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This chapter introduces the modeling framework for categorical data in the simple
situation where we have a categorical response variable, often binary, and one or more
explanatory variables. A fitted model provides both statistical inference and prediction, ac-
companied by measures of uncertainty. Data visualization methods for discrete response
data must often rely on smoothing techniques, including both direct, non-parametric smooth-
ing and the implicit smoothing that results from a fitted parametric model. Diagnostic plots
help us to detect influential observations that may distort our results.

7.1 Introduction
{sec:logist-intro}

All models are wrong, but some are useful.

George E. P. Box, (Box and Draper, 1987, p. 424)

Chapters 4–6 have been concerned primarily with simple exploratory methods for studying the
relations among categorical variables and with testing hypotheses about their associations through
non-parametric tests and with overall goodness-of-fit statistics.

This chapter begins our study of model-based methods for the analysis of discrete data. These
models differ from those we have examined earlier primarily in that they consider explicitly an as-
sumed probability distribution for the observations, and make clear distinctions between the system-
atic component, which is explained by the model, and the random component, which is not. More
importantly, the model-based approach allows a compact summary of categorical data in terms of a
(hopefully) small number of parameters accompanied by measures of uncertainty (standard errors),
and the ability to estimate predicted values over the range of explanatory variables.
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262 7. Logistic Regression Models

Figure 7.1: Overview of fitting and graphing for model-based methods in R.{fig:goverview}

This model-fitting approach has several advantages: (a) Inferences for the model parameters
include both hypothesis tests and confidence intervals. (b) The former help us to assess which
explanatory variables affect the outcome; the size of the estimated parameters and the widths of their
confidence intervals help us to assess the strength and importance of these effects. (c) There are a
variety of methods for model selection, designed to help determine a favorable trade-off between
goodness-of-fit and parsimony. (d) Finally, the predicted values obtained from the model effectively
smooth the discrete responses, allow predictions for unobserved values of the explanatory variables,
and provide important means to interpret the fitted relationship graphically.

Figure 7.1 provides a visual overview of the steps for fitting and graphing with model-based
methods in R. (a) A modeling function such as glm() is applied to an input data frame. The result
is a model object containing all the information from the fitting process. (b) As is standard in R,
print() and summary()methods give, respectively, basic and detailed printed output. (c) Many
modeling functions have plot() methods that produce different types of summary and diagnostic
plots. (d) For visualizing the fitted model, most model methods provide a predict() method that
can be used to plot the fitted values from the model over the ranges of the predictors. Such plots can
be customized by the addition of points (showing the observations), lines, confidence bands, and so
forth.

In this chapter we consider models for a binary response, such as “success” or “failure,” or the
number of “successes” in a fixed number of “trials,” where we might reasonably assume a binomial
distribution for the random component. As we will see in Chapter 8, these methods extend readily
to a polytomous response with more than two outcome categories, such as improvement in therapy,
with categories “none,” “some,” and “marked.”

These models can be seen as simple extensions of familiar ANOVA and regression models for
quantitative data. They are also important special cases of a more general approach, the generalized
linear model that subsumes a wide variety of families of techniques within a single, unified frame-
work. However, rather than starting at the top with the fully general version, this chapter details the
important special cases of models for discrete outcomes, beginning with binary responses.

This chapter proceeds as follows: in Section 7.2 we introduce the simple logistic regression
model for a binary response and a single quantitative predictor. This model extends directly to
models for grouped, binomial data (Section 7.2.4) and to models with any number of regressors
(Section 7.3), which can be quantitative, discrete factors, and more general forms.

For interpreting and understanding the results of a fitted model, we emphasize plotting predicted
probabilities and predicted log odds in various ways, for which effect plots (Section 7.3.3) are
particularly useful for complex models.

Section 7.4 presents several case studies to highlight issues of data analysis, model building,
and visualization in the context of constructing and interpreting multiple logistic regression models.
These focus on the combination of exploratory plots to see the data, modeling steps, and graphs to
interpret a given model. Individual observations sometimes exert great influence on a fitted model.
Some measures of influence and diagnostic plots are illustrated in Section 7.5.
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7.2 The logistic regression model
{sec:logist-model}

The logistic regression model describes the relationship between a discrete outcome variable, the
“response,” and a set of explanatory variables. The response variable is often dichotomous, although
extensions to the model permit multi-category, polytomous outcomes, discussed in Chapter 8. The
explanatory variables may be continuous or (with factor variables) discrete.

For a binary response, Y , and a continuous explanatory variable, X , we may be interested in
modeling the probability of a successful outcome, which we denote π(x) ≡ Pr(Y = 1 |X = x).
That is, at a given value X = x, you can imagine that there is a binomial distribution of the
responses, Bin(π(x), nx).

The simplest naive model, called the linear probability model, supposes that this probability,
π(x), varies linearly with the value of x,

E(Y |x) = π(x) = α+ βx , (7.1) {eq:logit0}

where the notationE(Y |x) indicates that the probability π(x) represents the population conditional
average of the 1s and 0s for all observations with a fixed value of x. For binary observations, this is
simply the proportion of 1s.

Figure 7.2 illustrates the basic setup for modeling a binary outcome using the Arthritis data,
and described more fully in Example 7.1–Example 7.3: The “Better” response represents a positive
effect of some arthritis medicament, given age. The 0/1 observations are shown as (jittered) points.
The predicted values under the linear probability model (Eqn. (7.1)) are shown as the red lines in
both panels. As you can see, this model cannot be right, because it predicts a probability less than 0
for small values of Age, and would also predict probabilities greater than 1 for larger values of Age.

The linear probability model is also wrong because it assumes that the distribution of residuals,
Yi− π̂(xi), is normal, with mean 0 and constant variance. However, because Y is dichotomous, the
residuals are also dichotomous, and have variance π(xi)(1− π(xi)), which is maximal for π = 0.5
and decreases as π goes toward 0 or 1.
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Figure 7.2: Arthritis treatment data, for the relationship of the binary response “Better” to Age,
shown as jittered points. The left panel shows the predicted values and 95% confidence envelope
under the linear probability model. The right panel shows the fitted logistic regression, together
with the simple linear regression (red) and a non-parametric (loess) smoothed curve (green). {fig:arthritis-age}
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One way around the difficulty of needing to constrain the predicted values to the interval [0, 1]
is to re-specify the model so that a transformation of π has a linear relation to x, and that transfor-
mation keeps π̂ between 0 and 1 for all x. This idea of modeling a transformation of the response
that has desired statistical properties is one of the fundamental ones that led to the development of
generalized linear models, which we treat more fully later in Chapter 11.

A particularly convenient choice of the transformation gives the linear logistic regression model
(or linear logit model1), which posits a linear relation between the log odds (or logit) of this proba-
bility and x,

logit[π(x)] ≡ log

(
π(x)

1− π(x)

)
= α+ βx . (7.2){eq:logit1}

When β > 0, π(x) and the log odds increase as X increases; when β < 0 they decrease with X .
This model can also be expressed as a model for the probabilities π(x) in terms of the inverse

of the logit transformation used in Eqn. (7.2),

π(x) = logit−1[π(x)] =
1

1 + exp[−(α+ βx)]
. (7.3){eq:logit1a}

This transformation uses the cumulative distribution function of the logistic distribution, Λ(p) =
1

1+exp(−p) , giving rise to the term logistic regression.2

From Eqn. (7.2) we see that the odds of a success response can be expressed as

odds(Y = 1) ≡ π(x)

1− π(x)
= exp(α+ βx) = eα(eβ)x , (7.4){eq:logit2}

which is a multiplicative model for the odds. So, under the logistic model,

• β is the change in the log odds associated with a unit increase in x. The odds are multiplied by
eβ for each unit increase in x.

• α is log odds at x = 0; eα is the odds of a favorable response at this x-value (which may not
have a reasonable interpretation if X = 0 is far from the range of the data).

It is easy to explore the relationships among probabilities, odds, and log odds using R, as we
show below, using the function fractions() in MASS (Ripley, 2015a) to print the odds corre-
sponding to probability p as a fraction.

> library(MASS)
> p <- c(.05, .10, .25, .50, .75, .90, .95)
> odds <- p / (1 - p)
> data.frame(p,
+ odds = as.character(fractions(odds)),
+ logit = log(odds))

p odds logit
1 0.05 1/19 -2.9444
2 0.10 1/9 -2.1972
3 0.25 1/3 -1.0986
4 0.50 1 0.0000
5 0.75 3 1.0986
6 0.90 9 2.1972
7 0.95 19 2.9444

1Some writers use the term logit model to refer to those using only categorical predictors; we use the terms logistic
regression and logit regression interchangeably.

2Any other cumulative probability transformation serves the purpose of constraining the probabilities to the interval [0,
1]. The cumulative normal transformation π(x) = Φ(α + βx) gives the linear probit regression model. We don’t treat
probit models here because: (a) The logistic and probit models give results so similar that it is hard to distinguish them in
practice; (b) The logistic model is simpler to interpret as a linear model for the log odds or a multiplicative model for the
odds.
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Thus, a probability of π = 0.25 represents an odds of 1 to 3, or 1/3, while a probability of
π = 0.75 represents an odds of 3 to 1, or 3. The logits are symmetric around 0, so logit(.25) =
− logit(.75).

Another simple way to interpret the parameter β in the logistic regression model is to consider
the relationship between the probability π(x) and x. From Eqn. (7.3) it can be shown that the fitted
curve (the blue line in Figure 7.2) has slope equal to βπ(1− π). This has a maximum value of β/4
when π = 1

2 , so taking β/4 gives a quick estimate of the maximum effect of x on the probability
scale.

In Figure 7.2 and other plots later in this chapter we try to show the binary responses (as jittered
points or a rug plot) to help you appreciate how the fitted logistic curve arises from their distribution
across the range of a predictor. For didactic purposes this can be seen more readily by plotting the
conditional distributions of f(x | y), y ∈ {0, 1} as a histogram, boxplot, or density plot. The func-
tion logi.hist.plot() in the popbio (Stubben et al., 2012) package is a nice implementation
of this idea (de la Cruz Rot, 2005). The call below produces Figure 7.3, and it is easy to see how
increasing age produces a greater probability of a Better response.

> with(Arthritis,
+ logi.hist.plot(Age, Improved > "None", type = "hist",
+ counts = TRUE, ylabel = "Probability (Better)",
+ xlab = "Age", col.cur = "blue",
+ col.hist = "lightblue", col.box = "lightblue")
+ )
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Figure 7.3: Plot of the Arthritis treatment data, showing the conditional distributions of the 0/1
observations of the Better response by histograms and boxplots. {fig:arth-logi-hist}

7.2.1 Fitting a logistic regression model
{sec:logist-fitting}

Logistic regression models are the special case of generalized linear models fit in R using glm()
for a binary response using family=binomial. We first illustrate how simple models can be fit
and interpreted. {ex:arthrit6}

EXAMPLE 7.1: Arthritis treatment
In Chapter 4 we examined the data on treatment for rheumatoid arthritis in relation to two
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categorical predictors, sex of patient and treatment. In addition, the Arthritis data gives the age
of each patient in this study, and we focus here on the relationship between Age and the outcome,
Improved. This response variable has three categories (none, some, or marked improvement), but
for now we consider whether the patient showed any improvement at all, defining the event Better
to be some or marked improvement.

> data("Arthritis", package = "vcd")
> Arthritis$Better <- as.numeric(Arthritis$Improved > "None")

The logistic regression model is fit using glm() as shown below, specifying family=binomial
for a binary response.

> arth.logistic <- glm(Better ~ Age, data = Arthritis, family = binomial)

As usual for R modeling functions, the print() method for "glm" objects gives brief printed
output, while the summary()method is more verbose, and includes standard errors and hypothesis
tests for the model coefficients. To save some space, it is convenient to use the generic function
coeftest() from the lmtest (Hothorn et al., 2014) package. Then, we can use this instead of the
more detailed summary():

> library(lmtest)
> coeftest(arth.logistic)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.6421 1.0732 -2.46 0.014 *
Age 0.0492 0.0194 2.54 0.011 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the output above, the parameter estimates are α = −2.642, and β = 0.0492. So, the estimated
odds of a better response are multiplied by eβ = exp(0.0492) = 1.05 for each one-year increase in
age. Equivalently, you can think of this as a 5% increase per year (using 100(eβ − 1) to convert).
Over 10 years, the odds are multiplied by exp(10 × 0.0492) = 1.64, a 64% increase, a substantial
effect in the range for these data. You can do these calculations in R using the coef() method for
the "glm" object.

> exp(coef(arth.logistic))

(Intercept) Age
0.071214 1.050482

> exp(10 * coef(arth.logistic)["Age"])

Age
1.6364

For comparison with the logistic model, we could fit the linear probability model Eqn. (7.1)
using either lm() or glm() with the default family=gaussian argument.

> arth.lm <- glm(Better ~ Age, data = Arthritis)
> coef(arth.lm)

(Intercept) Age
-0.107170 0.011379
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The coefficient for age can be interpreted to indicate that the probability of a better response
increases by 0.011 for each one-year increase in age. You can compare this with the β/4 rule of
thumb, which gives 0.0492/4 = 0.0123. Even though the linear probability model is inappropriate
theoretically, you can see in Figure 7.2 (the black line) that it gives similar predicted probabilities
to those of the logistic model between age 25–75, where most of the data points are located.

4

7.2.2 Model tests for simple logistic regression
{sec:logist-tests}

There are two main types of hypothesis tests one might want to perform for a logistic regression
model. We postpone general discussion of this topic until Section 7.3, but introduce the main ideas
here using the analysis of the Arthritis data.

• The most basic test answers the question, “How much better is the fitted model, logit(π) =
α + βx, than the null model logit(π) = α, which includes only the regression intercept?”
One answer to this question is given by the (Wald) test of the coefficient for age, testing the
hypothesisH0 : β = 0 that appeared in the output from summary(arth.logistic) shown
above. The more direct test compares the deviance3 of the fitted model to the deviance of the
null model, and can be obtained using the anova() function:

> anova(arth.logistic, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: Better

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 83 116
Age 1 7.29 82 109 0.007 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• A second question is, “How bad is this model, compared to a model (the saturated model) that
fits the data perfectly?” This is a test of the size of the residual deviance, which is given by the
function LRstats() in vcdExtra (Friendly, 2015).

> library(vcdExtra)
> LRstats(arth.logistic)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

arth.logistic 113 118 109 82 0.024 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The summary of these tests is that linear logistic model Eqn. (7.2) fits significantly better than
the null model, but that model also shows significant lack of fit.

3The deviance is basically defined as −2 times the log-likelihood ratio of some reduced model to the full model. Two
nested models can thus be compared by computing the difference of the corresponding deviances. If the larger model has k
more parameters than the reduced one, this difference follows a chi-squared distribution with k degrees of freedom.
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7.2.3 Plotting a binary response
{sec:logist-plotting}

It is often difficult to understand how a binary response can give rise to a smooth, continuous relation
between the predicted response, usually the probability of an event, and a continuous explanatory
variable. Beyond this, plots of the data together with fitted models help you to interpret what these
models imply.

We illustrate two approaches below using the Arthritis data shown in Figure 7.2, first using
R base graphics, and then with the ggplot2 (Wickham and Chang, 2015) package that makes such
graphs somewhat easier to do.

That plot, which was designed for didactic purposes, has the following features:

• It shows the data, that is, the 0/1 observations of the Better response in relation to age. To do
this effectively and avoid over-plotting, the binary responses are jittered.

• It plots the predicted (fitted) logistic regression relationship on the scale of probability, together
with a 95% confidence band.

• It also plots the predicted probabilities from the linear probability model.
• A smoothed, non-parametric regression curve for the binary observations is also added to the

plot to give some indication of possible nonlinearity in the relationship of Better to age.
{ex:arthrit7}

EXAMPLE 7.2: Arthritis treatment — Plotting logistic regression with base graphics
Here we explain how plots similar to Figure 7.2 can be constructed using R base graphics.

We describe the steps needed to calculate predicted values and confidence bands and how to add
these to a basic plot. These ideas are the basis for the higher-level and more convenient plotting
methods illustrated later in this chapter (Section 7.3.2) The steps detailed below give the plot shown
in Figure 7.4.

First, we set up the basic plot of the jittered values of Better vs. Age, setting xlim to a
larger range than that in the data, only to emphasize where the logistic and linear probability models
diverge.
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Figure 7.4: A version of plot of the Arthritis treatment data (Figure 7.2) produced with R base
graphics, showing logistic, linear regression and lowess fits.{fig:arthritis-age2}
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> plot(jitter(Better, .1) ~ Age, data = Arthritis,
+ xlim = c(15, 85), pch = 16,
+ ylab="Probability (Better)")

The fitted logistic curve can be obtained using the predict() method for the "glm" object
arth.logistic. For this example, we wanted to get fitted values for the range of Age from 15–
85, which is specified in the newdata argument.4 The argument type="response" gives fitted
values of the probabilities. (The default, type="link" would give predicted logits.) Standard
errors of the fitted values are not calculated by default, so we set se.fit=TRUE.

> xvalues <- seq(15, 85, 5)
> pred.logistic <- predict(arth.logistic,
+ newdata = data.frame(Age = xvalues),
+ type = "response", se.fit = TRUE)

When se.fit=TRUE, the predict() function returns its result in a list, with components
fit for the fitted values and se.fit for the standard errors. From these, we can calculate 95%
pointwise prediction intervals using the standard normal approximation.

> upper <- pred.logistic$fit + 1.96 * pred.logistic$se.fit
> lower <- pred.logistic$fit - 1.96 * pred.logistic$se.fit

We can then plot the confidence band using polygon() and the fitted logistic curve using
lines. A graphics trick is to use a transparent color for the confidence band using rgb(r, g,
b, alpha), where alpha is the transparency value.

> polygon(c(xvalues, rev(xvalues)),
+ c(upper, rev(lower)),
+ col = rgb(0, 0, 1, .2), border = NA)
> lines(xvalues, pred.logistic$fit, lwd=4 , col="blue")

This method, using predict() for calculations and polygon() and lines() for plotting
can be used to display the predicted relationships and confidence bands under other models. Here,
we simply used abline() to plot the fitted line for the linear probability model arth.lm and
lowess() to calculate a smoothed, non-parametric curve.

> abline(arth.lm, lwd = 2)
> lines(lowess(Arthritis$Age, Arthritis$Better, f = .9),
+ col = "red", lwd = 2)

4
{ex:arthrit8}

EXAMPLE 7.3: Arthritis treatment — Plotting logistic regression with ggplot2
Model-based plots such as Figure 7.2 are relatively more straightforward to produce using gg-

plot2. The basic steps here are to:

• set up the plot frame with ggplot() using Age and Better as (x, y) coordinates;
• use geom_point() to plot the observations, whose positions are jittered with
position_jitter();

• use stat_smooth()with method = "glm" and family = binomial to plot the pre-
dicted probability curve and confidence band. By default, stat_smooth() calculates and
plots 95% confidence bands on the response (probability) scale.

4Omitting the newdata argument would give predicted values using the linear predictors in the data used for the fitted
model. Some care needs to be taken if the predictor(s) contain missing values.
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> library(ggplot2)
> # basic logistic regression plot
> gg <- ggplot(Arthritis, aes(x = Age, y = Better)) +
+ xlim(5, 95) +
+ geom_point(position = position_jitter(height = 0.02, width = 0)) +
+ stat_smooth(method = "glm", family = binomial,
+ alpha = 0.1, fill = "blue", size = 2.5, fullrange = TRUE)

Finally, we can add other smoothers to the plot, literally by using + to add these to the "ggplot"
object.

> # add linear model and loess smoothers
> gg <- gg + stat_smooth(method = "lm", se = FALSE,
+ size = 1.2, color = "black", fullrange = TRUE)
> gg <- gg + stat_smooth(method = "loess", se = FALSE,
+ span = 0.95, colour = "red", size = 1.2)
> gg # show the plot

4

7.2.4 Grouped binomial data
{sec:logist-grouped}

A related case occurs with grouped data, where rather than binary observations, yi ∈ {0, 1} in case
form, the data is given in what is called events/trials form that records the number of successes, yi
that occurred in ni trials associated with each setting of the explanatory variable(s) xi.5 Case form,
with binary observations, is the special case where ni = 1.

Data in events/trials form often arises from contingency table data with a binary response. For
example, in the UCBAdmissions data, the response variable Admit with levels "Admitted",
"Rejected" could be treated in this way using the number of applicants as the number of trials.

As before, we can consider yi/ni to estimate the probability of success, πi, and the distribution
of Y to be binomial, Bin(πi, ni) at each xi.

In practical applications, there are two main differences between the cases of ungrouped, case
form data and grouped, event/trials form.

• In fitting models using glm(), the model formula, response ~ terms, can be given using
a response consisting of a two-column matrix, whose columns contain the numbers of suc-
cesses yi and failures ni − yi. Alternatively, the response can be given as the proportion of
successes, yi/ni, but then it is necessary to specify the number of trials as a weight.

• In plotting the fitted model on the scale of probability, you usually have to explicitly plot the
fraction of successes, yi/ni.

{ex:nasa-temp}

EXAMPLE 7.4: Space shuttle disaster
In Example 1.2 and Example 1.10 we described the background behind the post-mortem exam-

ination of the evidence relating to the disastrous launch of the space shuttle Challenger on January
28, 1986. Here we consider a simple, but proper analysis of the data available at the time of launch.
We also use this example to illustrate some details of the fitting and plotting of grouped binomial
data. As well, we describe some of the possibilities for dealing with missing data.

The data set SpaceShuttle in vcd (Meyer et al., 2015) contains data on the failures of the
O-rings in 24 NASA launches preceding the launch of Challenger, as given by Dalal et al. (1989)
and Tufte (1997), also analyzed by Lavine (1991).

Each launch used two booster rockets with a total of six O-rings, and the data set records as

5Alternatively, the data may record the number of successes, yi, and number of failures, ni − yi.
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nFailures the number of these that were considered damaged after the rockets were recovered
at sea. In one launch (flight # 4), the rocket was lost at sea, so the relevant response variables are
missing.

In this example, we focus on the variable nFailures as a binomial with ni = 6 trials. The
missing data for flight 4 can be handled in several ways in the call to glm()

> data("SpaceShuttle", package = "vcd")
> shuttle.mod <- glm(cbind(nFailures, 6 - nFailures) ~ Temperature,
+ data = SpaceShuttle, na.action = na.exclude,
+ family = binomial)

Alternatively, we can add an explicit trials variable, represent the response as the proportion
nFailures/trials, and use weight = trials to indicate the total number of observa-
tions.

> SpaceShuttle$trials <- 6
> shuttle.modw <- glm(nFailures / trials ~ Temperature, weight = trials,
+ data = SpaceShuttle, na.action = na.exclude,
+ family = binomial)

These two approaches give identical results for all practical purposes:

> all.equal(coef(shuttle.mod), coef(shuttle.modw))

[1] TRUE

As before, we can test whether temperature significantly improves prediction of failure proba-
bility using anova():

> # testing, vs. null model
> anova(shuttle.mod, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(nFailures, 6 - nFailures)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 22 24.2
Temperature 1 6.14 21 18.1 0.013 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The code below gives a ggplot2 version in Figure 7.5 of the plot we showed earlier in Exam-
ple 1.2 (Figure 1.2). The relevant details here are:

• We specify y = nFailures / trials to calculate the failure probabilities.
• Points are jittered in the call to geom_point() to prevent overplotting.
• In the call to geom_smooth(), we need to use weight = trials, just as in the call to
glm() above.

• fullrange = TRUE makes the fitted regression curve and confidence band extend across
the entire plot.
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> library(ggplot2)
> ggplot(SpaceShuttle, aes(x = Temperature, y = nFailures / trials)) +
+ xlim(30, 81) +
+ xlab("Temperature (F)") +
+ ylab("O-Ring Failure Probability") +
+ geom_point(position=position_jitter(width = 0, height = 0.01),
+ aes(size = 2)) +
+ theme(legend.position = "none") +
+ geom_smooth(method = "glm", family = binomial, fill = "blue",
+ aes(weight = trials), fullrange = TRUE, alpha = 0.2,
+ size = 2)
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Figure 7.5: Space shuttle data, with fitted logistic regression model.{fig:nasa-temp-ggplot}

4

7.3 Multiple logistic regression models
{sec:logist-mult}

As is the case in classical regression, generalizing the simple logistic regression to an arbitrary
number of explanatory variables is quite straightforward. We let xi = (xi1, xi2, . . . , xip) denote
the vector of p explanatory variables for case or cluster i. Then the general logistic regression model
can be expressed as

logit(πi) ≡ log
πi

1− πi
= α+ xT

i β (7.5)

= α+ β1xi1 + β2xi2 + · · ·+ βpxip .
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Equivalently, we can represent this model in terms of probabilities as the logistic transformation of
the linear predictor, ηi = α+ xT

i β,

πi = Λ(ηi) = Λ(α+ xT
i β) (7.6){eq:logistm1}

=
1

1 + exp(α+ β1xi1 + β2xi2 + · · ·+ βpxip)
.

The xs can include any of the following sorts of regressors, as in the general linear model:

• quantitative variables (e.g., age, income)
• polynomial powers of quantitative variables (e.g., age, age2, age3)
• transformations of quantitative variables (e.g., log salary)
• factors, represented as dummy variables for qualitative predictors (e.g., P1, P2, P3 for four

political party affiliations)
• interaction terms (e.g., sex × age, or age × income)

{ex:arthrit-mult}

EXAMPLE 7.5: Arthritis treatment
We continue with the analysis of the Arthritis data, fitting a model containing the main

effects of Age, Sex, and Treatment, with Better as the response. This model has the form

logit(πi) = α+ β1xi1 + β2xi2 + β3xi3

where x1 is Age and x2 and x3 are the factors representing Sex and Treatment, respectively.
Using the default (0/1) dummy coding that R uses (“treatment” contrasts against the lowest factor
level),6 they are defined as:

x2 =

{
0 if Female
1 if Male x3 =

{
0 if Placebo
1 if Treatment

In this model,

• α doesn’t have a sensible interpretation here, but formally it would be the log odds of im-
provement for a person at age x1 = 0 in the baseline or reference group, with x2 = 0 and
x3 = 0—that is, females receiving the placebo. To make the intercept interpretable, we will fit
the model centering age near the mean, by using x1 − 50 as the first regressor.

• β1 is the increment in log odds of improvement for each one-year increase in age.

• β2 is the increment in log odds for male as compared to female. Therefore, eβ2 gives the odds
of improvement for males relative to females.

• β3 is the increment in log odds for being in the treated group. eβ3 gives the odds of improvement
for the active treatment group relative to placebo.

We fit the model as follows. In glm() model formulas, “-” has a special meaning, so we use
the identity function, I(Age-50) to center age.

> arth.logistic2 <- glm(Better ~ I(Age-50) + Sex + Treatment,
+ data = Arthritis,
+ family = binomial)

6For factor variables with the default treatment contrasts, you can change the reference level using relevel(). In this
example, you could make male the baseline category using Arthritis$Sex <- relevel(Arthritis$Sex, ref
= "Male").
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The parameters defined here are incremental effects. The intercept corresponds to a baseline
group (50-year-old females given the placebo); the other parameters are incremental effects for the
other groups compared to the baseline group. Thus, when α, β1, β2, and β3 have been estimated,
the fitted logits and predicted odds at Age==50 are:

Sex Treatment Logit Odds Improved

Female Placebo α eα

Female Treated α+ β3 eα+β3

Male Placebo α+ β2 eα+β2

Male Treated α+ β2 + β3 eα+β2+β3

We first focus on the interpretation of the coefficients estimated for this model shown below.

> coeftest(arth.logistic2)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.5781 0.3674 -1.57 0.116
I(Age - 50) 0.0487 0.0207 2.36 0.018 *
SexMale -1.4878 0.5948 -2.50 0.012 *
TreatmentTreated 1.7598 0.5365 3.28 0.001 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To interpret these in terms of odds ratios and also find confidence intervals, just use exp() and
confint().

> exp(cbind(OddsRatio = coef(arth.logistic2),
+ confint(arth.logistic2)))

OddsRatio 2.5 % 97.5 %
(Intercept) 0.5609 0.26475 1.1323
I(Age - 50) 1.0500 1.01000 1.0963
SexMale 0.2259 0.06524 0.6891
TreatmentTreated 5.8113 2.11870 17.7266

Here,

• α = −0.578: At age 50, females given the placebo have an odds of improvement of exp(−0.578) =
0.56.

• β1 = 0.0487: Each year of age multiplies the odds of improvement by exp(0.0487) = 1.05, or
a 5% increase.

• β2 = −1.49: Males are only exp(−1.49) = 0.26 times as likely to show improvement relative
to females. (Or, females are exp(1.49) = 4.437 times more likely than males to improve.)

• β3 = 1.76: People given the active treatment are exp(1.76) = 5.8 times more likely to show
improvement compared to those given the placebo.

As you can see, the interpretation of coefficients in multiple logistic models is straightforward,
though a bit cumbersome. This becomes more difficult in larger models, particularly when there are
interactions. In these cases, you can understand (and explain) a fitted model more easily through
plots of predicted values, either on the scale of response probability or on the logit scale of the linear
predictor. We describe these methods in Section 7.3.1–Section 7.3.3 below.

4
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7.3.1 Conditional plots
{sec:logist-condplots}

The simplest kind of plots display the data together with a representation of the fitted relationship
(predicted values, confidence bands) separately for subsets of the data defined by one or more of
the predictors. Such plots can show the predicted values for the response variable on the ordinate
against one chosen predictor on the abscissa, and can use multiple curves and multiple panels to
represent other predictors.

However, these plots are conditional plots, meaning that the data shown in each panel and
used in each fitted curve are limited to the subset of the observations defined by the curve and
panel variables. As well, predictors that are not shown in a given plot are effectively ignored (or
marginalized), as was the case in Figure 7.2 that showed only the effect of age in the Arthritis
data. {ex:arth-cond}

EXAMPLE 7.6: Arthritis treatment — conditional plots
For the Arthritis data, a basic conditional plot of Better vs. Age, showing the observa-

tions as jittered points (with geom_point()) and the fitted logistic curves (with stat_smooth()
using method="glm"), can be produced with ggplot2 as shown below, giving Figure 7.6.

> library(ggplot2)
> gg <- ggplot(Arthritis, aes(Age, Better, color = Treatment)) +
+ xlim(5, 95) + theme_bw() +
+ geom_point(position = position_jitter(height = 0.02, width = 0)) +
+ stat_smooth(method = "glm", family = binomial, alpha = 0.2,
+ aes(fill = Treatment), size = 2.5, fullrange = TRUE)
> gg # show the plot
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Figure 7.6: Conditional plot of Arthritis data showing separate points and fitted curves stratified by
Treatment. A separate fitted curve is shown for the two treatment conditions, ignoring Sex. {fig:arth-cond1}

In this call to ggplot(), specifying color=Treatment gives different point and line colors,
but also automatically stratifies the fitted curves using the levels of this variable.

With such a plot, it is easy to add further stratifying variables in the data using facets to produce
separate panels (functions facet_wrap() or facet_grid(), with different options to control
the details). The following line further stratifies by Sex, producing Figure 7.7.

> gg + facet_wrap(~ Sex)

However, you can see from this plot how this method breaks down when the sample size is small
in some of the groups defined by the stratifying factors. The panel for males shows a paradoxical
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Figure 7.7: Conditional plot of Arthritis data, stratified by Treatment and Sex. The unusual patterns
in the panel for Males signals a problem with this data. {fig:arth-cond2}

negative relation with age for the treated group and a step function for the placebo group. The
explanation for this is shown in the two-way frequency table of the sex and treatment combinations:

> addmargins(xtabs(~Sex + Treatment, data = Arthritis), 2)

Treatment
Sex Placebo Treated Sum
Female 32 27 59
Male 11 14 25

Less than 1/3 of the sample were males, and of these only 11 were in the placebo group. glm()
cannot estimate the fitted relationship against Age here—the slope coefficient is infinite, and the
fitted probabilities are all either 0 or 1.7

4

7.3.2 Full-model plots
{sec:logist-fullplots}

For a model with two or more explanatory variables, full-model plots display the fitted response
surface for all predictors together, rather than stratified by conditioning variables. Such plots show
the predicted values for the response variable on the ordinate against one chosen predictor on the
abscissa, and can use multiple curves and multiple panels to represent other predictors.

The programming steps used to plot a fitted logistic regression with base graphics and ggplot2
in the style of earlier examples (Examples 7.2, 7.2, and 7.4) become more tedious with multiple pre-
dictors. The vcd package provides the function binreg_plot() designed to plot the predicted
response surface for a binary outcome directly from a fitted model object. At the time of writing,
this function does not yet handle multiple panels or facets, but separate plots for panel variables can
be produced using the subset argument as illustrated in the next example.{ex:arth-full}

EXAMPLE 7.7: Arthritis treatment — full-model plots
This example shows how to plot the fitted main effects model using binreg_plot(). These

plots can be shown either on the logit scale (with type = "link") or the probability scale (type
= "response", the default).

7This is called complete separation, and occurs whenever the responses have no overlap on the predictor variable(s) used
in fitting the logistic regression model.
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This plot method is designed to use a numeric predictor (Age here) as the horizontal axis, and
show separate point symbols and curves for the levels of the combinations of factors (if any). A
basic plot on the logit scale (not included here) showing both factors (Sex, Treatment) can be
produced using:

> library(vcd)
> binreg_plot(arth.logistic2, type = "link")

With two or more factors, such plots are often easier to read when the main factor(s) to be
compared appear (Treatment here) as lines or curves within a plot, and other factors (Sex) are
shown in separate panels. Figure 7.8 does this in two plots, using the subset argument to select
the appropriate data and predicted values for males and females. When this is done, it is important
to include the same xlim and ylim arguments so that the scales of all plots are identical.

> binreg_plot(arth.logistic2, type = "link", subset = Sex == "Female",
+ main = "Female", xlim=c(25, 75), ylim = c(-3, 3))
> binreg_plot(arth.logistic2, type = "link", subset = Sex == "Male",
+ main = "Male", xlim=c(25, 75), ylim = c(-3, 3))
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Figure 7.8: Full-model plot of Arthritis data, showing fitted logits by Treatment and Sex. {fig:arth-binreg1}

This plot method has several nice features:

• Plotting on the logit scale shows the additive linear effects of all predictors (parallel lines for
the combinations of Sex and Treatment).

• It provides a visual representation of the information contained in the table of coefficients.
• The choice to display Treatment within each panel makes it easier to judge the size of this

effect, compared to the effect of Sex, which must be judged across the panels.
• It shows the data as points, and the fitted lines and confidence bands are restricted to the range

of the data in each. You can easily see the reason for the unusual pattern in the conditional plot
for Males shown in Figure 7.7.

• It generalizes directly to any fitted model, because the predicted values are obtained from the
model object. For example, you could easily add the interaction term Age:Sex and plot the
result.
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While plots on the logit scale have a simpler form, many people find it easier to think about such
relationships in terms of probabilities, as we have done in earlier plots in this chapter. Figure 7.9
shows these plots using the default type = "response".

> binreg_plot(arth.logistic2, subset = Sex == "Female",
+ main = "Female", xlim = c(25, 75))
> binreg_plot(arth.logistic2, subset = Sex == "Male",
+ main = "Male", xlim = c(25, 75))
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Figure 7.9: Full-model plot of Arthritis data, showing fitted probabilities by Treatment and Sex.{fig:arth-binreg2}

4

7.3.3 Effect plots
{sec:logist-effplots}

For more than two variables, full-model plots of the fitted response surface can be cumbersome,
particularly when the model contains interactions or when the main substantive interest is focused
on a given main effect or interaction, controlling for all other explanatory variables. The method
of effect displays (tables and graphs), developed by John Fox (1987, 2003) and implemented in the
effects (Fox et al., 2015) package, is a useful solution to these problems.

The idea of effect plots is quite simple but very general and handles models of arbitrary com-
plexity:8 consider a particular subset of predictors (focal predictors) we wish to visualize in a given
linear model or generalized linear model. The essence is to calculate fitted values (and standard
errors) for the model terms involving these variables and all low-order relatives (e.g., main effects
that are marginal to an interaction), as these variables are allowed to vary over their range.

All other variables are “controlled” by being fixed at typical values. For example, a quantitative
covariate could be fixed at its mean or median; a factor could be fixed at equal proportions of its
levels or its proportions in the data. The result, when plotted, shows all effects of the focal predictors
and their low-order relatives, but with all other variables controlled (or “adjusted for”).

8Less general expression of these ideas include the use of adjusted means in analysis of covariance, and least squares
means or population marginal means (Searle et al., 1980) in analysis of variance; for example, see the lsmeans (Lenth and
Hervé, 2015) package for classical linear models.
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7.3.3.1 The score model matrix?

More formally, assume we have fit a model with a linear predictor ηi = α+xT
i β (on the logit scale,

for logistic regression). Letting β0 = α and x0 = 1, we can rewrite this in matrix form as η = Xβ
where X is the model matrix constructed by the modeling function, such as glm(). Fitting the
model gives the estimated coefficients b and its estimated covariance matrix V̂(b).

The Effect() function constructs an analogous score model matrix, X∗, where the focal
variables have been varied over their range, and all other variables represented as constant, typical
values. Using this as input (the newdata argument) to the predict() function then gives the fit-
ted values η∗ = X∗b. Standard errors used for confidence intervals are calculated by predict()
(when se.fit=TRUE) as the square roots of diag (X∗V̂(b)X∗T). Note that these ideas work
not only for glm() models, but potentially for any modeling function that has a predict() and
vcov() method.9

These results are calculated on the scale of the linear predictor η (logits, for logistic regression)
when the type argument to predict() is type="link" or on the response scale (probabilities,
here) when type="response". The latter makes use of the inverse transformation, Eqn. (7.6).

There are two main calculation functions in the effects package:

• Effect() takes a character vector of the names of a subset of focal predictors and con-
structs the score matrix X∗ by varying these over their ranges, while holding all other pre-
dictors constant at “typical” values. There are many options that control these calculations.
For example, xlevels can be used to specify the values of the focal predictors; typical or
given.values, respectively, can be used to specify either a function (mean, median) or a
list of specific typical values used for the variables that are controlled. The result is an object
of class "eff", for which there are print(), summary(), and (most importantly) plot()
methods. See help(Effect) for a complete description.

• allEffects() takes a model object, and calculates the effects for each high-order term in
the model (including their low-order) relatives. Similar optional arguments control the details
of the computation. The result is an object of class "efflist".

In addition, the plotting methods for "eff" and "efflist" objects offer numerous options to control
the plot details, only a few of which are used in the examples below. For logistic regression models,
they also solve the problem of the trade-off between plots on the logit scale, which have a simple
representation in terms of additive effects, and plots on the probability scale which are usually
simpler to understand. By default, the fitted model effects are plotted on the logit scale, but the
response y axis is labeled with the corresponding probability values.

7.3.3.2 Partial residuals

We noted earlier that for discrete response data, it is usually important to display the data in some
fashion, along with the fitted relationship. Conditional and full-model plots do this by jittering the
binary values at 0 and 1 so you can see where the data exists.

The effects package takes this idea further, by allowing the display of partial residuals. Letting
r denote the vector of residuals for a given model (see Section 7.5.1 for details), the partial residuals
rj pertaining to predictor xj are defined as

rj = r + β̂jxj .

9For example, the effects package presently provides methods for models fit by lm() (including multivariate linear
response models), glm(), gls(), multinomial (multinom() in the nnet (Ripley, 2015b) package) and proportional
odds models (polr() in MASS), polytomous latent class models (poLCA (Linzer and Lewis., 2014) package), as well as a
variety of multi-level and mixed-effects linear models fit with lmer() from the lme4 (Bates et al., 2014) package, or with
lme() from the nlme (Pinheiro et al., 2015) package.
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These are a natural extension of residuals in simple regression to the multiple regression setting,
in that the slope of a simple regression of r on x is equal to the value of β̂j in the full multiple
regression model (Cook, 1993). Adding partial residuals to an effect plot (together with a non-
parametric smoothing) can help to visualize lack of fit or misspecification of the response mean
attributable to continuous predictors, such as a nonlinear relation or an omitted interaction (Fox and
Weisberg, 2015b).{ex:arthrit-eff}

EXAMPLE 7.8: Arthritis treatment
Here we illustrate the use of the effects package with the simple main effects model that was fit

in Example 7.5. allEffects() is used to calculate the predicted probabilities of the Better
response for Age and the two factors, Sex and Treatment. Partial residuals (for quantitative
predictors) must be requested in the call to allEffects() or Effect().

> library(effects)
> arth.eff2 <- allEffects(arth.logistic2, partial.residuals = TRUE)
> names(arth.eff2)

[1] "I(Age-50)" "Sex" "Treatment"

The result, arth.eff2, is a list containing the fitted values (response probabilities, by de-
fault) for each of the model terms. For example the main effect for Sex is shown below; the
associated score model.matrix illustrates how Sex is varied over its range, while Age-50 and
Treatment are fixed at their average values in the data.

> arth.eff2[["Sex"]]

Sex effect
Sex
Female Male
0.60932 0.26050

> arth.eff2[["Sex"]]$model.matrix

(Intercept) I(Age - 50) SexMale TreatmentTreated
1 1 3.3571 0 0.4881
2 1 3.3571 1 0.4881
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Figure 7.10: Plot of all effects in the main effects model for the Arthritis data. Partial residuals and
their loess smooth are also shown for the continuous predictor, Age.{fig:arth-effplot1}
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The default plot method for the "efflist" object produces one plot for each high-order term, which
are just the main effects in this model. The call below produces Figure 7.10.

> plot(arth.eff2, rows = 1, cols = 3,
+ type="response", residuals.pch = 15)

The smoothed loess curve for the partial residuals with respect to age show a hint of nonlinearity,
but perhaps not enough to worry about.

You can quite easily also produce effect plots for several predictors jointly, or full-model plots
by using all predictors in the model in a call to Effect(), as shown in the call below.

> arth.full <- Effect(c("Age", "Treatment", "Sex"), arth.logistic2)

Then plotting the result, with some options, gives the plot shown in Figure 7.11.

> plot(arth.full, multiline = TRUE, ci.style = "bands",
+ colors = c("red", "blue"), lwd = 3,
+ ticks = list(at = c(.05, .1, .25, .5, .75, .9, .95)),
+ key.args = list(x = .52, y = .92, columns = 1),
+ grid = TRUE)
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Figure 7.11: Full-model plot of the effects of all predictors in the main effects model for the Arthri-
tis data, plotted on the logit scale. {fig:arth-effplot2}

Alternatively, we can plot these results directly on the scale of probabilities, as shown in Fig-
ure 7.12.

> plot(arth.full, multiline = TRUE, ci.style = "bands",
+ type="response",
+ colors = c("red", "blue"), lwd = 3,
+ key.args = list(x = .52, y = .92, columns = 1),
+ grid = TRUE)

4

7.4 Case studies
{sec:logist-case}

The examples below take up some issues of data analysis, model building, and visualization in the
context of multiple logistic regression models. We focus on the combination of exploratory plots to
see the data, modeling steps, and graphs to interpret a given model.
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Figure 7.12: Full-model plot of the effects of all predictors in the main effects model for the Arthri-
tis data, plotted on the probability scale. {fig:arth-effplot3}

7.4.1 Simple models: Group comparisons and effect plots
{sec:complex1}

{ex:donner1}

EXAMPLE 7.9: Donner Party
In Chapter 1, Example 1.3, we described the background behind the sad story of the Donner

Party, perhaps the most famous tragedy in the history of the westward settlement in the United
States. In brief, the party was stranded on the eastern side of the Sierra Nevada mountains by heavy
snow in late October 1846, and by the time the last survivor was rescued in April 1847, nearly half
of the members had died from famine and exposure to extreme cold. Figure 1.3 showed that survival
decreased strongly with age.

Here we consider a more detailed analysis of these data, which are contained in the data set
Donner in vcdExtra. This data set lists 90 people in the Donner Party by name, together with age,
sex, survived (0/1), and the date of death for those who died.10

> data("Donner", package = "vcdExtra") # load the data
> library(car) # for some() and Anova()
> some(Donner, 8)

family age sex survived death
Breen, Peter Breen 3 Male 1 <NA>
Donner, Jacob Donner 65 Male 0 1846-12-21
Foster, Jeremiah MurFosPik 1 Male 0 1847-03-13
Graves, Nancy Graves 9 Female 1 <NA>
McCutchen, Harriet McCutchen 1 Female 0 1847-02-02
Reed, James Reed 46 Male 1 <NA>
Reinhardt, Joseph Other 30 Male 0 1846-12-21
Wolfinger, Doris FosdWolf 20 Female 1 <NA>

The main purpose of this example is to try to understand, through graphs and models, how
survival was related to age and sex. However, first, we do some data preparation and exploration.
The response variable, survived, is a 0/1 integer, and it is more convenient for some purposes to
make it a factor.

10Most historical sources count the number in the Donner Party at 87 or 89. An exact accounting of the members of
the Donner Party is difficult, because: (a) several people joined the party in mid-route, at Fort Bridger and in the Wasatch
Mountains; (b) several rode ahead to search for supplies and one (Charles Stanton) brought two more with him (Luis and
Salvador); (c) five people died before reaching the Sierra Nevada mountains. Donner incorporates updated information
from Kristin Johnson’s listing, http://user.xmission.com/~octa/DonnerParty/Roster.htm.
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> Donner$survived <- factor(Donner$survived, labels = c("no", "yes"))

Some historical accounts (Grayson, 1990) link survival in the Donner Party to kinship or family
groups, so we take a quick look at this factor here. The variable family reflects a recoding of the
last names of individuals to reduce the number of factor levels. The main families in the Donner
party were: Donner, Graves, Breen, and Reed. The families of Murphy, Foster, and Pike are grouped
as "MurFosPik", those of Fosdick and Wolfinger are coded as "FosdWolf", and all others as
"Other".

> xtabs(~ family, data = Donner)

family
Breen Donner Eddy FosdWolf Graves Keseberg

9 14 4 4 10 4
McCutchen MurFosPik Other Reed

3 12 23 7

For the present purposes, we reduce these 10 family groups further, collapsing some of the small
families into "Other", and reordering the levels. Assigning new values to the levels() of a
factor is a convenient trick for recoding factor variables.

> # collapse small families into "Other"
> fam <- Donner$family
> levels(fam)[c(3, 4, 6, 7, 9)] <- "Other"
>
> # reorder, putting Other last
> fam = factor(fam,levels(fam)[c(1, 2, 4:6, 3)])
> Donner$family <- fam
> xtabs(~family, data=Donner)

family
Breen Donner Graves MurFosPik Reed Other

9 14 10 12 7 38

xtabs() then shows the counts of survival by these family groups:

> xtabs(~ survived + family, data = Donner)

family
survived Breen Donner Graves MurFosPik Reed Other

no 0 7 3 6 1 25
yes 9 7 7 6 6 13

Plotting this distribution of survival by family with a formula gives a spineplot, a special case
of the mosaic plot, or a generalization of a stacked bar plot, shown in Figure 7.13. The widths of
the bars are proportional to family size, and the shading highlights in light blue the proportion who
survived in each family.

> plot(survived ~ family, data = Donner, col = c("pink", "lightblue"))

A generalized pairs plot (Section 5.6.2), shown in Figure 7.14, gives a visual overview of the
data. The diagonal panels here show the marginal distributions of the variables as bar plots, and
highlight the skewed distribution of age and the greater number of males than females in the party.
The boxplots and barcode plots for survived and age show that those who survived were generally
younger than those who perished.
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Figure 7.13: Spineplot of survival in the Donner Party by family. {fig:donner1-spineplot}

> library(gpairs)
> library(vcd)
> gpairs(Donner[,c(4, 2, 3, 1)],
+ diag.pars = list(fontsize = 20, hist.color = "gray"),
+ mosaic.pars = list(gp = shading_Friendly),
+ outer.rot = c(45, 45)
+ )
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Figure 7.14: Generalized pairs plot for the Donner data.{fig:donner1-gpairs}
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From an exploratory perspective, we now proceed to examine the relationship of survival to
age and sex, beginning with the kind of conditional plots we illustrated earlier (in Example 7.6).
Figure 7.15 shows a plot of survived, converted back to a 0/1 variable as required by ggplot(),
together with the binary responses as points and the logistic regressions fitted separately for males
and females.

> # basic plot: survived vs. age, colored by sex, with jittered points
> gg <- ggplot(Donner, aes(age, as.numeric(survived=="yes"),
+ color = sex)) +
+ ylab("Survived") + theme_bw() +
+ geom_point(position = position_jitter(height = 0.02, width = 0))
>
> # add conditional linear logistic regressions
> gg + stat_smooth(method = "glm", family = binomial, formula = y ~ x,
+ alpha = 0.2, size = 2, aes(fill = sex))
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Figure 7.15: Conditional plot of the Donner data, showing the relationship of survival to age and
sex. The smoothed curves and confidence bands show the result of fitting separate linear logistic
regressions on age for males and females. {fig:donner1-cond1}

It is easy to see that survival among women was greater than for men, perhaps narrowing the
gap among the older people, but the data gets thin towards the upper range of age.

The curves plotted in Figure 7.15 assume a linear relationship between the log odds of survival
and age (expressed as formula = y ~ x in the call to stat_smooth()). One simple way
to check whether the relationship between survival and age is nonlinear is to re-do this plot, but
now allow a quadratic relationship with age, using formula = y ~ poly(x,2). The result is
shown in the left panel of Figure 7.16.

> # add conditional quadratic logistic regressions
> gg + stat_smooth(method = "glm", family = binomial,
+ formula = y ~ poly(x,2), alpha = 0.2, size = 2,
+ aes(fill = sex))
>
> # add loess smooth
> gg + stat_smooth(method = "loess", span=0.9, alpha = 0.2, size = 2,
+ aes(fill = sex)) +
+ coord_cartesian(ylim = c(-.05,1.05))
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Figure 7.16: Conditional plots of the Donner data, showing the relationship of survival to age and
sex. Left: The smoothed curves and confidence bands show the result of fitting separate quadratic
logistic regressions on age for males and females. Right: Separate loess smooths are fit to the data
for males and females. {fig:donner1-cond3}

This plot is quite surprising. It suggests quite different regimes relating to survival for men
and women. Among men, survival probability decreases steadily with age, at least after age 20.
For women, those in the age range 10–35 were very likely to have lived, while those over 40 were
almost all predicted to perish.

Another simple technique is to fit a non-parametric loess smooth, as shown in the right panel of
Figure 7.16.11 The curve for females is similar to that of the quadratic fit in the left panel, but the
curve for males suggests that survival also has a peak around the teenage years. One lesson to be
drawn from these graphs is that a linear logistic regression, as shown in Figure 7.16, may tell only
part of the story, and, for a binary response, it is not easy to discern whether the true relationship is
linear. If it really is, all these graphs would look much more similar. As well, we usually obtain a
more realistic smoothing of the data using full-model plots or effect plots.

The suggestions from these exploratory graphs can be used to define and test some models for
survival in the Donner Party. The substantive questions of interest are:

• Is the relationship different for men and women? This is, is it necessary to allow for an interac-
tion of age with sex, or separate fitted curves for men and women?

• Is the relationship between survival and age well-represented in a linear logistic regression
model?

The first question is the easiest to deal with: we can simply fit a model allowing an interaction
of age (or some function of age) and sex,

survived ~ age * sex
survived ~ f(age) * sex

and compare the goodness of fit with the analogous additive, main-effects models.
From a modeling perspective, there is a wide variety of approaches for testing for nonlinear

relationships. We only scratch the surface here, and only for a single quantitative predictor, x, such

11A technical problem with the use of the loess smoother for binary data is that it can produce fitted values outside the
[0–1] interval, as happens in the right panel of this figure. Kernel smoothers, such as the KernSmooth (Wand, 2015) package
avoid this problem, but are not available through ggplot2.
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as age in this example. One simple approach, illustrated in Figure 7.16, is to allow a quadratic (or
higher-power, e.g., cubic) function to describe the relationship between the log odds and x,

logit(πi) = α+ β1xi + β2x
2
i

logit(πi) = α+ β1xi + β2x
2
i + β3x

3
i

. . . .

In R, these model terms can be fit using poly(x, 2), poly(x, 3) . . ., which generate orthog-
onal polynomials for the powers of x. A simple way to test for nonlinearity is a likelihood ratio test
comparing the more complex model to the linear one. This method is often sufficient for a hypothe-
sis test, and, if the relationship truly is linear, the fitted logits and probabilities will not differ greatly
from what they would be under a linear model. A difficulty with this approach is that polynomial
models are often unrealistic, particularly for data that approach an asymptote.

Another simple approach is to use a regression spline, which fits the relationship with x in terms
of a set of piecewise polynomials, usually cubic, joined at a collection of points, called knots, so that
the overall fitted relationship is smooth and continuous. See Fox (2008, Section 17.2) for a cogent,
brief description of these methods.

One particularly convenient method is a natural spline, implemented in the splines package
in the ns() function. This method constrains the fitted cubic spline to be linear at lower and upper
limits of x, and, for k knots, fits df = k + 1 parameters not counting the intercept. The k knots can
be conveniently chosen as k cutpoints in the percentiles of the distribution of x. For example, with
k = 1, the knot would be placed at the median, or 50th percentile; with k = 3, the knots would be
placed at the quartiles of the distribution of x; k = 0 corresponds to no knots, i.e., a simple linear
regression.

In the ns() function, you can specify the locations of knots or the number of knots with the
knots argument, but it is conceptually simpler to specify the number of degrees of freedom used in
the spline fit. Thus, ns(x, 2) and poly(x, 2) both specify a term in x of the same complexity,
the former a natural spline with k = 1 knot and the later a quadratic function in x.

We illustrate these ideas in the remainder of this example, fitting a 2× 2 collection of models to
the Donner data corresponding to: (a) whether or not age and sex effects are additive; (b) whether
the effect is linear on the logit scale or nonlinear (quadratic, here). A brief summary of each
model is given using the Anova() in the car (Fox and Weisberg, 2015a) package, providing Type
II tests of each effect. As usual, summary() would give more detailed output, including tests for
individual coefficients. First, we fit the linear models, without and with an interaction term:

> donner.mod1 <- glm(survived ~ age + sex,
+ data = Donner, family =binomial)
> Anova(donner.mod1)

Analysis of Deviance Table (Type II tests)

Response: survived
LR Chisq Df Pr(>Chisq)

age 5.52 1 0.0188 *
sex 6.73 1 0.0095 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> donner.mod2 <- glm(survived ~ age * sex,
+ data = Donner, family = binomial)
> Anova(donner.mod2)

Analysis of Deviance Table (Type II tests)
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Response: survived
LR Chisq Df Pr(>Chisq)

age 5.52 1 0.0188 *
sex 6.73 1 0.0095 **
age:sex 0.40 1 0.5269
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The main effects of age and sex are both significant here, but the interaction term, age:sex, is
not in model donner.mod2. Note that the terms tested by Anova() in donner.mod1 are a
redundant subset of those in donner.mod2.

Next, we fit nonlinear models, representing the linear and nonlinear trends in age by
poly(age,2).12 The Anova() results for terms in both models are contained in the output
from Anova(donner.mod4).

> donner.mod3 <- glm(survived ~ poly(age, 2) + sex,
+ data = Donner, family = binomial)
> donner.mod4 <- glm(survived ~ poly(age, 2) * sex,
+ data = Donner, family = binomial)
> Anova(donner.mod4)

Analysis of Deviance Table (Type II tests)

Response: survived
LR Chisq Df Pr(>Chisq)

poly(age, 2) 9.91 2 0.0070 **
sex 8.09 1 0.0044 **
poly(age, 2):sex 8.93 2 0.0115 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now, in model donner.mod4, the interaction term poly(age, 2):sex is significant, indi-
cating that the fitted quadratics for males and females differ in “shape,” meaning either their linear
(slope) or quadratic (curvature) components.

These four models address the questions posed earlier. A compact summary of these models,
giving the likelihood ratio tests of goodness of fit, together with AIC and BIC statistics, are shown
below, using the LRstats() method in vcdExtra for a list of "glm" models.

> library(vcdExtra)
> LRstats(donner.mod1, donner.mod2, donner.mod3, donner.mod4)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

donner.mod1 117 125 111.1 87 0.042 *
donner.mod2 119 129 110.7 86 0.038 *
donner.mod3 115 125 106.7 86 0.064 .
donner.mod4 110 125 97.8 84 0.144
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By AIC and BIC, donner.mod4 is best, and it is also the only model with a non-significant
LR χ2 (residual deviance). Because these models comprise a 2 × 2 set of hypotheses, it is easier
to compare models by extracting the LR statistics and arranging these in a table, together with their
row and column differences. The entries in the table below are calculated as follows.

12Alternatively, we could use the term ns(age,2), or higher-degree polynomials, or natural splines with more knots,
but we don’t do this here.
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> mods <- list(donner.mod1, donner.mod2, donner.mod3, donner.mod4)
> LR <- sapply(mods, function(x) x$deviance)
> LR <- matrix(LR, 2, 2)
> rownames(LR) <- c("additive", "non-add")
> colnames(LR) <- c("linear", "non-lin")
> LR <- cbind(LR, diff = LR[,1] - LR[,2])
> LR <- rbind(LR, diff = c(LR[1,1:2] - LR[2,1:2], NA))

linear non-linear ∆χ2 p-value
additive 111.128 106.731 4.396 0.036
non-additive 110.727 97.799 12.928 0.000
∆χ2 0.400 8.932
p-value 0.527 0.003

Thus, the answer to our questions seems to be that: (a) there is evidence that the relationship
of survival to age differs for men and women in the Donner Party; (b) these relationships are not
well-described by a linear logistic regression.

For simplicity, we used a quadratic effect, poly(age,2), to test for nonlinearity here. An
alternative test of the same complexity could use a regression spline, ns(age,2), also with 2
degrees of freedom for the main effect and interaction, or allow more knots. To illustrate, we fit
two natural spline modes models with 2 and 4 df, and compare these with the quadratic model
(donner.mod4), all of which include the interaction of age and sex.

> library(splines)
> donner.mod5 <- glm(survived ~ ns(age,2) * sex,
+ data = Donner, family = binomial)
> Anova(donner.mod5)

Analysis of Deviance Table (Type II tests)

Response: survived
LR Chisq Df Pr(>Chisq)

ns(age, 2) 9.28 2 0.0097 **
sex 7.98 1 0.0047 **
ns(age, 2):sex 8.71 2 0.0129 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> donner.mod6 <- glm(survived ~ ns(age,4) * sex,
+ data = Donner, family = binomial)
> Anova(donner.mod6)

Analysis of Deviance Table (Type II tests)

Response: survived
LR Chisq Df Pr(>Chisq)

ns(age, 4) 22.05 4 0.0002 ***
sex 10.49 1 0.0012 **
ns(age, 4):sex 8.54 4 0.0737 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> LRstats(donner.mod4, donner.mod5, donner.mod6)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

donner.mod4 110 125 97.8 84 0.14
donner.mod5 111 126 98.7 84 0.13
donner.mod6 106 131 86.1 80 0.30
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With four more parameters, donner.mod6 fits better and has a smaller AIC.
We conclude this example with an effect plot for the spline model donner.mod6 shown in

Figure 7.17. The complexity of the fitted relationships for men and women is intermediate between
the two conditional plots shown in Figure 7.16. (However, note that the fitted effects are plotted
on the logit scale in Figure 7.17 and labeled with the corresponding probabilities, whereas the
conditional plots are plotted directly on the probability scale.)

> library(effects)
> donner.eff6 <- allEffects(donner.mod6, xlevels = list(age=seq(0, 50, 5)))
> plot(donner.eff6, ticks = list(at=c(0.001, 0.01, 0.05, 0.1, 0.25, 0.5,
+ 0.75, 0.9, 0.95, 0.99, 0.999)))
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Figure 7.17: Effect plot for the spline model donner.mod6 fit to the Donner data.{fig:donner-effect}

This plot confirms that for women in the Donner Party, survival was greatest for those aged
10–30. Survival among men was overall much less and there is a hint of greater survival for men
aged 10–15.

Of course, this statistical analysis does not provide explanations for these effects, and it ignores
the personal details of the Donner Party members and the individual causes and circumstances of
death, which are generally well-documented in the historical record (Johnson, 1996). See http://
user.xmission.com/~octa/DonnerParty/ for a comprehensive collection of historical
sources.

Grayson (1990) attributes the greater survival of women of intermediate age to demographic
arguments that women are overall better able to withstand conditions of famine and extreme cold,
and high age-specific mortality rates among the youngest and oldest members of human societies.
He also concludes (without much analysis) that members with larger social and kinship networks
would be more likely to survive. 4

{ex:arrests}

EXAMPLE 7.10: Racial profiling: Arrests for marijuana possession
In the summer of 2002, the Toronto Star newspaper launched an investigation on the topic of

possible racial profiling by the Toronto police service. Through freedom of information requests,
they obtained a data base of over 600,000 arrest records on all potential charges in the period from
1996–2002, the largest data bases on crime arrests and disposition ever assembled in Canada. An
initial presentation of this study was given in Example 1.4.
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In order to examine the issue of racial profiling (different treatment as a function of race) they
excluded all charges such as assault, robbery, speeding, and driving under the influence, where the
police have no discretion regarding the laying of a charge. They focused instead on a subset of
arrests, where the police had various options.

Among these, for people arrested for a single charge of simple possession of a small amount of
marijuana, police have the option of releasing the arrestee, with a summons (“Form 9”) to appear in
court (similar to a parking ticket), or else the person could be given harsher treatment—brought to
a police station or held in jail for a bail hearing (“Show cause”). The main question for the Toronto
Star was whether the subject’s skin color had any influence on the likelihood that the person would
be released with a summons.13

Their results, published in a week-long series of articles in December 2002, concluded that there
was strong evidence that black and white subjects were treated differently. For example, the analysis
showed that blacks were 1.5 times more likely than whites to be given harsher treatment than release
with a summons; if the subject was taken to the police station, a black was 1.6 times more likely
to be held in jail for a bail hearing. An important part of the analysis and the public debate that
ensued was to show that other variables that might account for these differences had been controlled
or adjusted for.14

The data set Arrests in the effects package gives a simplified version of the Star database,
containing records for 5,226 cases of arrest on the charge of simple possession of marijuana ana-
lyzed by the newspaper. The response variable here is released (Yes/No) and the main predictor
of interest is skin color of the person arrested, colour (Black/White).15 A random subset of the
data set is shown below.

> library(effects)
> data("Arrests", package = "effects")
> Arrests[sample(nrow(Arrests), 6),]

released colour year age sex employed citizen checks
3768 Yes Black 2000 23 Male No Yes 4
4576 Yes Black 2001 17 Male Yes Yes 0
3976 No White 2002 20 Male No Yes 3
4629 Yes White 2000 18 Male Yes Yes 1
2384 No Black 2000 19 Male Yes Yes 3
869 Yes White 2001 15 Male Yes Yes 1

Other available predictors, to be used as control variables, included the year of the arrest,
age and sex of the person, and binary indicators of whether the person was employed and a
citizen of Canada. In addition, when someone is stopped by police, his/her name is checked in
six police data bases that record previous arrests, convictions, whether on parole, etc. The variable
checks records the number, 0–6, in which the person’s name appeared.

A variety of logistic models were fit to these data including all possible main effects and some
two-way interactions. To allow for possible nonlinear effects of year, this variable was treated
as a factor rather than as a (linear) numeric variable, but the effects of age and checks were
reasonably linear on the logit scale. A reasonable model included the interactions of colour with
both year and age, as fit below:

13Another discretionary charge they investigated was police stops for non-moving violations under the Ontario Highway
Traffic Act, such as being pulled over for a faulty muffler or having an expired license plate renewal sticker. A disproportion-
ate rate of charges against blacks is sometimes referred to as “driving while black” (DWB). This investigation found that the
number of blacks so charged, but particularly young black males, far outweighed their representation in the population.

14The Toronto Police Service launched a class-action libel law suit against the Toronto Star and the first author of this
book, who served as their statistical consultant, claiming damages of $5,000 for every serving police officer in the city, a
total of over 20 million dollars. The suit was thrown out of court, and the Toronto police took efforts to enhance training
programs to combat the perception of racial profiling.

15The original data set also contained the categories Brown and Other, but these appeared with small frequencies.
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> Arrests$year <- as.factor(Arrests$year)
> arrests.mod <- glm(released ~ employed + citizen + checks
+ + colour*year + colour*age,
+ family = binomial, data = Arrests)

For such models, significance tests for the model terms are best carried out using the Anova()
function in the car package that uses Type II tests:

> library(car)
> Anova(arrests.mod)

Analysis of Deviance Table (Type II tests)

Response: released
LR Chisq Df Pr(>Chisq)

employed 72.7 1 < 2e-16 ***
citizen 25.8 1 3.8e-07 ***
checks 205.2 1 < 2e-16 ***
colour 19.6 1 9.7e-06 ***
year 6.1 5 0.29785
age 0.5 1 0.49827
colour:year 21.7 5 0.00059 ***
colour:age 13.9 1 0.00019 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The difficulty in interpreting these results from tables of coefficients can be seen in the output
below:

> coeftest(arrests.mod)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.34443 0.31007 1.11 0.26665
employedYes 0.73506 0.08477 8.67 < 2e-16 ***
citizenYes 0.58598 0.11377 5.15 2.6e-07 ***
checks -0.36664 0.02603 -14.08 < 2e-16 ***
colourWhite 1.21252 0.34978 3.47 0.00053 ***
year1998 -0.43118 0.26036 -1.66 0.09770 .
year1999 -0.09443 0.26154 -0.36 0.71805
year2000 -0.01090 0.25921 -0.04 0.96647
year2001 0.24306 0.26302 0.92 0.35541
year2002 0.21295 0.35328 0.60 0.54664
age 0.02873 0.00862 3.33 0.00086 ***
colourWhite:year1998 0.65196 0.31349 2.08 0.03756 *
colourWhite:year1999 0.15595 0.30704 0.51 0.61152
colourWhite:year2000 0.29575 0.30620 0.97 0.33411
colourWhite:year2001 -0.38054 0.30405 -1.25 0.21073
colourWhite:year2002 -0.61732 0.41926 -1.47 0.14091
colourWhite:age -0.03737 0.01020 -3.66 0.00025 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By direct calculation (e.g., using exp(coef(arrests.mod))) you can find that the odds
of a quick release was exp(0.735) = 2.08 times greater for someone employed, exp(0.586) = 1.80
times more likely for a Canadian citizen, and exp(1.21) = 3.36 times more likely for a white than
a black person. It is much more difficult to interpret the interaction terms.

The primary question for the newspaper concerned the overall difference between the the treat-
ment of blacks and whites— the main effect of colour. We plot this as shown below, giving the
plot shown in Figure 7.18. This supports the claim by the Star because the 95% confidence limits
for blacks and whites do not overlap, and all other relevant predictors that could account for this
effect have been controlled or adjusted for.
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> plot(Effect("colour", arrests.mod),
+ lwd = 3, ci.style = "bands", main = "",
+ xlab = list("Skin color of arrestee", cex = 1.25),
+ ylab = list("Probability(released)", cex = 1.25)
+ )
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Figure 7.18: Effect plot for the main effect of skin color in the Arrests data. {fig:arrests-eff1}

Of course, one should be very wary of interpreting main effects when there are important in-
teractions, and the story turned out to be far more nuanced than was reported in the newspaper.
In particular, the interactions of color with with age and year provided a more complete account.
Effect plots for these interactions are shown in Figure 7.19.

> # colour x age interaction
> plot(Effect(c("colour", "age"), arrests.mod),
+ lwd = 3, multiline = TRUE, ci.style = "bands",
+ xlab = list("Age", cex = 1.25),
+ ylab = list("Probability(released)", cex = 1.25),
+ key.args = list(x = .05, y = .99, cex = 1.2, columns = 1)
+ )
> # colour x year interaction
> plot(Effect(c("colour", "year"), arrests.mod),
+ lwd = 3, multiline = TRUE,
+ xlab = list("Year", cex = 1.25),
+ ylab = list("Probability(released)", cex = 1.25),
+ key.args = list(x = .7, y = .99, cex = 1.2, columns = 1)
+ )

From the left panel in Figure 7.19, it is immediately apparent that the effect of age was in
opposite directions for blacks and whites: Young blacks were indeed treated more severely than
young whites; however, for older people, blacks were treated less harshly than whites, controlling
for all other predictors.

The right panel of Figure 7.19 shows the changes over time in the treatment of blacks and whites.
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Figure 7.19: Effect plots for the interactions of color with age (left) and year (right) in the Arrests
data. {fig:arrests-eff2}

It can be seen that up to the year 2000 there was strong evidence for differential treatment on these
charges, again controlling for other predictors. There was also evidence to support the claim by the
police that in the year 2001 they began training of officers to reduce racial effects in treatment.

Finally, the effects package provides a convenience function, allEffects(), that calculates
the effects for all high-order terms in a given model. The plot() method for the "efflist" object
can be used to plot individual terms selectively from a graphic menu, or plot all terms together in
one comprehensive display using ask=FALSE.

> arrests.effects <- allEffects(arrests.mod,
+ xlevels = list(age = seq(15, 45, 5)))
> plot(arrests.effects,
+ ylab = "Probability(released)", ci.style = "bands", ask = FALSE)

The result, shown in Figure 7.20, is a relatively compact and understandable summary of the
arrests.mod model: (a) people were more likely to be released if they were employed and
citizens; (b) each additional police check decreased the likelihood of release with a summons; (c)
the effect of skin color varied with age and year of arrest, in ways that tell a far more nuanced story
than reported in the newspaper.

Finally, another feature of this plot bears mention: by default, the scales for each effect plot are
determined separately for each effect, to maximize use of the plot region. However, you have to
read the Y scale values to judge the relative sizes of these effects. An alternative plot, using the
same scale in each subplot,16 would show the relative sizes of these effects.

4

7.4.2 More complex models: Model selection and visualization
{sec:complex2}

Models with more predictors or more complex terms (interactions, nonlinear terms) present ad-
ditional challenges for model fitting, summarization, and visualization and interpretation. These
problems increase rapidly with the number of potential predictors.

16With the effects package, you can set the ylim argument to equate the vertical range for all plots, but this should be
done on the logit scale. For this plot, ylim = plogis(c(0.5, 1)) would work.
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Figure 7.20: Effect plot for all high-order terms in the model for the Arrests data.{fig:arrests-all}

A very complicated model, with many terms and interactions, may fit the data at hand quite well.
However, because goodness-of-fit is optimized in the sample, terms that appear significant are less
likely to be important in a future sample, and we need to worry about inflation of Type I error rates
that accompany multiple significance tests. As well, it becomes increasingly difficult to visualize
and understand a fitted model as the model becomes increasingly complex. On the other hand, a
very simple model may omit important predictors, interactions, or nonlinear relationships with the
response and give an illusion of a comfortable interpretation.

Model selection for logistic regression seeks to balance the trade-off between the competing
goals of goodness-of-fit and simplicity. A full discussion of this topic is beyond the scope of this
book, but is well treated in Agresti (2013, Chapter 6), and extensively in Harrell (2001, Chapters
10–13). Here, we illustrate some important ideas using the AIC and BIC statistics as parsimony-
adjusted measures of goodness-of-fit. These are discussed Section 9.3.2. AIC is defined as

AIC = −2 logL+ 2k

where logL is the maximized log likelihood and k is the number of parameters estimated in the
model. Better models correspond to smaller AIC. BIC is similar, but uses a penalty of log(n)k, and
so prefers smaller models as the sample size n increases. {ex:icu1}

EXAMPLE 7.11: Death in the ICU
In this example we briefly examine some aspects of logistic regression related to model selection

and graphical display with a large collection of potential predictors, including both quantitative and
discrete variables. We use data from a classic study by Lemeshow et al. (1988) of patients admitted
to an intensive care unit at Baystate Medical Center in Springfield, Massachusetts. The major goal
of this study was to develop a model to predict the probability of survival (until hospital discharge)
of these patients and to study the risk factors associated with ICU mortality. The data, contained in
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the data set ICU in vcdExtra, gives the results for a sample of 200 patients that was presented in
Hosmer et al. (2013) (and earlier editions).

The ICU data set contains 22 variables of which the first, died, is a factor. Among the predic-
tors, two variables (race, coma) were represented initially as 3-level factors, but then recoded to
binary variables (white, uncons).

> data("ICU", package = "vcdExtra")
> names(ICU)

[1] "died" "age" "sex" "race" "service"
[6] "cancer" "renal" "infect" "cpr" "systolic"
[11] "hrtrate" "previcu" "admit" "fracture" "po2"
[16] "ph" "pco" "bic" "creatin" "coma"
[21] "white" "uncons"

> ICU <- ICU[,-c(4, 20)] # remove redundant race, coma

Removing the 3-level versions leaves 19 predictors, of which three (age, heart rate, systolic
blood pressure) are quantitative and the remainder are either binary (service, cancer) or had previ-
ously been dichotomized (e.g., ph<7.25).

As an initial step, and a basis for comparison, we fit the full model containing all 19 predictors.

> icu.full <- glm(died ~ ., data = ICU, family = binomial)
> summary(icu.full)

Call:
glm(formula = died ~ ., family = binomial, data = ICU)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8040 -0.5606 -0.2044 -0.0863 2.9773

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.72670 2.38551 -2.82 0.0048 **
age 0.05639 0.01862 3.03 0.0025 **
sexMale 0.63973 0.53139 1.20 0.2286
serviceSurgical -0.67352 0.60190 -1.12 0.2631
cancerYes 3.10705 1.04585 2.97 0.0030 **
renalYes -0.03571 0.80165 -0.04 0.9645
infectYes -0.20493 0.55319 -0.37 0.7110
cprYes 1.05348 1.00661 1.05 0.2953
systolic -0.01547 0.00850 -1.82 0.0686 .
hrtrate -0.00277 0.00961 -0.29 0.7732
previcuYes 1.13194 0.67145 1.69 0.0918 .
admitEmergency 3.07958 1.08158 2.85 0.0044 **
fractureYes 1.41140 1.02971 1.37 0.1705
po2<=60 0.07382 0.85704 0.09 0.9314
ph<7.25 2.35408 1.20880 1.95 0.0515 .
pco>45 -3.01844 1.25345 -2.41 0.0160 *
bic<18 -0.70928 0.90978 -0.78 0.4356
creatin>2 0.29514 1.11693 0.26 0.7916
whiteNon-white 0.56573 0.92683 0.61 0.5416
unconsYes 5.23229 1.22630 4.27 2e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 200.16 on 199 degrees of freedom
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Residual deviance: 120.78 on 180 degrees of freedom
AIC: 160.8

Number of Fisher Scoring iterations: 6

You can see that a few predictors are individually significant, but many are not.
However, it is useful to carry out a simultaneous global test of H0 : β = 0 that all regres-

sion coefficients are zero. If this test is not significant, it makes little sense to use selection meth-
ods to choose individually significant predictors. For convenience, we define a simple function,
LRtest(), to calculate the likelihood ratio test from the model components.

> LRtest <- function(model)
+ c(LRchisq = (model$null.deviance - model$deviance),
+ df = (model$df.null - model$df.residual))
>
> (LR <- LRtest(icu.full))

LRchisq df
79.383 19.000

> (pvalue <- 1 - pchisq(LR[1], LR[2]))

LRchisq
2.3754e-09

At this point, it is tempting to examine the output from summary(icu.full) shown above
and eliminate those predictors that fail significance at some specified level such as the conventional
α = 0.05. This is generally a bad idea for many reasons.17

A marginally better approach is to remove non-significant variables whose coefficients have
signs that don’t make sense from the substance of the problem. For example, in the full model, both
renal (history of chronic renal failure) and infect (infection probable at ICU admission) have
negative signs, meaning that their presence decreases the odds of death. We remove those variables
using update(); as expected they make little difference.

> icu.full1 <- update(icu.full, . ~ . - renal - fracture)
> anova(icu.full1, icu.full, test = "Chisq")

Analysis of Deviance Table

Model 1: died ~ age + sex + service + cancer + infect + cpr + systolic +
hrtrate + previcu + admit + po2 + ph + pco + bic + creatin +
white + uncons

Model 2: died ~ age + sex + service + cancer + renal + infect + cpr +
systolic + hrtrate + previcu + admit + fracture + po2 + ph +
pco + bic + creatin + white + uncons

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 182 122
2 180 121 2 1.7 0.43

Before proceeding to consider model selection, it is useful to get a better visual overview of the
current model than is available from a table of coefficients and significance tests. Some very useful
print(), summary() and plot() methods are available in the rsm (Lenth, 2014) package.
Unfortunately, these require that the logistic model is fitted with lrm() in that package rather than
with glm(). We pause here to refit the same model as icu.full1 in order to show a plot of odds
ratios for the terms in this model.

17It ignores the facts of (a) an arbitrary cutoff value for significance, (b) the strong likelihood that chance features of
the data or outliers influence the result, and (c) problems of collinearity, etc. See Harrell (2001, Section 4.3) for a useful
discussion of these issues.
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> library(rms)
> dd <- datadist(ICU[,-1])
> options(datadist = "dd")
> icu.lrm1 <- lrm(died ~ ., data = ICU)
> icu.lrm1 <- update(icu.lrm1, . ~ . - renal - fracture)

The summary() method for "rms" objects produces a much more detailed descriptive sum-
mary of a fitted model, and the plot() method for that summary object gives a sensible plot of
the odds ratios for the model terms together with confidence intervals, at levels (0.9, 0.95, 0.99) by
default. The following lines produce Figure 7.21.

> sum.lrm1 <- summary(icu.lrm1)
> plot(sum.lrm1, log = TRUE, main = "Odds ratio for 'died'", cex = 1.25,
+ col = rgb(0.1, 0.1, 0.8, alpha = c(0.3, 0.5, 0.8)))

Odds ratio for 'died'

   0.10    1.00  500.00

age − 72:46
systolic − 150:110

hrtrate − 118:80
sex − Female:Male

service − Medical:Surgical
cancer − Yes:No

infect − Yes:No
cpr − Yes:No

previcu − Yes:No
admit − Elective:Emergency

po2 − <=60:>60
ph − <7.25:>=7.25

pco − >45:<=45
bic − <18:>=18

creatin − >2:<=2
white − White:Non−white

uncons − Yes:No

Figure 7.21: Odds ratios for the terms in the model for the ICU data. Each line shows the odds
ratio for a term, together with lines for 90, 95, and 99% confidence intervals in progressively darker
shades.{fig:icu1-odds-ratios}

In this plot, continuous variables are shown at the top, followed by the discrete predictors. In
each line, the range or levels of the predictors are given in the form a : b, such that the value a
corresponds to the numerator of the odds ratio plotted. Confidence intervals that don’t overlap the
vertical line for odds ratio = 1 are significant, but this graph shows those at several confidence levels,
allowing you to decide what is “significant” visually. As well, the widths of those intervals convey
the precision of these estimates.

Among several stepwise selection methods in R for "glm" models, stepAIC() in the MASS
package implements a reasonable collection of methods for forward, backward, and stepwise selec-
tion using penalized AIC-like criteria that balance goodness of fit against parsimony. The method
takes an argument, scope, which is a list of two model formulae: upper defines the largest (most
complex) model to consider and lower defines the smallest (simplest) model, e.g., lower = ~ 1
is the intercept-only model.
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By default, the function produces verbose printed output showing the details of each step, but
we suppress that here to save space. It returns the final model as its result, along with an anova
component that summarises the deviance and AIC from each step.

> library(MASS)
> icu.step1 <- stepAIC(icu.full1, trace = FALSE)
> icu.step1$anova

Stepwise Model Path
Analysis of Deviance Table

Initial Model:
died ~ age + sex + service + cancer + infect + cpr + systolic +

hrtrate + previcu + admit + po2 + ph + pco + bic + creatin +
white + uncons

Final Model:
died ~ age + cancer + systolic + admit + ph + pco + uncons

Step Df Deviance Resid. Df Resid. Dev AIC
1 182 122.48 158.48
2 - po2 1 0.062446 183 122.54 156.54
3 - creatin 1 0.059080 184 122.60 154.60
4 - hrtrate 1 0.072371 185 122.67 152.67
5 - infect 1 0.122772 186 122.79 150.79
6 - white 1 0.334999 187 123.13 149.13
7 - service 1 0.671313 188 123.80 147.80
8 - bic 1 0.377521 189 124.18 146.18
9 - cpr 1 1.148260 190 125.33 145.33
10 - sex 1 1.543523 191 126.87 144.87
11 - previcu 1 1.569976 192 128.44 144.44

Alternatively, we can use the BIC criterion, by specifying k=log(n), which generally will select
a smaller model when the sample size is reasonably large.

> icu.step2 <- stepAIC(icu.full, trace = FALSE, k = log(200))
> icu.step2$anova

Stepwise Model Path
Analysis of Deviance Table

Initial Model:
died ~ age + sex + service + cancer + renal + infect + cpr +

systolic + hrtrate + previcu + admit + fracture + po2 + ph +
pco + bic + creatin + white + uncons

Final Model:
died ~ age + cancer + admit + uncons

Step Df Deviance Resid. Df Resid. Dev AIC
1 180 120.78 226.74
2 - renal 1 0.0019881 181 120.78 221.45
3 - po2 1 0.0067968 182 120.79 216.16
4 - creatin 1 0.0621463 183 120.85 210.92
5 - hrtrate 1 0.0658870 184 120.92 205.69
6 - infect 1 0.2033221 185 121.12 200.59
7 - white 1 0.3673180 186 121.49 195.66
8 - bic 1 0.6002993 187 122.09 190.96
9 - service 1 0.7676303 188 122.85 186.43
10 - fracture 1 1.3245086 189 124.18 182.46
11 - cpr 1 1.1482598 190 125.33 178.31
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12 - sex 1 1.5435228 191 126.87 174.55
13 - previcu 1 1.5699762 192 128.44 170.83
14 - ph 1 4.4412370 193 132.88 169.97
15 - pco 1 2.7302934 194 135.61 167.40
16 - systolic 1 3.5231028 195 139.13 165.63

This model differs from model icu.step1 selected using AIC in the last three steps, which
also removed ph, pco, and systolic.

> coeftest(icu.step2)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.8698 1.3188 -5.21 1.9e-07 ***
age 0.0372 0.0128 2.91 0.00360 **
cancerYes 2.0971 0.8385 2.50 0.01238 *
admitEmergency 3.1022 0.9186 3.38 0.00073 ***
unconsYes 3.7055 0.8765 4.23 2.4e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These two models are nested, so we can compare them directly using a likelihood ratio test from
anova().

> anova(icu.step2, icu.step1, test = "Chisq")

Analysis of Deviance Table

Model 1: died ~ age + cancer + admit + uncons
Model 2: died ~ age + cancer + systolic + admit + ph + pco + uncons
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 195 139
2 192 128 3 10.7 0.013 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The larger model is significantly better by this test, but the smaller model is simpler to interpret.
We retain these both as “candidate models” to be explored further, but for ease in this example, we
do so using the smaller model, icu.step2.

Another important step is to check for nonlinearity of quantitative predictors such as age and
interactions among the predictors. This is easy to do using update() and anova() as shown
below. First, allow a nonlinear term in age, and all two-way interactions of the binary predictors.

> icu.glm3 <- update(icu.step2, . ~ . - age + ns(age, 3) +
+ (cancer + admit + uncons) ^ 2)
> anova(icu.step2, icu.glm3, test = "Chisq")

Analysis of Deviance Table

Model 1: died ~ age + cancer + admit + uncons
Model 2: died ~ cancer + admit + uncons + ns(age, 3) + cancer:admit +

cancer:uncons + admit:uncons
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 195 139
2 191 135 4 3.73 0.44
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Next, we can check for interactions with age:

> icu.glm4 <- update(icu.step2, . ~ . + age * (cancer + admit + uncons))
> anova(icu.step2, icu.glm4, test = "Chisq")

Analysis of Deviance Table

Model 1: died ~ age + cancer + admit + uncons
Model 2: died ~ age + cancer + admit + uncons + age:cancer + age:admit +

age:uncons
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 195 139
2 192 134 3 5.37 0.15

None of these additional terms have much effect. 4

So, we will tentatively adopt the simple main effects model, icu.step2, and consider how to
visualize and interpret this result. {ex:icu1a}

EXAMPLE 7.12: Death in the ICU — Visualization
One interesting display is a nomogram that shows how values on the various predictors translate

into a predicted value of the log odds, and the relative strengths of their effects on this prediction.
This kind of plot is shown in Figure 7.22, and is produced using nomogram() in the rms (Harrell,
Jr., 2015) package as follows. This only works with models fit using lrm(), so we have to refit this
model.

> icu.lrm2 <- lrm(died ~ age + cancer + admit + uncons, data = ICU)
> plot(nomogram(icu.lrm2), cex.var = 1.2, lplabel = "Log odds death")

In this nomogram, each predictor is scaled according to the size of its effect on a common scale
of 0–100 “points.” A representative observation is shown by the marked points, corresponding to
a person of age 60, without cancer, who was admitted to emergency and was unconscious at that
time. Adding the points associated with each variable value gives the result shown on the scale
of total points. For this observation, the result is 50 + 0 + 84 + 100 = 234, for which the scale
of log odds at the bottom gives a predicted logit of 2.2, or a predicted probability of death of
1/(1 + exp(−2.2)) = 0.90.

This leaves us with the problem of how to visualize the fitted model compactly and comprehen-
sively. Multi-panel full-model plots and effect plots, as we have used them, are somewhat unwieldy
with four or more predictors if we want to view all effects simultaneously, because it becomes more
difficult to make comparisons across multiple panels (particularly if the vertical scales differ).

One way to reduce the visual complexity of such graphs is to combine some predictors that
would otherwise be shown in separate panels into a recoding that can be shown as multiple curves
for their combinations in fewer panels. In general, this can be done by combining some predictors
interactively; for example, with sex and education as factors, their combinations, M:Hi, M:Lo, etc.,
could be used to define a new variable, group, used as the curves in one plot, rather than separate
panels. This, in fact, is precisely what binreg_plot() does when there are two or more factors
to be shown in a given plot.

In this case, because age is continuous, it makes sense to plot fitted values against age.18 With
cancer, admit, and uncons as binary factors associated with risk of death, it is also convenient
for plotting to represent them in a way that reflects the level assiciated with higher risk. We do this
by recoding their levels using "-" for low risk.

18By default, binreg_plot() uses the first numeric predictor as the horizontal variable.
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Figure 7.22: Nomogram for predicted values in the simple main effects model for the ICU data.
Each predictor is scaled in relation to its effect on the outcome in terms of “points,” 0–100. Adding
the points for a given case gives total points that have a direct translation to log odds. The marked
points show the prediction for someone of age 60, admitted to the emergency ward and unconscious. {fig:icu-nomogram}

> levels(ICU$cancer) <- c("-", "Cancer")
> levels(ICU$admit) <- c("-","Emerg")
> levels(ICU$uncons) <- c("-","Uncons")
>
> icu.glm2 <- glm(died ~ age + cancer + admit + uncons,
+ data = ICU, family = binomial)

Then, binreg_plot() is called as follows, giving the plot shown in Figure 7.23. Such multi-
line graphs are more easily read with direct labels on the lines rather than a legend, so the legend
is suppressed, and the lines are labeled using labels = TRUE. Points along the fitted lines are
shown when point_size>0.

> binreg_plot(icu.glm2, type = "link", conf_level = 0.68,
+ legend = FALSE,
+ labels = TRUE, labels_just = c("right", "bottom"),
+ cex = 0, point_size = 0.8, pch = 15:17,
+ ylab = "Log odds (died)",
+ ylim = c(-7, 4))

From Figure 7.23, it is apparent that the log odds of mortality increases with age in all cases.
Relative to the line labeled "-:-:-" (no risk factors), mortality is higher when any of these risk
factors are present, particularly when the patient is admitted to emergency; it is highest when the
patient is also unconscious at admission. The vertical gaps between lines that share a common risk
(e.g., Cancer, CancerEmerg) indicate the additional increment from one more risk.

Finally, the plotted points show the number and age distribution of these various combinations.
The greatest number of patients have only Emerg as a risk factor and only one patient was uncon-
scious with no other risk.
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Figure 7.23: Fitted log odds of death in the ICU data for the model icu.glm2. Each line shows
the relationship with age, for patients having various combinations of risk factors and 1 standard
error confidence bands.{fig:icu1-binreg-plot}

Before concluding that this model provides an adequate description of the data, we should exam-
ine whether any individual cases are unduly influencing the predicted results, and more importantly,
the choice of variables in the model. We examine this question in Section 7.5 where we return to
these data (Example 7.14).

4

7.5 Influence and diagnostic plots
{sec:logist-infl}

In ordinary least squares (OLS) regression, measures of influence (leverage, Cook’s D, DFBETAs,
etc.) and associated plots help you to determine whether individual cases (or cells in grouped
data) have undue impact on the fitted regression model and the coefficients of individual predictors.
Analogs of most of these measures have been suggested for logistic regression and generalized
linear models. Pregibon (1981) provided the theoretical basis for these methods, exploiting the
relationship between logistic models and weighted least squares. Some additional problems occur
in practical applications to logistic regression because the response is discrete, and because the
leave-one-out diagnostics are more difficult to compute, but the ideas are essentially the same.

7.5.1 Residuals and leverage
{sec:logist-resids}

As in ordinary least squares regression, the influence (actual impact) of an observation in logistic
models depends multiplicatively on its residual (disagreement between yi and ŷi) and its leverage
(how unusual xi is in the space of the explanatory variables). A conceptual formula is

Influence = Leverage× Residual
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This multiplicative definition implies that a case is influential to the extent that it is both poorly fit
and has unusual values of the predictors.

7.5.1.1 Residuals

In logistic regression, the simple raw residual is just ei ≡ yi − p̂i, where p̂i = 1/[1 + exp(−xT
i b)].

The Pearson and deviance residuals are more useful for identifying poorly fitted observations,
and are components of overall goodness-of-fit statistics. The (raw) Pearson residual is defined as

ri ≡
ei√

p̂i(1− p̂i)
(7.7){eq:reschi}

and the Pearson chi-square is therefore χ2 =
∑
r2i . The deviance residual is

gi ≡ ±−2[yi log p̂i + (1− yi) log(1− p̂i)]1/2 (7.8){eq:resdev}

where the sign of gi is the same as that of ei. Likewise, the sum of squares of the deviance residuals
gives the overall deviance, G2 = −2 logL(b) =

∑
g2i .

When yi is a binomial count based on ni trials (grouped data), the Pearson residuals Eqn. (7.7)
then become

ri ≡
yi − nip̂i√
nip̂i(1− p̂i)

with similar modifications made to Eqn. (7.8).
In R, residuals() is the generic function for obtaining (raw) residuals from a model fitted

with glm() (or lm()). However, standardized residuals, given by rstandard(), and studen-
tized residuals, provided by rstudent(), are often more useful because they rescale the residu-
als to have unit variance. They use, respectively, an overall estimate, σ̂2, of error variance, and the
leave-one-out estimate, σ̂2

(−i), omitting the ith observation; the studentized version is usually to be
preferred in model diagnostics because it also accounts for the impact of the observation on residual
variance.

7.5.1.2 Leverage

Leverage measures the potential impact of an individual case on the results, which is directly pro-
portional to how far an individual case is from the centroid in the space of the predictors. Leverage
is defined as the diagonal elements, hii, of the “Hat” matrix,H ,

H = X?(X?TX?)
−1
X?T ,

whereX? = V 1/2X , and V = diag [p̂(1− p̂)].
As in OLS, leverage values are between 0 and 1, and a leverage value, hii > {2 or 3}k/n, is

considered “large;” here, k = p + 1 is the number of coefficients including the intercept and n is
the number of cases. In OLS, however, the hat values depend only on the Xs, whereas in logistic
regression, they also depend on the dependent variable values and the fitted probabilities (through
V ). As a result, an observation may be extremely unusual on the predictors, yet not have a large hat
value, if the fitted probability is near 0 or 1. The function hatvalues() calculates these values
for a fitted "glm" model object.

7.5.2 Influence diagnostics
{sec:logist-infldiag}

Influence measures assess the effect that deleting an observation has on the regression parameters,
fitted values, or the goodness-of-fit statistics. In OLS, these measures can be computed exactly from
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a single regression. In logistic regression, the exact effect of deletion requires refitting the model
with each observation deleted in turn, a time-intensive computation. Consequently, Pregibon (1981)
showed how analogous deletion diagnostics may be approximated by performing one additional step
of the iterative procedure. Most modern implementations of these methods for generalized linear
models follow Williams (1987).

The simplest measure of influence of observation i is the standardized change in the coefficient
for each variable due to omitting that observation, termed DFBETAs. From the relation (Pregibon,
1981, p. 716)

b− b(−i) = (XTV X)−1xi(yi − p̂i)/(1− hii) ,

the estimated standardized change in the coefficient for variable j is

DFBETAij ≡
b(−i)j − bj
σ̂(bj)

, (7.9) {eq:dfbeta}

where σ̂(bj) is the estimated standard error of bj . With k regressors, there are k + 1 sets of DF-
BETAs, which makes their examination burdensome. Graphical displays ease this burden, as do
various summary measures considered below.

The most widely used summary of the overall influence of observation i on the estimated re-
gression coefficients is Cook’s distance, which measures the average squared distance between b
for all the data and b(−i) estimated without observation i. It is defined as

Ci ≡ (b− b(−i))TXTV X (b− b(−i))/kσ̂2 .

However, Pregibon (1981) showed that Ci could be calculated simply as

Ci =
r2i hii

k(1− hii)2
, (7.10) {eq:cookd2}

where ri = yi− p̂i/
√
vii(1− hii) is the ith standardized Pearson residual and vii is the ith diagonal

element of V . Rules of thumb for noticeably “large” values of Cook’s D are only rough indicators,
and designed so that only “noteworthy” observations are nominated as unusually influential. One
common cutoff for an observation to be treated as influential is Ci > 1. Others refer the values of
Ci to a χ2

k or Fk,n−k distribution.
Another commonly used summary statistic of overall influence is the DFFITS statistic, a stan-

dardized measure of the difference between the predicted value ŷi using all the data and the predicted
value ŷ(−i) calculated omitting the ith observation.

DFFITSi =
ŷi − ŷ(−i)
σ̂(−i)

√
hii

,

where σ̂(−i) is the estimated standard error with the ith observation deleted. For computation,
DFFITS can be expressed in terms of the standardized Pearson residual and leverage as

DFFITSi = ri

√
hii

(1− hii)
vii
v(−ii)

. (7.11) {eq:dffits}

From Eqn. (7.10) and Eqn. (7.11), it can be shown that Cook’s distance is nearly the square of
DFFITS divided by k,

Ci =
v2(−ii)

v2ii

DFFITS2
i

k
. (7.12) {eq:cook-dffits}

Noteworthy values of DFFITS are often nominated by the rule-of-thumb DFFITSi > 2 or 3
√
k/n− k.
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In R, these influence measures are calculated for a fitted "glm" model using cooks.distance()
and dffits(). A convenience function, influence.measures() gives a tabular display
showing the DFBETAij for each model variable, DFFITS, Cook’s distances and the diagonal el-
ements of the hat matrix. Cases which are influential with respect to any of these measures are
marked with an asterisk.19

Beyond printed output of these numerical summaries, plots of these measures can shed light on
potential problems due to influential or other noteworthy cases. By highlighting them, such plots
provide the opportunity to determine if and how any of these affect your conclusions, or to take
some corrective action.

Basic diagnostic plots are provided by the plot() method for a "glm" model object. These
are easy to do, but the results for discrete response data are often unsatisfactory. The car package
contains a variety of enhanced and extended functions for model diagnostic plots. We illustrate
some of these in the examples below.

{ex:donner2}

EXAMPLE 7.13: Donner Party
This example re-visits the data on the Donner Party examined in Example 7.9. For illustra-

tive purposes, we consider the influence measures and diagnostic plots for one specific model, the
model donner.mod3, which included a quadratic effect of age and a main effect of sex, but no
interaction.

Details of all the diagnostic measures for a given model, including the DFBETAs for individual
coefficients, can be obtained using influence.measures. This can be useful for custom plots
not provided elsewhere (see Example 7.14).

> infl <- influence.measures(donner.mod3)
> names(infl)

[1] "infmat" "is.inf" "call"

The summary() method for the "infl" object prints those observations considered noteworthy
on one or more of these statistics, as indicated by a "*" next to the value.

> summary(infl)

Potentially influential observations of
glm(formula = survived ~ poly(age, 2) + sex, family = binomial, data = Donner) :

dfb.1_ dfb.p(,2)1 dfb.p(,2)2 dfb.sxMl dffit cov.r cook.d hat
Breen, Patrick 0.08 0.65 0.56 0.23 0.69_* 0.93 0.32 0.09
Donner, Elizabeth -0.26 -0.34 -0.22 0.12 -0.40 1.15_* 0.03 0.14_*
Graves, Elizabeth C. -0.24 -0.37 -0.26 0.10 -0.42 1.20_* 0.03 0.16_*

The simplest overview of adequacy of a fitted model is provided by the plot() method for
a "glm" (or "lm") object, which can produce up to six different diagnostic plots. Among them,
we consider the residual-leverage graph (number 5) as being the most useful for assessing influ-
ential observations, plotting residuals against leverages. An extended version is produced by the
function influencePlot() in the car package, which additionally uses the size (area) of the
plotting symbol to also show the value of Cook’s D as shown in Figure 7.24. Like other diagnostic
plots in car, it is considerably more general than illustrated here, because it allows for different
id.methods to label noteworthy points, including id.method = "identify" for interac-
tive point identification by clicking with the mouse. The id.n argument works differently than
with plot(), because it selects the most extreme id.n observations on each of the studentized
residual, hat value, and Cook’s D, and labels all of these.

19See help(influence.measures) for the description of all of these functions for residuals, leverage, and influence
diagnostics in generalized linear models.
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> op <- par(mar = c(5, 4, 1, 1) + .1, cex.lab = 1.2)
> res <- influencePlot(donner.mod3, id.col = "blue", scale = 8, id.n = 2)
> k <- length(coef(donner.mod3))
> n <- nrow(Donner)
> text(x = c(2, 3) * k / n, y = -1.8, c("2k/n", "3k/n"), cex = 1.2)
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Figure 7.24: Influence plot (residual vs. leverage) for the Donner data model, showing Cook’s D
as the size of the bubble symbol. Horizontal and vertical reference lines show typical cutoff values
for noteworthy residuals and leverage. {fig:donner2-inflplot}

Conveniently, influencePlot() returns a data frame containing the influence statistics for
the points identified in the plot (res in the call above). We can combine this with the data values
to help learn why these points are considered influential.

> # show data together with diagnostics for influential cases
> idx <- which(rownames(Donner) %in% rownames(res))
> cbind(Donner[idx,2:4], res)

age sex survived StudRes Hat CookD
Breen, Patrick 51 Male yes 2.501 0.09148 0.5688
Donner, Elizabeth 45 Female no -1.114 0.13541 0.1846
Graves, Elizabeth C. 47 Female no -1.019 0.16322 0.1849
Reed, James 46 Male yes 2.098 0.08162 0.3790

We can see that Patrick Breen and James Reed20 are unusual because they were both older men
who survived, and have large positive residuals; Breen is the most influential by Cook’s D, but this
value is not excessively large. The two women were among the older women who died. They are
selected here because they have the largest hat values, meaning they are unusual in terms of the
distribution of age and sex, but they are not particularly influential in terms of Cook’s D.

A related graphical display is the collection of index plots provided by influenceIndexPlot()
in car, which plots various influence diagnostics against the observation numbers in the data. The

20Breen and Reed, both born in Ireland, were the leaders of their family groups. Among others, both kept detailed diaries
of their experiences, from which most of the historical record derives. Reed was also the leader of two relief parties sent out
to find rescue or supplies over the high Sierra mountains, so it is all the more remarkable that he survived.
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id.n argument here works to label that number of the most extreme observations individually for
each measure plotted. The following call produces Figure 7.25.

> influenceIndexPlot(donner.mod3, vars=c("Cook", "Studentized", "hat"),
+ id.n=4)

0.
00

0.
10

0.
20

0.
30

C
oo

k'
s 

di
st

an
ce

● ● ● ● ●
●

●

●
●

● ● ● ● ● ●

●

● ● ● ● ●
● ●

●
● ●

●
●

●

●

● ● ● ● ● ● ●
● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

●

● ●
● ● ● ● ●

●

● ●

●

● ● ●

●

● ● ●

●

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

Breen, Patrick

Reed, James

Eddy, Margaret McCutchen, Harriet

−
1

0
1

2
S

tu
de

nt
iz

ed
 r

es
id

ua
ls

●

●

●

● ● ●

●

●
● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
● ● ● ● ●

●

●

●

● ●

●

Breen, Patrick
Reed, James

Eddy, Eleanor Keseberg, Ada

0.
02

0.
06

0.
10

0.
14

ha
t−

va
lu

es

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●
●

● ● ●

● ●

●

●

●

●

●

●

●
● ●

●
●

● ●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

● ●

●
●

●

0 20 40 60 80

Graves, Elizabeth C.

Donner, Elizabeth
Donner, Tamsen

Breen, Patrick

Diagnostic Plots

Index

Figure 7.25: Index plots of influence measures for the Donner data model. The four most extreme
observations on each measure are labeled.{fig:donner2-indexinfl}

In our opinion, separate index plots are often less useful than combined plots such as the
leverage-influence plot that shows residuals, leverage and Cook’s D together. However, the car
version in Figure 7.25 does that too, and allows us to consider how unusual the labeled observations
are both individually and in combination.

4
{ex:icu2}

EXAMPLE 7.14: Death in the ICU
In Example 7.11 we examined several models to account for death in the ICU data set. We

continue this analysis here, with a focus on the simple main effects model, icu.glm2, for which
the fitted logits were shown in Figure 7.23. For ease of reference, we restate that model here:

> icu.glm2 <- glm(died ~ age + cancer + admit + uncons,
+ data = ICU, family = binomial)

The plot of residual vs. leverage for this model is shown in Figure 7.26.

> library(car)
> res <- influencePlot(icu.glm2, id.col = "red",
+ scale = 8, id.cex = 1.5, id.n = 3)

Details for the cases identified in the figure are shown below, again using rownames(res) to
select the relevant observations from the ICU data.
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Figure 7.26: Influence plot for the main effects model for the ICU data.{fig:icu2-inflplot}

> idx <- which(rownames(ICU) %in% rownames(res))
> cbind(ICU[idx, c("died", "age", "cancer", "admit", "uncons")], res)

died age cancer admit uncons StudRes Hat CookD
84 No 59 - Emerg Uncons -2.258 0.06781 0.3626
371 No 46 Cancer Emerg - -1.277 0.16408 0.2210
766 No 31 Cancer Emerg - -1.028 0.17062 0.1719
881 No 89 - Emerg Uncons -2.718 0.03081 0.4106
127 Yes 19 - Emerg - 2.565 0.01679 0.2724
208 Yes 70 - - Uncons 1.662 0.29537 0.4568
380 Yes 20 - Emerg - 2.548 0.01672 0.2668

None of the cases are particularly influential on the model coefficients overall: the largest Cook’s
D is only 0.45 for case 208. This observation also has the largest hat value. It is unusual on the
predictors in this sample: a 70-year-old man without cancer, admitted on an elective basis, who
nonetheless died. However, this case is also highly unusual in his having been unconscious on
admission for an elective procedure, and signals that there might have been a coding error or other
anomaly for this observation.

Another noteworthy observation identified here is case 881, an 89-year-old male, admitted un-
conscious as an emergency; this case is poorly predicted because he survived. Similarly, two other
cases (127, 380) with large studentized residuals are poorly predicted because they died, although
they were young, did not have cancer, and were conscious at admission. However, these cases have
relatively small Cook’s D values. From this evidence we might conclude that, case 208 bears further
scrutiny, but none of these cases greatly affects the model, its coefficients, or interpretation.

For comparison with Figure 7.26, the related index plot of these measures is shown in Fig-
ure 7.27.

> influenceIndexPlot(icu.glm2, vars = c("Cook", "Studentized", "hat"),
+ id.n = 4)

Cook’s D and DFFITS are overall measures of the total influence that cases have on the regres-
sion coefficients and fitted values, respectively. It might be that some cases have a large impact
on some individual regression coefficients, but don’t appear particularly unusual in these aggregate
measures.



310 7. Logistic Regression Models

0.
00

0.
10

0.
20

C
oo

k'
s 

di
st

an
ce

●●● ●●●●●●●●●●● ●●●

●

●●●●● ●● ●●● ● ●●●●●●●● ●●●●● ● ●● ●●●●●●● ●●●● ●● ●●●●● ●●●●●

●

●●●●● ●●●●● ●●● ●● ●●●●● ●●●● ●●●●●● ●● ● ●●●●● ●● ●●●●●● ●●●●● ●● ●●● ●●●●●●●

●

●●● ●● ●●● ●● ●● ●●●●●

●

●● ●●●●●●●
● ● ●●

●

● ● ●
●

●

●

●

● ●● ●

●

● ●
●

●

● ● ● ● ●

●

●
●

●●
●
●

●
●

●

●
●

● ●

208

881

84 202

−
2

0
1

2
S

tu
de

nt
iz

ed
 r

es
id

ua
ls

●
●

●
●

●
●

●
●●●

●
●
●

● ●

●●

●

●

●

●

●● ●

●
●
●●

●
●

●

●
●

●
●
●● ●

●
●
●

● ● ●
●

●
●●●

●●

● ●
●●
●

●

● ●
●

●

●
●

●

●

●

●
●

●

●
●
●●● ●

●
●

●

● ●

●
●

●

●

●●
●●●

●●●

●

●
●
●

●●

●

●
●

● ●
●
●

●●

●

●
●
●
●
●

●
●

●●

●
●

●
●
●

●
●
● ●●

●●
●●
●

●

●●● ●●
●

●

●
●● ●●

●
●●

●

●

●

●●
●

●

●●

●
●●

●
● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

127 380

881

285

0.
00

0.
10

0.
20

0.
30

ha
t−

va
lu

es

●●● ●

●
●●●●

●

●

●

●● ●●●

●

●●●●● ●● ●●● ● ●●●

●
●

●

●● ●●

●

●

●

● ●● ●●●●●●● ●

●
●
● ●● ●●

●
●● ●

●●●
●

●

●●●●● ●●●●●
●●● ●● ●●●●● ●●●

● ●

●

●●●
● ●● ● ●●●●● ●●

●
●●●●● ●●

●

●● ●● ●●● ●●●●

●

●●

●

●

●● ●● ●●
●

●● ●

●

●●●

●
●
●

●● ●●●●●●●
●

● ●
● ● ● ●

●

●●

●

●

●

●

●
● ●

●
●

●

●●

●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

0 200 400 600 800

208

766371 468

Diagnostic Plots

Index

Figure 7.27: Index plots of influence measures for the ICU data model. The four most extreme
observations on each measure are labeled. {fig:icu2-infl-index}

One way to study this is to make plots of the DFBETAij statistics. Such plots are not available
(as far as we know) in R packages, but it is not hard to construct them from the result returned
by influence.measures(). To do this, we select the appropriate columns from the infmat
component returned by that function.

> infl <- influence.measures(icu.glm2)
> dfbetas <- data.frame(infl$infmat[,2:5])
> colnames(dfbetas) <- c("dfb.age", "dfb.cancer", "dfb.admit",
+ "dfb.uncons")
> head(dfbetas)

dfb.age dfb.cancer dfb.admit dfb.uncons
8 0.047340 0.013418 0.004067 0.009254
12 0.018988 0.018412 -0.004174 0.018106
14 -0.001051 0.014882 0.026278 0.005555
28 0.031562 0.018424 -0.001511 0.016640
32 -0.164084 0.003788 -0.036505 0.023488
38 -0.021525 0.016539 -0.011937 0.020803

To illustrate this idea, plotting an individual column of dfbetas using type = "h" gives
an index plot against the observation number. This is shown in Figure 7.28 for the impact on the
coefficient for age. The lines and points are colored blue or red according to whether the patient
lived or died. Observations for which the |DFBETAage| > 0.2 (an arbitrary value) are labeled.

> op <- par(mar = c(5, 5, 1, 1) + .1)
> cols <- ifelse(ICU$died == "Yes", "red", "blue")
> plot(dfbetas[,1], type = "h", col = cols,
+ xlab = "Observation index",
+ ylab = expression(Delta * beta[Age]),
+ cex.lab = 1.3)
> points(dfbetas[,1], col = cols)
> # label some points
> big <- abs(dfbetas[,1]) > .25
> idx <- 1 : nrow(dfbetas)
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> text(idx[big], dfbetas[big, 1], label = rownames(dfbetas)[big],
+ cex = 0.9, pos = ifelse(dfbetas[big, 1] > 0, 3, 1),
+ xpd = TRUE)
> abline(h = c(-.25, 0, .25), col = "gray")
> par(op)
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Figure 7.28: Index plot for DFBETA (Age) in the ICU data model. The observations are colored
blue or red according to whether the patient lived or died. {fig:icu2-dbage}

None of the labeled points here are a cause for concern, since the standardized DFBETAs are all
relatively small. However, the plot shows that patients who died have generally larger impacts on
this coefficient.

An interesting alternative to individual index plots is a scatterplot matrix (Figure 7.29) that
shows the pairwise changes in the regression coefficients for the various predictors. Here we use
scatterplotMatrix() from car, which offers features for additional plot annotations, includ-
ing identifying the most unusual points in each pairwise plot. In each off-diagonal panel, a 95% data
ellipse and linear regression line help to show the marginal relationship between the two measures
and highlight why the labeled points are atypical in each plot.21

> scatterplotMatrix(dfbetas, smooth = FALSE, id.n = 2,
+ ellipse = TRUE, levels = 0.95, robust = FALSE,
+ diagonal = "histogram",
+ groups = ICU$died, col = c("blue", "red"))

As Figure 7.29 illustrates, the joint effect of observations on pairs of coefficients is more com-
plex than is apparent from the univariate views that appear in the plots along the diagonal. The
DFBETAs for cancer, admit, and uncons are all extremely peaked, yet the pairwise plots
show considerable structure. The points identified would be worthy of further study.

4

21This plot uses the id.method = "mahal" method to label the most extreme observations according to the Maha-
lanobis distance of each point from the centroid in the plot.
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7.5.3 Other diagnostic plots?
{sec:logist-partial}

The graphical methods described in this section are relatively straightforward indicators of the ade-
quacy of a particular model, with a specified set of predictors, each expressed in a given way. More
sophisticated methods have also been proposed, which focus on the need to include a particular
predictor and whether its relationship is linear. These include the component-plus-residual plot,
the added-variable plot, and the constructed variable plot, which are all analogous to techniques
developed in OLS.

7.5.3.1 Component-plus-residual plots
{sec:component-plus-residual}

The component-plus-residual plot (also called a partial residual plot) proposed originally by Larsen
and McCleary (1972) is designed to show whether a given quantitative predictor, xj , included lin-
early in the model, actually shows a nonlinear relation, requiring transformation. The essential idea
is to move the linear term for xj back into the residual, by calculating the partial residuals,

r?j = r + βjxj .
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Figure 7.29: Scatterplot matrix for DFBETAs from the model for the ICU data. Those who lived
or died are shown with blue circles and red triangles, respectively. The diagonal panels show his-
tograms of each variable. {fig:icu2-dbscatmat}
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Then, a plot of r?j against xj will have the same slope, βj , as the full model including it among
other predictors. However, any nonlinear trend will be shown in the pattern of the points, usually
aided by a smoothed non-parametric curve.

As adapted to logistic regression by Landwehr et al. (1984), the partial residual for variable xj
is defined as

r?j = V −1r + βjxj .

The partial residual plot is then a plot of r?j against xj , possibly with the addition of a smoothed
lowess curve (Fowlkes, 1987) and a linear regression line to aid interpretation. The linear regression
of the partial residuals on xj has the same slope, βj , as in the full model.

If xj affects the binary response linearly, the plot should be approximately linear with a slope
approximately equal to βj . A nonlinear plot suggests that xj needs to be transformed, and the shape
of the relation gives a rough guide to the required transformation. For example, a parabolic shape
would suggest a term in x2

j . These plots complement the conditional data plots described earlier
(Section 7.3.1), and are most useful when there are several quantitative predictors, so that it is more
convenient and sensible to examine their relationships individually.

The car package implements these plots in the crPlots() and crPlot() functions. They
also work for models with factor predictors (using parallel boxplots for the factor levels) but not for
those with interaction terms. {ex:donner3}

EXAMPLE 7.15: Donner Party
In Example 7.13, we fit several models for the Donner Party data, and we recall two here to

illustrate component-plus-residual plots. Both assert additive effects of age and sex, but the model
donner.mod3 allows a quadratic effect of age.

> donner.mod1 <- glm(survived ~ age + sex,
+ data = Donner, family = binomial)
> donner.mod3 <- glm(survived ~ poly(age, 2) + sex,
+ data = Donner, family = binomial)

Had we not made exploratory plots earlier (Example 7.13), and naively fit only the linear model
in age, donner.mod1, we could use crPlots() to check for a nonlinear relationship of survival
with age as follows, giving Figure 7.30.

> crPlots(donner.mod1, ~age, id.n=2)

The smoothed loess curve in this plot closely resembles the trend we saw in the conditional plot
for age by sex (Figure 7.16), suggesting the need to include a nonlinear term for age. The points
identified in this plot, by default, are those with either the most extreme x values (giving them high
leverage) or the largest absolute Pearson residuals in the full model. The four structured bands of
points in the plot correspond to the combinations of sex and survival.

For comparison, you can see the result of allowing for a nonlinear relationship in age in a partial
residual plot for the model donner.mod.3 that includes the effect poly(age, 2) for age.
Note that the syntax of the crPlots() function requires that you specify a term in the model,
rather than just a predictor variable.

> crPlots(donner.mod3, ~poly(age,2), id.n=2)

Except possibly at the extreme right, this plot (Figure 7.31) shows no indication of a (further)
nonlinear relationship.

4
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Figure 7.30: Component-plus-residual plot for the simple additive linear model, donner.mod1.
The dashed red line shows the slope of age in the full model; the smoothed green curve shows a
loess fit with span = 0.5. {fig:donner-cr1}
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Figure 7.31: Component-plus-residual plot for the nonlinear additive model, donner.mod3. {fig:donner-cr2}

7.5.3.2 Added-variable plots

Added-variable plots (Cook and Weisberg, 1999, Wang, 1985) (also called partial-regression plots)
are another important tool for diagnosing problems in logistic regression and other linear or gen-
eralized linear models. These are essentially plots, for each xi, of an adjusted response, y?i =
y | othersi, against an adjusted predictor, x?i = xi | othersi, where othersi = X /∈ xi ≡ X(−i)

indicates all other predictors excluding xi. As such, they show the conditional relationship between
the response and the predictor xi, controlling for, or adjusting for, all other predictors. Here, y?i
and x?i represent, respectively, the residuals from the regressions of y, and of xi, on all the other xs
excluding xi.

It might seem from this description that each added-variable plot requires two additional aux-
iliary logistic regressions to calculate the residuals y?i and x?i . However, Wang (1985) showed
that the added-variable plot may be constructed by following the logistic regression for the model
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y ∼X(−i) with one weighted least-squares regression of xi onX(−i) to find the residual part, x?i ,
of x not predicted by the other regressors.

Let r be the vector of Pearson residuals from the initial logistic fit of y on the variables inX(−i),
and let H and V = diag [p̂(1 − p̂)] be the hat matrix and V matrix from this analysis. Then, the
added-variable plot is a scatterplot of the residuals r against the xi-residuals,

x?i = (I −H)V 1/2x .

There are several important uses of added-variable plots:
First, marginal plots of the response variable y against the predictor variables xi can conceal

or misrepresent the relationships in a model including several predictors together due to correla-
tions or associations among the predictors. This problem is compounded by the fact that graphical
methods for discrete responses (boxplots, mosaic plots) cannot easily show influential observa-
tions or nonlinear relationships. Added-variable plots solve this problem by plotting the residuals,
y?i = y | othersi, which are less discrete than the marginal responses in y.

Second, the numerical measures and graphical methods for detecting influential observations
described earlier in this section are based on the idea of single-case deletion, comparing coefficients
or fitted values for the full data with those that result from deleting each case in turn. Yet it is
well-known (Lawrance, 1995) that sets of two (or more) observations can have joint influence,
which greatly exceeds their individual influential. Similarly, the influence of one discrepant point
can be offset by another influential point in an opposite direction, a phenomenon called masking.
The main cases of joint influence are illustrated in Figure 7.32. Added-variable plots, showing the
partial regression for one predictor controlling all others, can make such cases visually apparent.
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Figure 7.32: Jointly influential points in regression models. In each panel, the thick black line
shows the regression of y on x using all the data points. The solid purple line shows the regression
deleting both the red and blue points and the broken and dotted lines show the regression retaining
only the point in its color in addition to the constant gray points. (a) Two points whose joint influence
enhance each other; (b) two points where the influence of one is masked by that of the other; (c)
two points whose combined influence greatly exceeds the effect of either one individually. {fig:joint}

Finally, given a tentative model using predictors x, the added-variable plot for another regressor,
z, can provide a useful visual assessment of its additional contribution. An overall test could be
based on the difference inG2 for the enlarged model logit(p) = Xβ+γz, compared to the reduced
model logit(p) = Xβ. But the added-variable plot shows whether the evidence for including z is
spread throughout the sample or confined to a small subset of observations. The regressor z may be
a new explanatory variable, or a higher-order term for variable(s) already in the model.

The car package implements these plots with the function avPlot() for a single term and
avPlots() for all terms in a linear or generalized linear model, as shown in the example(s) be-
low. See http://www.datavis.ca/gallery/animation/duncanAV/ for an animated



316 7. Logistic Regression Models

graphic showing the transition between a marginal plot of the relationship of y to x and the added-
variable plot of y? to x? for the case of multiple linear regression with a quantitative response. {ex:donner4}

EXAMPLE 7.16: Donner Party
The simple additive model donner.mod1 for the Donner Party data can be used to illustrate

some features of added-variable plots. In the call to avPlots() below, we use color for the
plotting symbol to distinguish those who survived vs. died, shape to distinguish men from women.

> col <- ifelse(Donner$survived == "yes", "blue", "red")
> pch <- ifelse(Donner$sex == "Male", 16, 17)
> avPlots(donner.mod1, id.n = 2,
+ col = col, pch = pch, col.lines = "darkgreen")
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Figure 7.33: Added-variable plots for age (left) and sex (right) in the Donner Party main effects
model. Those who survived are shown in blue; those who died in red. Men are plotted with filled
circles; women with filled triangles.{fig:donner4-avp}

These plots have the following properties:

1. The slope in the simple regression of y?i on x?i is the same as the partial coefficient βi in the
full multiple regression model including both predictors here (or all predictors in general).

2. The residuals from this regression line are the same as the residuals in the full model.

3. Because the response, survived, is binary, the vertical axis y?age in the left panel for age is
the part of the logit for survival that cannot be predicted from sex. Similarly, the vertical axis
in the right panel is the part of survival that cannot be predicted from age. This property allows
the clusters of points corresponding to discrete variables to be seen more readily, particularly if
they are distinguished by visual attributes such as color and shape, as in Figure 7.33.

4
{ex:icu3}
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EXAMPLE 7.17: Death in the ICU
We illustrate some of the uses of added-variable plots using the main effects model, icu.glm2,

predicting death in the ICU from the variables age, cancer, admit, and uncons.
To see why marginal plots of the discrete response against each predictor are often unrevealing

for the purpose of model assessment, consider the collection of plots in Figure 7.34 showing the
default plots (spineplots) for the factor response, died, against each predictor. These show the
marginal distribution of each predictor by the widths of the bars, and highlight the proportion who
died by color. Such plots are useful for some purposes, but not for assessing the adequacy of the
fitted model.

> op <- par(mfrow = c(2, 2), mar = c(4, 4, 1, 2.5) + .1, cex.lab = 1.4)
> plot(died ~ age, data = ICU, col = c("lightblue", "pink"))
> plot(died ~ cancer, data = ICU, col = c("lightblue", "pink"))
> plot(died ~ admit, data = ICU, col = c("lightblue", "pink"))
> plot(died ~ uncons, data = ICU, col = c("lightblue", "pink"))
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Figure 7.34: Marginal plots of the response died against each of the predictors in the model
icu.glm2 for the ICU data. {fig:icu3-marginal}

The added-variable plot for this model is shown in Figure 7.35. In each plot, the solid red line
shows the partial slope, βj for the focal predictor, controlling for all others.

> pch <- ifelse(ICU$died=="No", 1, 2)
> avPlots(icu.glm2, id.n=2, pch=pch, cex.lab=1.3)

The labeled points in each panel use the default id.method for avPlots(), selecting those
with either large absolute model residuals or extreme x?i residuals, given all other predictors. Cases
127 and 881, identified earlier as influential, stand out in all these plots.

Next, we illustrate the use of added-variable plots for checking the effect of influential observa-
tions on the decision to include an additional predictor in some given model. In the analysis of the
ICU data using model selection methods, the variable systolic (systolic blood pressure at ad-
mission) was nominated by several different procedures. Here we take a closer look at the evidence
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Figure 7.35: Added-variable plots for the predictors in the model for the ICU data. Those who died
and survived are shown by triangles (4) and circles (©), respectively. {fig:icu3-avp1}

for inclusion of this variable in a predictive model. We fit a new model adding systolic to the
others and test the improvement with a likelihood ratio test:

> icu.glm2a <- glm(died ~ age + cancer + admit + uncons + systolic,
+ data = ICU, family = binomial)
> anova(icu.glm2, icu.glm2a, test = "Chisq")

Analysis of Deviance Table

Model 1: died ~ age + cancer + admit + uncons
Model 2: died ~ age + cancer + admit + uncons + systolic
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 195 139
2 194 136 1 3.52 0.061 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So, the addition of systolic blood pressure is nearly significant at the conventional α = 0.05
level. The added-variable plot for this variable in Figure 7.36 shows the strength of evidence for its
contribution, above and beyond the other variables in the model, as well as the partial leverage and
influence of individual points.
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> avPlot(icu.glm2a, "systolic", id.n = 3, pch = pch)
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Figure 7.36: Added-variable plot for the effect of adding systolic blood pressure to the main effects
model for the ICU data. {fig:icu3-avp2}

In this plot, cases 331 and 921 have high partial leverage, but they are not influential. Case
84, however, has high leverage and a large residual, so it is possibly influential on the evidence for
inclusion of systolic in the model. Note also that the partial regression line in this plot nicely
separates nearly all the patients who died from those who survived.

4

7.6 Chapter summary
{sec:ch07-summary}

• Model-based methods for categorical data provide confidence intervals for parameters and pre-
dicted values for observed and unobserved values of the explanatory variables. Graphical dis-
plays of predicted values help us to interpret the fitted relations by smoothing a discrete re-
sponse.

• The logistic regression model (Section 7.2) describes the relationship between a categorical
response variable, usually dichotomous, and a set of one or more quantitative or discrete ex-
planatory variables (Section 7.3) It is conceptually convenient to specify this model as a linear
model predicting the log odds (or logit) of the probability of a success from the explanatory
variables.

• The relationship between a discrete response and a quantitative predictor may be explored
graphically by plotting the binary observations against the predictor with some smoothed curve(s),
either parametric or non-parametric, possibly stratified by other predictors.

• For both quantitative and discrete predictors, the results of a logistic regression are most easily
interpreted from full-model plots of the fitted values against the predictors, either on the scale of
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predicted probabilities or log odds (Section 7.3.2). In these plots, confidence intervals provide
a visual indication of the precision of the predicted results.

• When there are multiple predictors and/or higher-order interaction terms, effect plots (Sec-
tion 7.3.3) provide an important method for constructing simplified displays, focusing on the
higher-order terms in a given model.

• Influence diagnostics (Section 7.5) assess the impact of individual cases or groups on the fitted
model, predicted values, and the coefficients of individual predictors. Among other displays,
plots of residuals against leverage showing Cook’s D are often most useful.

• Other diagnostic plots (Section 7.5.3) include component-plus-residual plots, which are use-
ful for detecting non-linear relationships for a quantitative predictor, and added-variable plots,
which show the partial relations of the response to a given predictor, controlling or adjusting for
all other predictors.

7.7 Lab exercises
{sec:ch07-exercises}{lab:7.1}

Exercise 7.1 Arbuthnot’s data on the sex ratio of births in London was examined in Example 3.1.
Use a binomial logistic regression model to assess whether the proportion of male births varied with
the variables Year, Plague, and Mortality in the Arbuthnot data set. Produce effect plots
for the terms in this model. What do you conclude?

{lab:7.2}

Exercise 7.2 For the Donner Party data in Donner, examine Grayson’s 1990 claim that survival
in the Donner Party was also mediated by the size of the family unit. This takes some care, because
the family variable in the Donner data is a simplified grouping based on the person’s name and
known alliances among families from the historical record. Use the following code to compute a
family.size variable from each individual’s last name:

> data("Donner", package="vcdExtra")
> Donner$survived <- factor(Donner$survived, labels=c("no", "yes"))
> # use last name for family
> lame <- strsplit(rownames(Donner), ",")
> lame <- sapply(lame, function(x) x[[1]])
> Donner$family.size <- as.vector(table(lname)[lname])

(a) Choose one of the models (donner.mod4, donner.mod6) from Example 7.9 that include
the interaction of age and sex and nonlinear terms in age. Fit a new model that adds a main
effect of family.size. What do you conclude about Grayson’s claim?

(b) Produce an effect plot for this model.
(c) Continue, by examining whether the effect of family size can be taken as linear, or whether a

nonlinear term should be added.
{lab:7.3}

Exercise 7.3 Use component+residual plots (Section 7.5.3) to examine the additive model for the
ICU data given by

> icu.glm2 <- glm(died ~ age + cancer + admit + uncons,
+ data=ICU, family=binomial)

(a) What do you conclude about the linearity of the (partial) relationship between age and death
in this model?
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(b) An alternative strategy is to allow some nonlinear relation for age in the model using a quadratic
(or cubic) term like poly(age, 2) (or poly(age, 3)) in the model formula. Do these
models provide evidence for a nonlinear effect of age on death in the ICU?

{lab:7.4}

Exercise 7.4 Explore the use of other marginal and conditional plots to display the relationships
among the variables predicting death in the ICU in the model icu.glm2. For example, you might
begin with a marginal gpairs() plot showing all bivariate marginal relations, something like this:

> library(gpairs)
> gpairs(ICU[,c("died", "age", "cancer", "admit", "uncons")],
+ diag.pars=list(fontsize=16, hist.color="lightgray"),
+ mosaic.pars=list(gp=shading_Friendly,
+ gp_args=list(interpolate=1:4)))

{lab:7.5}{lab:caesar-logist}

Exercise 7.5 The data set Caesar in vcdExtra gives a 3 × 23 frequency table classifying 251
women who gave birth by Caesarian section by Infection (three levels: none, Type 1, Type2)
and Risk, whether Antibiotics were used, and whether the Caesarian section was Planned
or not. Infection is a natural response variable. In this exercise, consider only the binary
outcome of infection vs. no infection.

> data("Caesar", package="vcdExtra")
> Caesar.df <- as.data.frame(Caesar)
> Caesar.df$Infect <- as.numeric(Caesar.df$Infection %in%
+ c("Type 1", "Type 2"))

(a) Fit the main-effects logit model for the binary response Infect. Note that with the data in the
form of a frequency data frame you will need to use weights=Freq in the call to glm().
(It might also be convenient to reorder the levels of the factors so that "No" is the baseline
level for each.)

(b) Use summary() or car::Anova() to test the terms in this model.
(c) Interpret the coefficients in the fitted model in terms of their effect on the odds of infection.
(d) Make one or more effects plots for this model, showing separate terms, or their combinations.

{lab:7.6}

Exercise 7.6 The data set birthwt in the MASS package gives data on 189 babies born at
Baystate Medical Center, Springfield, MA during 1986. The quantitative response is bwt (birth
weight in grams), and this is also recorded as low, a binary variable corresponding to bwt <
2500 (2.5 Kg). The goal is to study how this varies with the available predictor variables. The
variables are all recorded as numeric, so in R it may be helpful to convert some of these into factors
and possibly collapse some low frequency categories. The code below is just an example of how
you might do this for some variables.

> data("birthwt", package="MASS")
> birthwt <- within(birthwt, {
+ race <- factor(race, labels = c("white", "black", "other"))
+ ptd <- factor(ptl > 0) # premature labors
+ ftv <- factor(ftv) # physician visits
+ levels(ftv)[-(1:2)] <- "2+"
+ smoke <- factor(smoke>0)
+ ht <- factor(ht>0)
+ ui <- factor(ui>0)
+ })

(a) Make some exploratory plots showing how low birth weight varies with each of the available
predictors. In some cases, it will probably be helpful to add some sort of smoothed summary
curves or lines.
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(b) Fit several logistic regression models predicting low birth weight from these predictors, with
the goal of explaining this phenomenon adequately, yet simply.

(c) Use some graphical displays to convey your findings.
{lab:7.7}

Exercise 7.7 Refer to Exercise 5.9 for a description of the Accident data. The interest here is to
model the probability that an accident resulted in death rather than injury from the predictors age,
mode, and gender. With glm(), and the data in the form of a frequency table, you can use the
argument weight=Freq to take cell frequency into account.

(a) Fit the main effects model, result=="Died" ~ age + mode + gender. Use
car::Anova() to assess the model terms.

(b) Fit the model that allows all two-way interactions. Use anova() to test whether this model
is significantly better than the main effects model.

(c) Fit the model that also allows the three-way interaction of all factors. Does this offer any
improvement over the two-way model?

(d) Interpret the results of the analysis using effect plots for the two-way model, separately for
each of the model terms. Describe verbally the nature of the age*gender effect. Which
mode of transportation leads to greatest risk of death?
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