plot
method to create an empty plot (with no points or labels), and return the calculated plot coordinates
(res) for the categories. A bit of processing of the coordinates provides the customized display
shown in Figure 6.10.

> # plot, but don't use point labels or points
> res <- plot(presex.mca, labels = 0, pch = ".", cex.lab = 1.2)
>
> # extract factor names and levels
> coords <- data.frame(res$cols, presex.mca$factors)
> nlev <- presex.mca$levels.n
> fact <- unique(as.character(coords$factor))
>
> cols <- c("blue", "red", "brown", "black")
> points(coords[,1:2], pch=rep(16:19, nlev), col=rep(cols, nlev), cex=1.2)
> text(coords[,1:2], label=coords$level, col=rep(cols, nlev), pos=3,
+ cex=1.2, xpd=TRUE)
> lwd <- c(2, 2, 2, 4)
> for(i in seq_along(fact)) {
+ lines(Dim2 ~ Dim1, data = coords, subset = factor==fact[i],
+ lwd = lwd[i], col = cols[i])
+ }
>
> legend("bottomright",
+ legend = c("Gender", "PreSex", "ExtraSex", "Marital"),
+ title = "Factor", title.col = "black",
+ col = cols, text.col = cols, pch = 16:19,
+ bg = "gray95", cex = 1.2)
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Figure 6.10: MCA plot of the Burt matrix for the PreSex data. The category points are joined
separately by lines for the factor variables. {fig:presex-mca-plot}
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As indicated above, the category points for each factor appear on lines through the origin, with
distances inversely proportional to their marginal frequencies. For example, the categories for No
premarital and extramarital sex are much larger than the corresponding Yes categories, so the former
are positioned closer to the origin. In contrast, the categories of gender and marital status are more
nearly equal marginally.

Another aspect of interpretation of Figure 6.10 concerns the alignment of the lines for different
factors. The positions of the category points on Dimension 1 suggest that women are less likely to
have had pre-marital and extra-marital sex and that still being married is associated with the absence
of pre- and extra-marital sex. As well, the lines for gender and marital status are nearly at right
angles, suggesting that these variables are unassociated. This interpretation is more or less correct,
but it is only approximate in this MCA scaling of the coordinate axes. An alternative scaling, based
on a biplot representation is described in Section 6.5.

If you compare the MCA result in Figure 6.10 with the mosaic matrix in Figure 5.23, you will
see that they are both showing the bivariate pairwise associations among these variables, but in
different ways. The mosaic plots show the details of marginal and joint frequencies together with
residuals from independence for each 2×2 marginal subtable. The MCA plot using the Burt matrix
summarizes each category point in terms of a 2D representation of contributions to total inertia
(association). 4

6.4.3.1 Inertia decomposition

The transition from simple CA to MCA is straightforward in terms of the category scores derived
from the indicator matrix Z or the Burt matrix, B. It is less so in terms of the calculation of
total inertia, and therefore in the chi-square values and corresponding percentages of association
accounted for in some number of dimensions.

In simple CA, the total inertia is χ2/n, and it therefore makes sense to talk of percentage of
association accounted for by each dimension. But in MCA of the indicator matrix, the total inertia,∑
λ2, is simply (J −Q)/Q, because the inertia of each subtable, Zi, is equal to its dimensionality,

Ji − 1, and the total inertia of an indicator matrix is the average of the inertias of its subtables.
Consequently, the average inertia per dimension is 1/Q, and it is common to interpret only those
dimensions that exceed this average (analogous to the use of 1 as a threshold for eigenvalues in
principal components analysis).

To more adequately reflect the percentage of association in MCA, Greenacre (1990), revising
an earlier proposal by Benzécri (1977), suggested the calculation of adjusted inertia, which ignores
the contributions of the diagonal blocks in the Burt matrix,

(λ?i )
2 =

[
Q

Q− 1
(λZi −

1

Q
)

]2
(6.8){eq:benzecri}

as the principal inertia due to the dimensions with (λZ)2 > 1/Q. This adjustment expresses the
contribution of each dimension as (λ?i )

2/
∑

(λ?i )
2, with the summation over only dimensions with

(λZ)2 > 1/Q.
A related method, also handled by mjca(), is joint correspondence analysis (Greenacre, 1994,

Greenacre, 2007, Chapter 19), an iterative method that replaces the diagonal blocks of the Burt
matrix with values that minimize their impact on inertia. Unlike MCA, solutions in JCA are not
nested, however.{ex:titanic2}

EXAMPLE 6.9: Survival on the Titanic
An MCA analysis of the Titanic data is carried out using mjca() as shown below.
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> titanic.mca <- mjca(Titanic)

mjca() allows different scaling methods for the contributions to inertia of the different dimen-
sions. The default (lambda="adjusted"), used here, is the adjusted inertias as in Eqn. (6.8).

> summary(titanic.mca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.067655 76.8 76.8 ***********************
2 0.005386 6.1 82.9 **
3 00000000 0.0 82.9

-------- -----
Total: 0.088118
...

Using similar code to that used in Example 6.8, Figure 6.11 shows an enhanced version of the
default plot that connects the category points for each factor by lines using the result returned by the
plot() function.
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Figure 6.11: MCA plot of the Titanic data. The category points are joined separately by lines for
the factor variables. {fig:titanic-mca-plot}

In this plot, the points for each factor have the property that the sum of coordinates on each
dimension, weighted inversely by the marginal proportions, equals zero. Thus high-frequency cate-
gories (e.g., Adult and Male) are close to the origin.
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The first dimension is perfectly aligned with gender, and also strongly aligned with Survival.
The second dimension pertains mainly to Class and Age effects. Consider those points that differ
from the origin most similarly (in distance and direction) to the point for Survived (“Yes”); this
gives the interpretation that survival was associated with being female or upper class or (to a lesser
degree) being a child.

4

6.5 Biplots for contingency tables
{sec:biplot}

Like correspondence analysis, the biplot (Bradu and Gabriel, 1978, Gabriel, 1971, 1980, 1981,
Gower et al., 2011) is a visualization method that uses the SVD to display a matrix in a low-
dimensional (usually 2-dimensional) space. They differ in the relationships in the data that are
portrayed, however:

• In correspondence analysis the (weighted, χ2) distances between row points and distances be-
tween column points are designed to reflect differences between the row profiles and column
profiles.

• In the biplot, on the other hand, row and column points are represented by vectors from the
origin such that the projection (inner product) of the vector ai for row i on bj for column j
approximates the data element yij ,

Y ≈ ABT ⇐⇒ yij ≈ aT
i bj . (6.9){eq:biplot1}

Geometrically, Eqn. (6.9) may be described as approximating the data value yij by the projection
of the end point of vector ai on bj (and vice-versa), as shown in Figure 6.12.

||a|| cos θ

a

b
θ

||a
||

Figure 6.12: The scalar product of vectors of two points from the origin is the length of the projec-
tion of one vector on the other.{fig:Scalarproduct}

6.5.1 CA bilinear biplots

As in CA, there are a number of different representations of coordinates for row and column points
for a contingency table within a biplot framework. One set of connections between CA and the
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biplot can be seen through the reconstitution formula, giving the decomposition of the correspon-
dence matrix P = N/n in terms of the standard coordinates Φ and Γ, defined in Eqn. (6.4) and
Eqn. (6.5) as:

pij = ricj

(
1 +

M∑
m=1

√
λmφimγjm

)
, (6.10){eq:reconstitution1}

or, in matrix terms,
P = Dr(11T + ΦD

1/2
λ ΓT)Dc . (6.11) {eq:reconstitution2}

The CA solution approximates this by a sum over d � M dimensions, or by using only the first d
(usually 2) columns of Φ and Γ.

Eqn. (6.10) can be re-written in biplot scalar form as(
pij
ricj

)
− 1 ≈

d∑
m=1

(
√
λmφim)γjm =

d∑
m=1

fimγjm (6.12) {eq:rowprincipal}

where fim = (
√
λmφim) gives the principal coordinates of the row points. The left-hand side

of Eqn. (6.12) contains the contingency ratios, pij/ricj , of the observed cell probabilities to their
expected values under independence. This shows that an asymmetric CA plot of row principal
coordinates F and the column standard coordinates Γ is a biplot that approximates the deviations
of the contingency ratios from their values under independence.

In the ca package, this plot is obtained by specifying map="rowprincipal" in the call to
plot(), or map="colprincipal" to plot the column points in principal coordinates. It is
typical in such biplots to display one set of coordinates as points and the other as vectors from the
origin, as controlled by the arrows argument, so that one can interpret the data values represented
as approximated by the projections of the points on the vectors.

Two other types of asymmetric “maps” are also defined with different scalings that turn out
to have better visual properties in terms of representing the relations between the row and column
categories, particularly when the strength of association (inertia) in the data is low.

• The option map="rowgab" (or map="colgab") gives a biplot form proposed by Gabriel
and Odoroff (1990) with the rows (columns) shown in principal coordinates and the columns
(rows) in standard coordinates multiplied by the mass cj (ri) of the corresponding point.

• The contribution biplot for CA (Greenacre, 2013), with the option map="rowgreen" (or
map="colgreen") provides a reconstruction of the standardized residuals from indepen-
dence, using the points in standard coordinates multiplied by the square root of the correspond-
ing masses. This has the nice visual property of showing more directly the contributions of the
vectors to the low-dimensional solution.

{ex:suicide3}

EXAMPLE 6.10: Suicide rates in Germany — biplot
To illustrate the biplot representation, we continue with the data on suicide rates in Germany

from Example 6.5, using the stacked table suicide.tab comprised of the age–sex combinations
as rows and methods of suicide as columns.

> suicide.tab <- xtabs(Freq ~ age_sex + method2, data = Suicide)
> suicide.ca <- ca(suicide.tab)

Using this result, suicide.ca, in the call to plot() below, we use map="colgreen",
and vectors represent the methods of suicide, as shown in Figure 6.13.
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> plot(suicide.ca, map = "colgreen", arrows = c(FALSE, TRUE))
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Figure 6.13: CA biplot of the suicide data using the contribution biplot scaling. Associations
between the age–sex categories and the suicide methods can be read as the projections of the points
on the vectors. The lengths of the vectors for the suicide categories reflect their contributions to this
representation in a 2D plot.{fig:ca-suicide-biplot}

The interpretation of the row points for the age–sex categories is similar to what we saw earlier
in Figure 6.6. But now, the vectors for the suicide categories reflect the contributions of those
methods to the representation of association. Thus, the methods drown, gun, and gas have large
contributions, while knife, hang, and poison are relatively small. Moreover, the projections
of the points for the age–sex combinations on the method vectors reflect the standardized residuals
from independence.

The most comprehensive modern treatment of biplot methodology is the book Understanding
Biplots (Gower et al., 2011). Together with the book, they provide an R package, UBbipl (le Roux
and Lubbe, 2013), that is capable of producing an astounding variety of high-quality plots. Unfor-
tunately, that package is only available on their publisher’s web site,7 and you need the book to be
able to use it because all the documentation is in the book. Nevertheless, we illustrate the use of the
cabipl() function to produce the version of the CA biplot shown in Figure 6.14.

7http://www.wiley.com/legacy/wileychi/gower/material.html.
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> library(UBbipl)
> cabipl(as.matrix(suicide.tab),
+ axis.col = gray(.4), ax.name.size = 1,
+ ca.variant = "PearsonResA",
+ markers = FALSE,
+ row.points.size = 1.5,
+ row.points.col = rep(c("red", "blue"), 4),
+ plot.col.points = FALSE,
+ marker.col = "black", marker.size = 0.8,
+ offset = c(2, 2, 0.5, 0.5),
+ offset.m = rep(-0.2, 14),
+ output = NULL)
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Figure 6.14: CA biplot of the suicide data, showing calibrated axes for the suicide methods. {fig:cabipl-suicide}

This plot uses ca.variant = "PearsonResA" to specify that the biplot is to approximate
the standardized Pearson residuals by the inner product of each row point on the vector for the
column point for the suicide methods, as also in Figure 6.13. However, Figure 6.14 represents the
methods as calibrated axis lines, designed to be read as scales for the projections of the row points
(age–sex) on the methods. The UBbipl package has a huge number of options for controlling the
details of the biplot display. See Gower et al. (2011, Ch. 2) for all the details.

4
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6.5.2 Biadditive biplots
A different use of biplots for contingency tables stems from the close analogy between additive rela-
tions for a quantitative response when there is no interaction between factors, and the multiplicative
relations for a contingency table when there is no association.

For quantitative data, Bradu and Gabriel (1978) show how the biplot can be used to diagnose
additive relations among rows and columns. For example, when a two-way table is well-described
by a two-factor ANOVA model with no interaction,

yij = µ+ αi + βj + εij ⇐⇒ Y ≈ a1T + 1bT ,

then the row points, ai, and the column points, bj , will fall on two straight lines at right angles
to each other in the biplot. For a contingency table, the multiplicative relations among frequencies
under independence become additive relations in terms of log frequency, and Gabriel et al. (1997)
illustrate how biplots of log frequency can be used to explore associations in two-way and three-way
tables.

That is, for a two-way table, independence, A ⊥ B, implies that ratios of frequencies should be
proportional for any two rows, i, i′ and any two columns, j, j′. Equivalently, this means that the log
odds ratio for all such sets of four cells should be zero:

A ⊥ B ⇐⇒ log θii′,jj′ = log

(
nijni′j′

ni′jnij′

)
= 0 .

Now, if the log frequencies have been centered by subtracting the grand mean, Gabriel et al. (1997)
show that log θii′,jj′ is approximated in the biplot (of log(nij)− log(nij)),

log θii′,jj′ ≈ aT
i bj − aT

i′bj − aT
i bj′ + aT

i bj′ = (ai − ai′)
T(bi − bi′) .

Therefore, this biplot criterion for independence in a two-way table is whether (ai−ai′)
T(bi−

bi′) ≈ 0 for all pairs of rows, i, i′, and all pairs of columns, j, j′. But (ai − ai′) is the vector
connecting ai to ai′ and (bj − bj′) is the vector connecting bj to bj′ , as shown in Figure 6.15,
and the inner product of any two vectors equals zero iff they are orthogonal. Hence, this criterion
implies that all lines connecting pairs of row points are orthogonal to lines connecting pairs of
column points, as illustrated in Figure 6.15.{ex:soccer3}

a1

a2

b1

b2

Figure 6.15: Independence implies orthogonal vector differences in a biplot of log frequency. The
line joining a1 to a2 represents (a1 − a2). This line is perpendicular to the line (b1 − b2) under
independence.{fig:bidemo}
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EXAMPLE 6.11: UK soccer scores
We examined the data on UK soccer scores in Example 5.5 and saw that the number of goals

scored by the home and away teams were largely independent (see Figure 5.10). This data set
provides a good test of the ability of the biplot to diagnose independence.

> data("UKSoccer", package = "vcd")
> dimnames(UKSoccer) <- list(Home = paste0("H", 0:4),
+ Away = paste0("A", 0:4))

Basic biplots in R are provided by biplot(), which works mainly with the result calculated by
prcomp() or princomp(). Here, we use prcomp() on the log frequencies in the UKSoccer
table, adding 1, because there is one cell with zero frequency.

> soccer.pca <- prcomp(log(UKSoccer + 1), center = TRUE, scale. = FALSE)

The result is plotted using a customized plot based on biplot(), as shown in Figure 6.16.

> biplot(soccer.pca, scale = 0, var.axes = FALSE,
+ col = c("blue", "red"), cex = 1.2, cex.lab = 1.2,
+ xlab = "Dimension 1", ylab = "Dimension 2")
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Figure 6.16: Biplot for the biadditive representation of independence for the UK soccer scores. The
row and column categories are independent in this plot when they appear as points on approximately
orthogonal lines. {fig:biplot-soccer-plot}

To supplement this plot and illustrate the orthogonality of row and column category points under
independence, we added horizontal and vertical lines as calculated below, using the results returned
by prcomp(). The initial version of this plot showed that two points, A2 and H2, did not align
with the others, so these were excluded from the calculations.
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> # get the row and column scores
> rscores <- soccer.pca$x[, 1 : 2]
> cscores <- soccer.pca$rotation[, 1 : 2]
> # means, excluding A2 and H2
> rmean <- colMeans(rscores[-3,])[2]
> cmean <- colMeans(cscores[-3,])[1]
>
> abline(h = rmean, col = "blue", lwd = 2)
> abline(v = cmean, col = "red", lwd = 2)
> abline(h = 0, lty = 3, col = "gray")
> abline(v = 0, lty = 3, col = "gray")

You can see that all the A points (except for A2) and all the H points (except for H2) lie along
straight lines, and these lines are indeed at right angles, signifying independence. The fact that these
straight lines are parallel to the coordinate axes is incidental, and unrelated to the independence
interpretation.

4

6.6 Chapter summary
{sec:ca-summary}

• Correspondence analysis is an exploratory technique, designed to show the row and column
categories in a two- (or three-) dimensional space. These graphical displays, and various exten-
sions, provide ways to interpret the patterns of association and visually explore the adequacy of
certain loglinear models.

• The scores assigned to the categories of each variable are optimal in several equivalent ways.
Among other properties, they maximize the (canonical) correlations between the quantified vari-
ables (weighted by cell frequencies), and make the regressions of each variable on the other most
nearly linear, for each CA dimension.

• Multi-way tables may be analyzed in several ways. In the “stacking” approach, two or more
variables may be combined interactively in the rows and/or columns of an n-way table. Simple
CA of the restructured table reveals associations between the row and column categories of the
restructured table, but hides associations between the variables combined interactively. Each
way of stacking corresponds to a particular loglinear model for the full table.

• Multiple correspondence analysis is a generalization of CA to two or more variables based on
representing the data as an indicator matrix, or the Burt matrix. The usual MCA provides an
analysis of the joint, bivariate relations between all pairs of variables.

• The biplot is a related technique for visualizing the elements of a data array by points or vectors
in a joint display of their row and column categories. A standard CA biplot represents the
contributions to lack of independence as the projection of the points for rows (or columns) on
vectors for the other categories.

• Another application of the biplot to contingency table data is described, based on analysis of
log frequency. This analysis also serves to diagnose patterns of independence and partial inde-
pendence in two-way and larger tables.

6.7 Lab exercises
{sec:ca-lab}{lab:6.1}

Exercise 6.1 The JobSat data in vcdExtra (Friendly, 2015) gives a 4 × 4 table recording job
satisfaction in relation to income.
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(a) Carry out a simple correspondence analysis on this table. How much of the inertia is accounted
for by a one-dimensional solution? How much by a two-dimensional solution?

(b) Plot the 2D CA solution. To what extent can you consider the association between job satis-
faction and income “explained” by the ordinal nature of these variables?

{lab:6.2}

Exercise 6.2 Refer to Exercise 5.1 in Chapter 5. Carry out a simple correspondence analysis on
the 4× 5 table criminal from the logmult (Bouchet-Valat, 2015) package.

(a) What percentages of the Pearson χ2 for association are explained by the various dimensions?
(b) Plot the 2D correspondence analysis solution. Describe the pattern of association between

year and age.
{lab:6.3}{lab:ca-crash}

Exercise 6.3 Refer to Exercise 5.2 for a description of the AirCrash data from the vcdExtra
package. Carry out a simple correspondence analysis on the 5× 5 table of Phase of the flight and
Cause of the crash.

(a) What percentages of the Pearson χ2 for association are explained by the various dimensions?
(b) Plot the 2D correspondence analysis solution. Describe the pattern of association between

phase and cause. How would you interpret the dimensions?
(c) The default plot method uses map="symmetric" with points for both rows and columns.

Try using map="symbiplot" with vectors (arrows=) for either rows or columns. (Read
help(plot.ca) for a description of these options.)

{lab:6.4}

Exercise 6.4 The data set caith in MASS gives a classic table tabulating hair color and eye color
of people in Caithness, Scotland, originally from Fisher (1940).

(a) Carry out a simple correspondence analysis on this table. How many dimensions seem neces-
sary to account for most of the association in the table?

(b) Plot the 2D solution. The interpretation of the first dimension should be obvious; is there any
interpretation for the second dimension?

{lab:6.5}

Exercise 6.5 The same data, plus a similar table for Aberdeen, are given as a three-way table as
HairEyePlace in vcdExtra.

(a) Carry out a similar correspondence analysis to the last exercise for the data from Aberdeen.
Comment on any differences in the placement of the category points.

(b) Analyze the three-way table, stacked to code hair color and place interactively, i.e., for the
loglinear model [Hair Place][ Eye]. What does this show?

{lab:6.6}{lab:ca-gilby}

Exercise 6.6 The data set Gilby in vcdExtra gives a classic (but now politically incorrect) 6 ×
4 table of English schoolboys classified according to their clothing and their teacher’s rating of
“dullness” (lack of intelligence).

(a) Compute and plot a correspondence analysis for this data. Write a brief description and inter-
pretation of these results.

(b) Make an analogous mosaic plot of this table. Interpret this in relation to the correspondence
analysis plot.

{lab:6.7}

Exercise 6.7 For the mental health data analyzed in Example 6.2, construct a shaded sieve diagram
and mosaic plot. Compare these with the correspondence analysis plot shown in Figure 6.2. What
features of the data and the association between SES and mental health status are shown in each?
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{lab:6.8}

Exercise 6.8 Simulated data are often useful to help understand the connections between data,
analysis methods, and associated graphic displays. Section 6.3.1 illustrated interactive coding in
R, using a simulated 4-way table of counts of pets, classified by age, color, and sex, but with no
associations because the counts had a constant Poisson mean, λ = 15.

(a) Re-do this example, but in the call to rpois(), specify a non-negative vector of Poisson
means to create some associations among the table factors.

(b) Use CA methods to determine if and how the structure you created in the data appears in the
results.

{lab:6.9}{lab:TV3}

Exercise 6.9 The TV data was analyzed using CA in Example 6.4, ignoring the variable Time.
Carry out analyses of the 3-way table, reducing the number of levels of Time to three hourly
intervals as shown below.

> data("TV", package="vcdExtra")
> # reduce number of levels of Time
> TV.df <- as.data.frame.table(TV)
> levels(TV.df$Time) <- rep(c("8", "9", "10"), c(4, 4, 3))
> TV3 <- xtabs(Freq ~ Day + Time + Network, TV.df)
> structable(Day ~ Network + Time, TV3)

Day Monday Tuesday Wednesday Thursday Friday
Network Time
ABC 8 536 861 744 735 1119

9 1401 1205 1022 682 907
10 910 1044 668 349 711

CBS 8 1167 646 550 680 509
9 967 959 409 385 544
10 789 798 324 270 426

NBC 8 858 1090 512 1927 823
9 946 890 831 1858 590
10 825 588 869 2101 585

(a) Use the stacking approach (Section 6.3) to perform a CA of the table with Network and Time
coded interactively. You can create this using the as.matrix() method for a "structable"
object.

> TV3S <- as.matrix(structable(Day ~ Network + Time, TV3), sep=":")

(b) What loglinear model is analyzed by this approach?
(c) Plot the 2D solution. Compare this to the CA plot of the two-way table in Figure 6.4.
(d) Carry out an MCA analysis using mjca() of the three-way table TV3. Plot the 2D solution,

and compare this with both the CA plot and the solution for the stacked three-way table.
{lab:6.10}{lab:presex}

Exercise 6.10 Refer to the MCA analysis of the PreSex data in Example 6.8. Use the stacking
approach to analyze the stacked table with the combinations of premarital and extramarital sex in
the rows and the combinations of gender and marital status in the columns. As suggested in the
exercise above, you can use as.matrix(structable()) to create the stacked table.

(a) What loglinear model is analyzed by this approach? Which associations are included and
which are excluded in this analysis?

(b) Plot the 2D CA solution for this analysis. You might want to draw lines connecting some of
the row points or column points to aid in interpretation.

(c) How does this analysis differ from the MCA analysis shown in Figure 6.10?
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{lab:6.11}{lab:ca-vietnam}

Exercise 6.11 Refer to Exercise 5.10 for a description of the Vietnam data set in vcdExtra.

(a) Using the stacking approach, carry out a correspondence analysis corresponding to the loglin-
ear model [R][YS], which asserts that the response is independent of the combinations of year
an sex.

(b) Construct an informative 2D plot of the solution, and interpret in terms of how the response
varies with year for males and females.

(c) Use mjca() to carry out an MCA on the three-way table. Make a useful plot of the solution
and interpret in terms of the relationship of the response to year and sex.

{lab:6.12}{lab:ca-accident}

Exercise 6.12 Refer to Exercise 5.9 for a description of the Accident data set in vcdExtra. The
data set is in the form of a frequency data frame, so first convert to table form.

> accident.tab <- xtabs(Freq ~ age + result + mode + gender, data=Accident)

(a) Use mjca() to carry out an MCA on the four-way table accident.tab.
(b) Construct an informative 2D plot of the solution, and interpret in terms of how the variable

result varies in relation to the other factors.
{lab:6.13}

Exercise 6.13 The UCBAdmissions data was featured in numerous examples in Chapter 4 (e.g.,
Example 4.11, Example 4.15) and Chapter 5 (e.g., Example 5.14, Example 5.18).

(a) Use mjca() to carry out an MCA on the three-way table UCBAdmissions.
(b) Plot the 2D MCA solution in a style similar to that shown in Figure 6.10 and Figure 6.11
(c) Interpret the plot. Is there some interpretation for the first dimension? What does the plot

show about the relation of admission to the other factors?
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