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8
Models for Polytomous
Responses

{ch:polytomous}

8
Polytomous
Responses

8.1 Ordinal
response

8.2 Nested
dichotomies

8.3
Generalized
logit model

This chapter generalizes logistic regression models for a binary response to handle
a multi-category (polytomous) response. Different models are available depending on
whether the response categories are nominal or ordinal. Visualization methods for such
models are mostly straightforward extensions of those used for binary responses.

Ballerinas are often divided into three categories: jumpers, turners and balancers

Robert Gottlieb

Polytomous response data arise when the outcome variable, Y , takes on m > 2 discrete values.
For example, (a) patients may record that their improvement after treatment is “none,” “some” or
“marked;” (b) high school students may choose a general, vocational, or academic program; (c)
women’s labor force participation may be recorded in a survey as not working outside the home,
working part-time, or working full-time; (d) Canadian voters may express a preference for the
Conservative, Liberal, NDP, or Green party. These response categories may be considered ordered,
as in case (a), or simply nominal, as in case (d), and sometimes the response can arguably be treated
in either way, as in cases (b) and (c).

In this situation, there are several different ways to model the response probabilities. Let
πij ≡ πj (xi) be the probability of response j for case or group i, given the predictors xi. Be-
cause

∑
j πij = 1, only m − 1 of these probabilities are independent. The essential idea here is

to construct a model for the polytomous (or multinomial) response composed of m − 1 logit com-
parisons among the response categories in a similar way to how factors are treated in the predictor
variables.
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324 8. Models for Polytomous Responses

The simplest approach uses the proportional odds model, described in Section 8.1. This model
applies only when the response is ordinal (as in improvement after therapy) and an additional as-
sumption (the proportional odds assumption) holds. This model can be fit using polr() in the
MASS (Ripley, 2015a) package, lrm() in the rms (Harrell, Jr., 2015) package, and vglm() in
VGAM (Yee, 2015).

However, if the response is purely nominal (e.g., vote Conservative, Liberal, NDP, Green), or if
the proportional odds assumption is untenable, another particularly simple strategy is to fit separate
models to a set of m − 1 nested dichotomies derived from the polytomous response (described in
Section 8.2). This method allows you to resolve the differences among the m response categories
into independent statistical questions (similar to orthogonal contrasts in ANOVA). For example, for
women’s labor force participation, it might be substantively interesting to contrast not working vs.
part-time and full-time and then part-time vs. full-time for women who are working. You fit such
nested dichotomies by running the m− 1 binary logit models and combining the statistical results.

The most general approach is the generalized logit model, also called the multinomial logit
model, described in Section 8.3. This model fits simultaneously the m − 1 simple logit models
against a baseline or reference category, for example, the last category, m. With a 3-category
response, there are two generalized logits, Li1 = log(πi1/πi3) and Li2 = log(πi2/πi3), contrasting
response categories 1 and 2 against category 3. In this approach, it doesn’t matter which response
category is chosen as the baseline, because all pairwise comparisons can be recovered from whatever
is estimated. This model is conveniently fitted using multinom() in nnet (Ripley, 2015b).

8.1 Ordinal response: Proportional odds model
{sec:ordinal}

For an ordered response Y , with categories j = 1, 2, . . . ,m, the ordinal nature of the response can
be taken into account by forming logits based on the m − 1 adjacent category cutpoints between
successive categories. That is, if the cumulative probabilities are

Pr(Y ≤ j |x) = π1(x) + π2(x) + · · ·πj(x) ,

then the cumulative logit for category j is defined as

Lj ≡ logit[Pr(Y ≤ j |x)] = log
Pr(Y ≤ j |x)
Pr(Y > j |x)

= log
Pr(Y ≤ j |x)

1− Pr(Y ≤ j |x)
(8.1){eq:cumlogit}

for j = 1, 2, . . .m− 1.
In our running example of responses to arthritis treatment, the actual response variable is Improved,

with ordered levels "None" < "Some" < "Marked". In this case, the cumulative logits would
be defined as

L1 = log
π1(x)

π2(x) + π3(x)
= logit ( None vs. [Some or Marked] )

L2 = log
π1(x) + π2(x)

π3(x)
= logit ( [None or Some] vs. Marked) ,

where x represents the predictors (sex, treatment and age).
The proportional odds model (PO) (McCullagh, 1980) proposes a simple and parsimonious

account of these effects, where the predictors in (x) are constrained to have the same slopes for all
cumulative logits,

Lj = αj + x
Tβ j = 1, . . . ,m− 1 . (8.2){eq:propodds}
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Figure 8.1: Proportional odds model for an ordinal response. The model assumes equal slopes for
the cumulative response logits. Left: logit scale; right: probability scale. {fig:podds}

That is, the effect of the predictor xi is the same, βi, for all cumulative logits. The cumulative
logits differ only in their intercepts. In this formulation, the {αj} increase with j, because Pr(Y ≤
j |x) increases with j for fixed x.1 Figure 8.1 portrays the PO model for a single quantitative
predictor x with m = 4 response categories.

The name “proportional odds” stems from the fact that under Eqn. (8.2), for fixed x, the cumu-
lative log odds (logits) for categories j and j′ are constant and their difference is (αj − αj′), so the
odds have a constant ratio exp(αj − αj′) = exp(αj)/ exp(αj′), or are proportional. Similarly, the
ratio of the cumulative odds of making a response Y ≤ j at values of the predictors x = x1 are
exp((x1 − x2)

Tβ) times the odds of this response at x = x2, so the log cumulative odds ratio is
proportional to the difference between x1 and x2.

8.1.1 Latent variable interpretation
For a binary response, an alternative motivation for logistic regression regards the relation of the
observed Y as arising from a continuous, unobserved, (latent) response variable, ξ, representing the
propensity for a “success” (1) rather than “failure” (0). The latent response is assumed to be linearly
related to the predictors x according to

ξi = α+ xT
i β + εi = α+ β1xi1 + · · ·+ βpxip + εi . (8.3) {eq:latent}

However, we can only observe Yi = 1 when ξi passes some threshold, that with some convenient
scaling can be taken as ξi > 0 =⇒ Yi = 1.2

The latent variable motivation extends directly to an ordinal response under the PO model. We
now assume that there is a set of m− 1 thresholds, α1 < α2 < · · · < αm−1 for the latent variable
ξi in Eqn. (8.3), and we observe

Yi = j if αj−1 < ξi ≤ αj ,

1Some authors and some software describe the PO model in terms of logit[Pr(Y > j |x)], so the signs and order of the
intercepts, αj , are reversed.

2The latent variable derivation of logistic regression (and the related probit model) was fundamental in the history of
statistical methods for discrete response outcomes. An early example was Thurstone’s (1927) Law of comparative judgment
designed to account for psychological preference by assuming an underlying latent continuum of “hedonic values.” Similarly,
the probit model arose from dose-response studies in toxicology (Bliss, 1934, Finney, 1947) where the number killed by
some chemical agent was related to its type, dose, or concentration. The idea of a latent variable was also at the heart of
the development of factor analysis (Bentler, 1980), and latent class analysis (Lazarsfeld, 1950, 1954) was developed to treat
the problem of classifying individuals into discrete latent classes from fallible measurements. See Bollen (2002) for a useful
overview of latent variable models in the social sciences.
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Figure 8.2: Latent variable representation of the proportional odds model for m = 4 response
categories and a single quantitative predictor, x. Source: Adapted from Fox (2008, Fig 14.10),
using code provided by John Fox. {fig:latent}

with appropriate modifications to the inequalities at the end points.
This is illustrated in Figure 8.2 for a response with m = 4 ordered categories and a single

quantitative predictor, x. The observable response Y categories are shown on the right vertical
axis, and the corresponding latent continuous variable ξ on the left axis together with the thresholds
α1, α2, α3. The (conditional) logistic distribution of ξ is shown at two values of x, and the shaded
areas under the curve give the conditional probabilities Pr(Y = 4 |xi) for the two values x1 and
x2.

8.1.2 Fitting the proportional odds model
As mentioned earlier, there are a number of different R packages that provide facilities for fitting the
PO model. These have somewhat different capabilities for reporting results, testing hypotheses, and
plotting, so we generally use polr() in the MASS package, except where other packages offer
greater convenience.

Unless the response variable has numeric values, it is important to ensure that it has been defined
as an ordered factor (using ordered()). In the Arthritis data, the response Improved was
set up this way, as we can check by printing some of the values.3

> data("Arthritis", package = "vcd")
> head(Arthritis$Improved, 8)

[1] Some None None Marked Marked Marked None Marked
Levels: None < Some < Marked

We fit the main effects model for the ordinal response using polr() as shown below. We
also specify Hess=TRUE to have the function return the observed information matrix (called the
Hessian), that is used in other operations to calculate standard errors.

> library(MASS)
> arth.polr <- polr(Improved ~ Sex + Treatment + Age,
+ data = Arthritis, Hess = TRUE)

3As an unordered factor, the levels would be treated as ordered alphabetically, i.e., Marked, None, Some.
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> summary(arth.polr)

Call:
polr(formula = Improved ~ Sex + Treatment + Age, data = Arthritis,

Hess = TRUE)

Coefficients:
Value Std. Error t value

SexMale -1.2517 0.5464 -2.29
TreatmentTreated 1.7453 0.4759 3.67
Age 0.0382 0.0184 2.07

Intercepts:
Value Std. Error t value

None|Some 2.532 1.057 2.395
Some|Marked 3.431 1.091 3.144

Residual Deviance: 145.46
AIC: 155.46

The output from the summary() method, shown above, gives the estimated coefficients (β)
and intercepts (αj) labeled by the cutpoint on the ordinal response. It provides standard errors
and t-values (βi/SE(βi)), but no significance tests or p-values. The car (Fox and Weisberg,
2015)::Anova() method gives the appropriate tests.

> library(car)
> Anova(arth.polr)

Analysis of Deviance Table (Type II tests)

Response: Improved
LR Chisq Df Pr(>Chisq)

Sex 5.69 1 0.01708 *
Treatment 14.71 1 0.00013 ***
Age 4.57 1 0.03251 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.1.3 Testing the proportional odds assumption
The simplicity of the PO model is achieved only when the proportional odds model holds for a
given data set. In essence, a test of this assumption involves a contrast between the PO model and
a generalized logit NPO model that allows different effects (slopes) of the predictors across the
response categories:

PO : Lj = αj + x
Tβ j = 1, . . . ,m− 1 (8.4) {eq:po}

NPO : Lj = αj + x
Tβj j = 1, . . . ,m− 1 (8.5) {eq:npo}

The most general test involves fitting both models and testing the difference in the residual
deviance by a likelihood ratio test or using some other measure (such as AIC) for model comparison.
The PO model (Eqn. (8.4)) has (m − 1) + p parameters, while the NPO model (Eqn. (8.5)) has
(m − 1)(1 + p) = m(1 + p) parameters, which may be difficult to fit if this is large relative to
the number of observations. An intermediate model, the partial proportional odds model (Peterson
and Harrell, 1990), allows one subset of predictors, xpo, to satisfy the proportional odds assumption
(equal slopes), while the remaining predictors xnpo have slopes varying with the response level:

PPO : Lj = αj + x
T
poβ + xT

npoβj j = 1, . . . ,m− 1 . (8.6) {eq:ppo}
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In R, the PO and NPO models can be readily contrasted by fitting them both using vglm() in
the VGAM package. This defines the cumulative family of models and allows a parallel
option. With parallel=TRUE, this is equivalent to the polr() model, except that the signs of
the coefficients are reversed.

> library(VGAM)
> arth.po <- vglm(Improved ~ Sex + Treatment + Age, data = Arthritis,
+ family = cumulative(parallel = TRUE))
> arth.po

Call:
vglm(formula = Improved ~ Sex + Treatment + Age, family = cumulative(parallel = TRUE),

data = Arthritis)

Coefficients:
(Intercept):1 (Intercept):2 SexMale

2.531990 3.430988 1.251671
TreatmentTreated Age

-1.745304 -0.038163

Degrees of Freedom: 168 Total; 163 Residual
Residual deviance: 145.46
Log-likelihood: -72.729

The more general NPO model can be fit using parallel=FALSE.

> arth.npo <- vglm(Improved ~ Sex + Treatment + Age, data = Arthritis,
+ family = cumulative(parallel = FALSE))
> arth.npo

Call:
vglm(formula = Improved ~ Sex + Treatment + Age, family = cumulative(parallel = FALSE),

data = Arthritis)

Coefficients:
(Intercept):1 (Intercept):2 SexMale:1

2.618539 3.431175 1.509827
SexMale:2 TreatmentTreated:1 TreatmentTreated:2
0.866434 -1.836929 -1.704011

Age:1 Age:2
-0.040866 -0.037294

Degrees of Freedom: 168 Total; 160 Residual
Residual deviance: 143.57
Log-likelihood: -71.787

The VGAM package defines a coef() method that can print the coefficients in a more readable
matrix form giving the category cutpoints:

> coef(arth.po, matrix = TRUE)

logit(P[Y<=1]) logit(P[Y<=2])
(Intercept) 2.531990 3.430988
SexMale 1.251671 1.251671
TreatmentTreated -1.745304 -1.745304
Age -0.038163 -0.038163

> coef(arth.npo, matrix = TRUE)

logit(P[Y<=1]) logit(P[Y<=2])
(Intercept) 2.618539 3.431175
SexMale 1.509827 0.866434
TreatmentTreated -1.836929 -1.704011
Age -0.040866 -0.037294

In most cases, nested models can be tested using an anova() method, but the VGAM pack-
age has not implemented this for "vglm" objects. Instead, it provides an analogous function,
lrtest():
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> VGAM::lrtest(arth.npo, arth.po)

Likelihood ratio test

Model 1: Improved ~ Sex + Treatment + Age
Model 2: Improved ~ Sex + Treatment + Age
#Df LogLik Df Chisq Pr(>Chisq)

1 160 -71.8
2 163 -72.7 3 1.88 0.6

The LR test can be also calculated “manually” as shown below using the difference in residual
deviance for the two models.

> tab <- cbind(
+ Deviance = c(deviance(arth.npo), deviance(arth.po)),
+ df = c(df.residual(arth.npo), df.residual(arth.po))
+ )
> tab <- rbind(tab, diff(tab))
> rownames(tab) <- c("GenLogit", "PropOdds", "LR test")
> tab <- cbind(tab, pvalue=1-pchisq(tab[,1], tab[,2]))
> tab

Deviance df pvalue
GenLogit 143.5741 160 0.81966
PropOdds 145.4579 163 0.83435
LR test 1.8838 3 0.59686

The vglm() can also fit partial proportional odds models, by specifying a formula giving the
terms for which the PO assumption should be taken as TRUE or FALSE. Here we illustrate this using
parallel=FALSE ~ Sex, to fit separate slopes for males and females, but parallel lines for the
other predictors. The same model would be fit using parallel=TRUE ~ Treatment + Age.

> arth.ppo <- vglm(Improved ~ Sex + Treatment + Age, data = Arthritis,
+ family = cumulative(parallel = FALSE ~ Sex))
> coef(arth.ppo, matrix = TRUE)

logit(P[Y<=1]) logit(P[Y<=2])
(Intercept) 2.542452 3.615561
SexMale 1.483336 0.867362
TreatmentTreated -1.775742 -1.775742
Age -0.039622 -0.039622

8.1.4 Graphical assessment of proportional odds

There are several graphical methods for visual assessment of the proportional odds assumption.
These are all marginal methods, in that they treat the predictors one at a time. However, that
provides one means to determine if a partial proportional odds model might be more appropriate.
Harrell’s work Regression Modeling Strategies (2001, Chapters 13–14) and the corresponding rms
package provide an authoritative treatment and methods in R.

One simple idea is to plot the conditional mean or expected valueE(X |Y ) of a given predictor,
X , at each level of the ordered response Y . If the response behaves ordinally in relation to X , these
means should be strictly increasing or decreasing with Y . For comparison, one can also plot the
estimated conditional means Ê(X |Y = j) under the fitted PO model X as the only predictor. If
the PO assumption holds for this X , the model-mean curve should be close to the data mean curve.
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> library(rms)
> arth.po2 <- lrm(Improved ~ Sex + Treatment + Age, data = Arthritis)
> arth.po2

Logistic Regression Model

lrm(formula = Improved ~ Sex + Treatment + Age, data = Arthritis)
Model Likelihood Discrimination Rank Discrim.

Ratio Test Indexes Indexes
Obs 84 LR chi2 24.46 R2 0.291 C 0.750
None 42 d.f. 3 g 1.335 Dxy 0.500
Some 14 Pr(> chi2) <0.0001 gr 3.801 gamma 0.503
Marked 28 gp 0.280 tau-a 0.309
max |deriv| 1e-07 Brier 0.187

Coef S.E. Wald Z Pr(>|Z|)
y>=Some -2.5320 1.0570 -2.40 0.0166
y>=Marked -3.4310 1.0911 -3.14 0.0017
Sex=Male -1.2517 0.5464 -2.29 0.0220
Treatment=Treated 1.7453 0.4759 3.67 0.0002
Age 0.0382 0.0184 2.07 0.0382

The plot of conditionalX means is produced using the plot.xmean.ordinaly() as shown
below. It produces one marginal panel for each predictor in the model. For categorical predictors, it
plots only the overall most frequent category. The resulting plot is shown in Figure 8.3.

> op <- par(mfrow=c(1,3))
> plot.xmean.ordinaly(Improved ~ Sex + Treatment + Age, data=Arthritis,
+ lwd=2, pch=16, subn=FALSE)
> par(op)
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Figure 8.3: Visual assessment of ordinality and the proportional odds assumption for predictors
in the Arthritis data. Solid lines connect the stratified means of X given Y. Dashed lines show the
estimated expected value of X given Y=j if the proportional odds model holds for X.{fig:arth-rmsplot}

In Figure 8.3, there is some evidence that the effect of Sex is non-monotonic and the means
differ from their model-implied values under the PO assumption. The effect of Treatment looks
good by this method, and the effect of Age hints that the upper two categories may not be well-
distinguished as an ordinal response.

Of course, this example has only a modest total sample size, and this method only examines the
marginal effects of the predictors. Nevertheless, it is a useful supplement to the statistical methods
described earlier.



8.1: Ordinal response 331

8.1.5 Visualizing results for the proportional odds model
{sec:vis-propodds}

Results from the PO model (and other models for polytomous responses) can be graphed using the
same ideas and methods shown earlier for a binary or binomial response. In particular, full-model
plots (described earlier in Section 7.3.2) and effect plots (Section 7.3.3) are still very helpful.

But now there is the additional complication that the response variable has m > 2 levels and
so needs to be represented by m − 1 curves or panels in addition to those related to the predictor
variables.

8.1.5.1 Full-model plots
{sec:po-fullplots}

For full-model plots, we continue the idea of appending the fitted response probabilities (or log-
its) to the data frame and plotting these in relation to the predictors. The predict() method
returns the highest probability category label by default (with type="class"), so to get the fitted
probabilities you have to ask for type="probs", as shown below.

> arth.fitp <- cbind(Arthritis,
+ predict(arth.polr, type = "probs"))
> head(arth.fitp)

ID Treatment Sex Age Improved None Some Marked
1 57 Treated Male 27 Some 0.73262 0.13806 0.12932
2 46 Treated Male 29 None 0.71740 0.14443 0.13816
3 77 Treated Male 30 None 0.70960 0.14763 0.14277
4 17 Treated Male 32 Marked 0.69363 0.15400 0.15237
5 36 Treated Male 46 Marked 0.57025 0.19504 0.23471
6 23 Treated Male 58 Marked 0.45634 0.21713 0.32653

For plotting, it is most convenient to reshape these from wide to long format using melt() in
the reshape2 (Wickham, 2014) package. The response category is named Level.

> library(reshape2)
> plotdat <- melt(arth.fitp,
+ id.vars = c("Sex", "Treatment", "Age", "Improved"),
+ measure.vars = c("None", "Some", "Marked"),
+ variable.name = "Level",
+ value.name = "Probability")
> ## view first few rows
> head(plotdat)

Sex Treatment Age Improved Level Probability
1 Male Treated 27 Some None 0.73262
2 Male Treated 29 None None 0.71740
3 Male Treated 30 None None 0.70960
4 Male Treated 32 Marked None 0.69363
5 Male Treated 46 Marked None 0.57025
6 Male Treated 58 Marked None 0.45634

We can now plot Probability against Age, using Level to assign different colors to the
lines for the response categories, as seen in Figure 8.4. Here, facet_grid() is used to split the
plot into separate panels by Sex and Treatment. In this example, the directlabels (Hocking,
2013) package is also used replace the default legend created by ggplot() with category labels
on the curves themselves, which is easier to read.

> library(ggplot2)
> library(directlabels)
> gg <- ggplot(plotdat, aes(x = Age, y = Probability, colour = Level)) +
+ geom_line(size = 2.5) + theme_bw() + xlim(10, 80) +
+ geom_point(color = "black", size = 1.5) +
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+ facet_grid(Sex ~ Treatment,
+ labeller = function(x, y) sprintf("%s = %s", x, y)
+ )
> direct.label(gg)
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Figure 8.4: Predicted probabilities for the proportional odds model fit to the Arthritis data.{fig:arth-polr1}

Although we now have three response curves in each panel in Figure 8.4, this plot is relatively
easy to understand: (a) In each panel, the probability of no improvement decreases with age, while
that for marked improvement increases. (b) It is easy to compare the placebo and treated groups in
each row, showing that no improvement decreases, while marked improvement increases with the
active treatment. (On the other hand, this layout makes it harder to compare panels vertically for
males and females in each condition.) (c) The points show where the observations are located in
each panel; so, we can see that the data is quite thin for males given the placebo.4

8.1.5.2 Effect plots
{sec:po-effplots}

For PO models fit using polr(), the effects (Fox et al., 2015) package provides two different
styles for plotting a given effect. By default, curves are plotted in separate panels for the different
response levels of a given effect, together with confidence bands for predicted probabilities. This

4One way to improve (pun intended) this graph would be to show the points on the lines only for the actual level of
Improve for each observation.
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form provides confidence bands and rug plots for the observations, but the default vertical arrange-
ment of the panels makes it harder to compare the trends for the different response levels. The
alternative stacked format shows the changes in response level more directly, but doesn’t provide
confidence bands.

Figure 8.5 shows these two styles for the main effect of Age in the proportional odds model,
arth.polr fit earlier.

> library(effects)
> plot(Effect("Age", arth.polr))
> plot(Effect("Age", arth.polr), style = "stacked",
+ key.args = list(x = .55, y = .9))
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Figure 8.5: Effect plots for the effect of Age in the proportional odds model for the Arthritis data.
Left: responses shown in separate panels. Right: responses shown in stacked format. {fig:arth-po-eff1}

Even though this model includes only main effects, you can still plot the higher-order effects
for more focal predictors in a coherent display. Figure 8.6 shows the predicted probabilities for all
three predictors together. Again, visual comparison is easier horizontally for placebo versus treated
groups, but you can also see that the prevalence of marked improvement is greater for females than
for males.

> plot(Effect(c("Treatment", "Sex", "Age"), arth.polr),
+ style = "stacked", key.arg = list(x = .8, y = .9))

Finally, the latent variable interpretation of the PO model provides for simpler plots on the logit
scale. Figure 8.7 shows this plot for the effects of Treatment and Age (collapsed over Sex)
produced with the argument latent=TRUE to Effect(). In this plot, there is a single line
in each panel for the effect (slope) of Age on the log odds. The dashed horizontal lines give the
thresholds between the adjacent response categories corresponding to the intercepts.
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Treatment*Sex*Age effect plot
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Figure 8.6: Effect plot for the effects of Treatment, Sex, and Age in the Arthritis data. {fig:arth-po-eff2}

> plot(Effect(c("Treatment", "Age"), arth.polr, latent = TRUE), lwd = 3)
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Figure 8.7: Latent variable effect plot for the effects of Treatment and Age in the Arthritis data.{fig:arth-po-eff3}
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8.2 Nested dichotomies
{sec:nested}

The method of nested dichotomies provides another simple way to analyze a polytomous response
in the framework of logistic regression (or other generalized linear models). This method does not
require an ordinal response or special software. Instead, it uses the familiar binary logistic model
and fits m − 1 separate models for each of a hierarchically nested set of comparisons among the
response categories.

Taken together, this set of models for the dichotomies comprises a complete model for the
polytomous response. As well, these models are statistically independent, so test statistics such as
G2 or Wald tests can be added to give overall tests for the full polytomy.

For example, the response categories Y = {1,2,3,4} could be divided first as {1,2} vs. {3,4}, as
shown in the left side of Figure 8.8. Then these two dichotomies could be divided as {1} vs. {2},
and {3} vs. {4}. Alternatively, these response categories could be divided as shown in the right side
of Figure 8.8: first, {1} vs. {2,3,4}, then {2} vs {3,4}, and finally {3} vs. {4}.

Figure 8.8: Nested dichotomies. The boxes show two different ways a four-category response can
be represented as three nested dichotomies. Adapted from Fox (2008). {fig:nested2}

Such models make the most sense when there are substantive reasons for considering the re-
sponse categories in terms of such dichotomies. Two examples are shown in Figure 8.9.

Figure 8.9: Examples of nested dichotomies and the corresponding logits. {fig:nested1}
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• For the Arthritis data, it is sensible to consider one dichotomy (“better”), with logit L1,
between the categories of "None" compared to "Some" or "Marked". A second dichotomy,
with logit L2, would then distinguish between the some and marked response categories.

• For a second case where patients are classified into m = 4 psychiatric diagnostic categories,
the first dichotomy, with logit L1, distinguishes those considered normal from all others given
a clinical diagnosis. Two other dichotomies are defined to further divide the non-normal cate-
gories.

Then, consider the separate logit models for these m− 1 dichotomies, with different intercepts
αj and slopes βj for each dichotomy,

L1 = α1 + x
Tβ1

L2 = α2 + x
Tβ2

... =
...

Lm−1 = αm−1 + x
Tβm−1 .

{ex:wlfpart1}

EXAMPLE 8.1: Women’s labor force participation
The data set Womenlf in the car package gives the result of a 1977 Canadian survey. It contains

data for 263 married women of age 21–30 who indicated their working status (outside the home)
as not working, working part time, or working full time, together with their husband’s income
and a binary indicator of whether they had one or more young children in their household. (Another
variable, region of Canada, had no effects in these analyses, and is not examined here.) This example
follows Fox and Weisberg (2011, Section 5.8).

> library(car) # for data and Anova()
> data("Womenlf", package = "car")
> some(Womenlf)

partic hincome children region
16 not.work 15 present Atlantic
34 not.work 9 absent Ontario
107 not.work 13 present Prairie
122 not.work 23 present Atlantic
125 not.work 13 present Prairie
127 not.work 17 present Atlantic
169 not.work 19 present Atlantic
215 not.work 15 present Quebec
244 fulltime 6 present Quebec
253 not.work 13 present Quebec

In this example, it makes sense to consider a first dichotomy (working) between women who
are not working vs. those who are (full time or part time). A second dichotomy (fulltime)
contrasts full time work vs. part time work, among those women who are working at least part time.
These two binary variables are created in the data frame using the recode() function from the
car package.

> # create dichotomies
> Womenlf <- within(Womenlf,{
+ working <- recode(partic, " 'not.work' = 'no'; else = 'yes' ")
+ fulltime <- recode(partic,
+ " 'fulltime' = 'yes'; 'parttime' = 'no'; 'not.work' = NA")})
> some(Womenlf)

partic hincome children region fulltime working
124 fulltime 9 absent Ontario yes yes
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133 fulltime 14 absent Ontario yes yes
146 parttime 11 present Atlantic no yes
147 parttime 11 present Atlantic no yes
154 parttime 28 present BC no yes
165 fulltime 1 absent Prairie yes yes
167 not.work 15 present Ontario <NA> no
184 fulltime 18 absent Ontario yes yes
215 not.work 15 present Quebec <NA> no
217 not.work 7 present Quebec <NA> no

The tables below show how the response partic relates to the recoded binary variables,
working and fulltime. Note that the fulltime variable is recoded to NA for women who
are not working.

> with(Womenlf, table(partic, working))

working
partic no yes
fulltime 0 66
not.work 155 0
parttime 0 42

> with(Womenlf, table(partic, fulltime, useNA = "ifany"))

fulltime
partic no yes <NA>
fulltime 0 66 0
not.work 0 0 155
parttime 42 0 0

We proceed to fit two separate binary logistic regression models for the derived dichotomous
variables. For the working dichotomy, we get the following results:

> mod.working <- glm(working ~ hincome + children, family = binomial,
+ data = Womenlf)
> summary(mod.working)

Call:
glm(formula = working ~ hincome + children, family = binomial,

data = Womenlf)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.677 -0.865 -0.777 0.929 1.997

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.3358 0.3838 3.48 0.0005 ***
hincome -0.0423 0.0198 -2.14 0.0324 *
childrenpresent -1.5756 0.2923 -5.39 7e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 356.15 on 262 degrees of freedom
Residual deviance: 319.73 on 260 degrees of freedom
AIC: 325.7

Number of Fisher Scoring iterations: 4

And, similarly for the fulltime dichotomy:
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> mod.fulltime <- glm(fulltime ~ hincome + children, family = binomial,
+ data = Womenlf)
> summary(mod.fulltime)

Call:
glm(formula = fulltime ~ hincome + children, family = binomial,

data = Womenlf)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.405 -0.868 0.395 0.621 1.764

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.4778 0.7671 4.53 5.8e-06 ***
hincome -0.1073 0.0392 -2.74 0.0061 **
childrenpresent -2.6515 0.5411 -4.90 9.6e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 144.34 on 107 degrees of freedom
Residual deviance: 104.49 on 105 degrees of freedom
(155 observations deleted due to missingness)

AIC: 110.5

Number of Fisher Scoring iterations: 5

Although these were fit separately, we can view this as a combined model for the three-level
response, with the following coefficients:

> cbind(working = coef(mod.working), fulltime = coef(mod.fulltime))

working fulltime
(Intercept) 1.335830 3.47777
hincome -0.042308 -0.10727
childrenpresent -1.575648 -2.65146

Writing these out as equations for the logits, we have:

L1 = log
Pr(working)

Pr(notworking)
= 1.336− 0.042 hincome− 1.576 children (8.7){eq:wlf-logits}

L2 = log
Pr(fulltime)

Pr(parttime)
= 3.478− 0.1072 hincome− 2.652 children (8.8)

For both dichotomies, increasing income of the husband and the presence of young children de-
crease the log odds of a greater level of work. However, for those women who are working, the
effects of husband’s income and and children are greater on the choice between full time and part
time work than they are for all women on the choice between working and not working.

As we mentioned above, the use of nested dichotomies implies that the models fit to the separate
dichotomies are statistically independent. Thus, we can additively combine χ2 statistics and degrees
of freedom to give overall tests for the polytomous response.

For example, here we define a function, LRtest(), to calculate the likelihood ratio test of the
hypothesis H0 : β = 0 for all predictors simultaneously. We then use this to display these tests for
each sub-model, as well as the combined model based on the sums of the test statistic and degrees
of freedom.
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> LRtest <- function(model)
+ c(LRchisq = model$null.deviance - model$deviance,
+ df = model$df.null - model$df.residual)
>
> tab <- rbind(working = LRtest(mod.working),
+ fulltime = LRtest(mod.fulltime))
> tab <- rbind(tab, All = colSums(tab))
> tab <- cbind(tab, pvalue = 1- pchisq(tab[,1], tab[,2]))
> tab

LRchisq df pvalue
working 36.418 2 1.2355e-08
fulltime 39.847 2 2.2252e-09
All 76.265 4 1.1102e-15

Similarly, you can carry out tests of individual predictors, H0 : βi = 0, for the polytomy by
adding the separate χ2s from Anova().

> Anova(mod.working)

Analysis of Deviance Table (Type II tests)

Response: working
LR Chisq Df Pr(>Chisq)

hincome 4.82637 1 0.028028 *
children 31.32288 1 2.1849e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> Anova(mod.fulltime)

Analysis of Deviance Table (Type II tests)

Response: fulltime
LR Chisq Df Pr(>Chisq)

hincome 8.9813 1 0.0027275 **
children 32.1363 1 1.4373e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For example, the test for husband’s income gives χ2 = 4.826 + 8.981 = 13.807 with 2 df.
As before, you can plot the fitted values from such models, either on the logit scale (for the

separate logit equations) or in terms of probabilities for the various responses. The general idea is
the same: obtain the fitted values from predict() using data frame containing the values of the
predictors. However, now we have to combine these for each of the sub-models.

We calculate these values below, on both the logit scale and the response scale of probabili-
ties. The newdata argument to predict() is constructed as the combinations of values for
hincome and children.5

> predictors <- expand.grid(hincome = 1 : 50,
+ children =c('absent', 'present'))
> fit <- data.frame(predictors,
+ p.working = predict(mod.working, predictors, type = "response"),
+ p.fulltime = predict(mod.fulltime, predictors, type = "response"),
+ l.working = predict(mod.working, predictors, type = "link"),
+ l.fulltime = predict(mod.fulltime, predictors, type = "link")
+ )
> print(some(fit, 5), digits = 3)

5Alternatively, using the predictor values in the Womenlf data would give the fitted values for the cases in the data, and
allow a more data-centric plot as shown in Figure 8.4.
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hincome children p.working p.fulltime l.working l.fulltime
21 21 absent 0.610 0.773 0.447 1.23
46 46 absent 0.352 0.189 -0.610 -1.46
66 16 present 0.286 0.291 -0.917 -0.89
76 26 present 0.208 0.123 -1.340 -1.96
95 45 present 0.105 0.018 -2.144 -4.00

One wrinkle here is that the probabilities for working full time and part time are conditional on
working. We calculate the unconditional probabilities as shown below and choose to display the
probability of not working as the complement of working.

> fit <- within(fit, {
+ `full-time` <- p.working * p.fulltime
+ `part-time` <- p.working * (1 - p.fulltime)
+ `not working` <- 1 - p.working
+ })

To plot these fitted values, we will again create a conditional plot using ggplot2 (Wickham and
Chang, 2015). Since this requires having all probabilities in one column, together with an additional
grouping variable identifying the working status, we need to reshape fit from “wide” to “long”
format, yet again using the melt() from the reshape2 package:

> fit2 <- melt(fit,
+ measure.vars = c("full-time", "part-time", "not working"),
+ variable.name = "Participation",
+ value.name = "Probability")

The lines below give the plot shown in Figure 8.10:

> gg <- ggplot(fit2,
+ aes(x = hincome, y = Probability, colour= Participation)) +
+ facet_grid(~ children,
+ labeller = function(x, y) sprintf("%s = %s", x, y)) +
+ geom_line(size = 2) + theme_bw() +
+ scale_x_continuous(limits = c(-3, 55)) +
+ scale_y_continuous(limits = c(0, 1))
>
> direct.label(gg, list("top.bumptwice", dl.trans(y = y + 0.2)))
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Figure 8.10: Fitted probabilities from the models for nested dichotomies fit to the data on women’s
labor force participation.{fig:wlf-fitted-prob}
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(Note the extension of the axes to avoid label clipping.)
We can see that the decision not to work outside the home increases strongly with husband’s

income, and is higher when there are children present. As well, among working women, the decision
to work full time as opposed to part time decreases strongly with husband’s income, and is less likely
with young children.

Similarly, we plot the fitted logits for the two dichotomies in l.working and l.fulltime
as shown below, giving Figure 8.11.

> fit3 <- melt(fit,
+ measure.vars = c("l.working", "l.fulltime"),
+ variable.name = "Participation",
+ value.name = "LogOdds")
> levels(fit3$Participation) <- c("working", "full-time")
>
> gg <- ggplot(fit3,
+ aes(x = hincome, y = LogOdds, colour = Participation)) +
+ facet_grid(~ children,
+ labeller = function(x, y) sprintf("%s = %s", x, y)) +
+ geom_line(size = 2) + theme_bw() +
+ scale_x_continuous(limits = c(-3, 50)) +
+ scale_y_continuous(limits = c(-5, 4))
>
> direct.label(gg, list("top.bumptwice", dl.trans(y = y + 0.2)))
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Figure 8.11: Fitted log odds from the models for nested dichotomies fit to the data on women’s
labor force participation. {fig:wlf-fitted-logit}

This is essentially a graph of the fitted equations for L1 and L2 shown in Eqn. (8.7). It shows
how the choice of full time work as opposed to part time depends more strongly on husband’s
income among women who are working than does the choice of working at all among all women.
It also illustrates why the proportional odds assumption would not be reasonable for this data: that
would require equal slopes for the two lines within each panel.

4

8.3 Generalized logit model
{sec:genlogit}

The generalized logit (or multinomial logit) approach models the probabilities of the m response
categories directly as a set of m − 1 logits. These compare each of the first m − 1 categories to
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the last category, which serves as the baseline.6 The logits for any other pair of categories can be
retrieved from the m− 1 fitted ones.

When there are p predictors, x1, x2, . . . , xp, which may be quantitative or categorical, the gen-
eralized logit model expresses the logits as

Ljm ≡ log
πij
πim

= β0j + β1j xi1 + β2j xi2 + · · ·+ βkj xip j = 1, . . . ,m− 1

= xi
Tβj . (8.9){eq:glogit1}

Thus, there is one set of fitted coefficients, βj , for each response category except the last. Each
coefficient, βhj , gives the effect, for a unit change in the predictor xh, on the log odds that an
observation had a response in category Y = j, as opposed to category Y = m.

The probabilities themselves can be expressed as

πij =
exp(xi

Tβj)

1 +
∑m−1

`=1 exp(xi
Tβj)

j = 1, 2, . . .m− 1 ,

πim = 1−
m−1∑
i=1

πij for Y = m .

Parameters in the m − 1 equations Eqn. (8.9) can be used to determine the probabilities or the
predicted log odds for any pair of response categories by subtraction. For instance, for an arbitrary
pair of categories, a and b, and two predictors, x1 and x2,

Lab = log
πia/πim
πib/πim

= log
πia
πim
− log

πib
πim

= (β0a − β0b) + (β1a − β1b)xi1 + (β2a − β2b)xi2 .

For example, the coefficient for xi1 in Lab is just (β1a − β1b). Similarly, the predicted logit for any
pair of categories can be calculated as

L̂ab = L̂am − L̂bm .

The generalized logit model can be fit most conveniently in R using the function multinom()
in the nnet package, and the effects package has a set of methods for "multinom" models. These
models can also be fit using VGAM and the mlogit (Croissant, 2013) package.{ex:wlfpart2}

EXAMPLE 8.2: Women’s labor force participation
To illustrate this method, we fit the generalized logit model to the women’s labor force par-

ticipation data as explained below. The response, partic, is a character factor, and, by default
multinom() treats these in alphabetical order and uses the first level as the baseline category.

> levels(Womenlf$partic)

[1] "fulltime" "not.work" "parttime"

Although the multinomial model does not depend on the baseline category, it makes interpreta-
tion easier to choose "not.work" as the reference level, which we do with relevel().7

6When the response is a factor, any category can be selected as the baseline level using relevel().
7Alternatively, we could declare partic an ordered factor, using ordered().
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> # choose not working as baseline category
> Womenlf$partic <- relevel(Womenlf$partic, ref = "not.work")

We fit the main effects model for husband’s income and children as follows. As we did with
polr() (Section 8.1), specifying Hess=TRUE saves the Hessian and facilitates calculation of
standard errors and hypothesis tests.

> library(nnet)
> wlf.multinom <- multinom(partic ~ hincome + children,
+ data = Womenlf, Hess = TRUE)

# weights: 12 (6 variable)
initial value 288.935032
iter 10 value 211.454772
final value 211.440963
converged

The summary() method for "multinom" objects doesn’t calculate test statistics for the esti-
mated coefficients by default. The option Wald=TRUE produces Wald z-test statistics, calculated
as z = β/SE(β).

> summary(wlf.multinom, Wald = TRUE)

Call:
multinom(formula = partic ~ hincome + children, data = Womenlf,

Hess = TRUE)

Coefficients:
(Intercept) hincome childrenpresent

fulltime 1.9828 -0.0972321 -2.558605
parttime -1.4323 0.0068938 0.021456

Std. Errors:
(Intercept) hincome childrenpresent

fulltime 0.48418 0.028096 0.36220
parttime 0.59246 0.023455 0.46904

Value/SE (Wald statistics):
(Intercept) hincome childrenpresent

fulltime 4.0953 -3.46071 -7.064070
parttime -2.4176 0.29392 0.045744

Residual Deviance: 422.88
AIC: 434.88

Notice that the coefficients, their standard errors and the Wald test z values are printed in separate
tables. The first line in each table pertains to the logit comparing full time work with the not working
reference level; the second line compares part time work against not working.

For those who like p-values for significance tests, you can calculate these from the results re-
turned by the summary() method in the Wald.ratios component, using the standard normal
asymptotic approximation:

> stats <- summary(wlf.multinom, Wald = TRUE)
> z <- stats$Wald.ratios
> p <- 2 * (1 - pnorm(abs(z)))
> zapsmall(p)

(Intercept) hincome childrenpresent
fulltime 0.00004 0.00054 0.00000
parttime 0.01562 0.76882 0.96351
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The interpretation of these tests is that both husband’s income and presence of children have
highly significant effects on the comparison of working full time as opposed to not working, while
neither of these predictors are significant for the comparison of working part time vs. not working.

So far, we have assumed that the effects of husband’s income and presence of young children
are additive on the log odds scale. We can test this assumption by allowing an interaction of those
effects and testing it for significance.

> wlf.multinom2 <- multinom(partic ~ hincome * children,
+ data = Womenlf, Hess = TRUE)

# weights: 15 (8 variable)
initial value 288.935032
iter 10 value 210.797079
final value 210.714841
converged

> Anova(wlf.multinom2)

Analysis of Deviance Table (Type II tests)

Response: partic
LR Chisq Df Pr(>Chisq)

hincome 15.2 2 0.00051 ***
children 63.6 2 1.6e-14 ***
hincome:children 1.5 2 0.48378
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The test for the interaction term, hincome:children, is not significant, so we can abandon this
model.

Full model plots of the fitted values can be plotted as shown earlier in Example 8.1: obtain the
fitted values over a grid of the predictors and plot these.

> predictors <- expand.grid(hincome = 1 : 50,
+ children = c("absent", "present"))
> fit <- data.frame(predictors,
+ predict(wlf.multinom, predictors, type = "probs")
+ )

Plotting these fitted values gives the plot shown in Figure 8.12.

> fit2 <- melt(fit,
+ measure.vars = c("not.work", "fulltime", "parttime"),
+ variable.name = "Participation",
+ value.name = "Probability")
> levels(fit2$Participation) <- c("not working", "full-time", "part-time")
>
> gg <- ggplot(fit2,
+ aes(x = hincome, y = Probability, colour = Participation)) +
+ facet_grid(~ children,
+ labeller = function(x, y) sprintf("%s = %s", x, y)) +
+ geom_line(size = 2) + theme_bw() +
+ scale_x_continuous(limits = c(-3, 50)) +
+ scale_y_continuous(limits = c(0, 0.9))
>
> direct.label(gg, list("top.bumptwice", dl.trans(y = y + 0.2)))

The results shown in this plot are roughly similar to those obtained from the nested dichotomy
models, graphed in Figure 8.10. However, the predicted probabilities of not working under the
generalized logit model rise more steeply with husband’s income for women with no children and
level off sooner for women with young children.
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Figure 8.12: Fitted probabilities from the generalized logit model fit to the data on women’s labor
force participation.{fig:wlf-multi-prob}

The effects package has special methods for "multinom" models. It treats the response lev-
els in the order given by levels(), so before plotting we use ordered() to arrange lev-
els in their natural order. The update() method provides a simple way to get a new fit-
ted model; in the call, the model formula . ~ . means to fit the same model as before, i.e.,
partic ~ hincome + children.

> levels(Womenlf$partic)

[1] "not.work" "fulltime" "parttime"

> Womenlf$partic <- ordered(Womenlf$partic,
+ levels=c("not.work", "parttime", "fulltime"))
> wlf.multinom <- update(wlf.multinom, . ~ .)

# weights: 12 (6 variable)
initial value 288.935032
iter 10 value 211.454772
final value 211.440963
converged

As illustrated earlier, you can use plot(allEffects(model), ...) to plot all the high-
order terms in the model, either with separate curves for each response level (style="lines")
or as cumulative filled polygons (style="stacked"). Here, we simply plot the effects for the
combinations of husband’s income and children in stacked style, giving a plot (Figure 8.13) that is
analogous to the full-model plot shown in Figure 8.12.

> plot(Effect(c("hincome", "children"), wlf.multinom),
+ style = "stacked", key.args = list(x = .05, y = .9))

4
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hincome*children effect plot
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Figure 8.13: Effect plot for the probabilities of not working and working part time and full time
from the generalized logit model fit to the women’s labor force data. {fig:wlf-multi-effect}

8.4 Chapter summary
{sec:ch08-summary}

• Polytomous responses may be handled in several ways as extensions of binary logistic regres-
sion. These methods require different fitting functions in R; however, the graphical methods for
plotting results are relatively straightforward extensions of those used for binary responses.

• The proportional odds model (Section 8.1) is simple and convenient, but its validity depends on
an assumption of equal slopes for adjacent-category logits.

• Nested dichotomies (Section 8.2) among the response categories give a set of statistically inde-
pendent binary logistic submodels. These may be regarded as a single combined model for the
polytomous response.

• Generalized logit models (Section 8.3) provide the most general approach. These may be used
to construct submodels comparing any pair of categories.

8.5 Lab exercises
{sec:ch08-exercises}{lab:8.1}

Exercise 8.1 For the women’s labor force participation data (Womenlf), the response variable,
partic, can be treated as ordinal by using

> Womenlf$partic <- ordered(Womenlf$partic,
+ levels=c('not.work', 'parttime', 'fulltime'))

Use the methods in Section 8.1 to test whether the proportional odds model holds for these data.
{lab:8.2}

Exercise 8.2 The data set housing in the MASS package gives a 3×3×4×2 table in frequency
form relating (a) satisfaction (Sat) of residents with their housing (High, Medium, Low), (b) per-
ceived degree of influence (Infl) they have on the management of the property (High, Medium,
Low), (c) Type of rental (Tower, Atrium, Apartment, Terrace), and (d) contact (Cont) residents
have with other residents (Low, High). Consider satisfaction as the ordinal response variable.
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(a) Fit the proportional odds model with additive (main) effects of housing type, influence in
management, and contact with neighbors to this data. (Hint: Using polr(), with the data in
frequency form, you need to use the weights argument to supply the Freq variable.)

(b) Investigate whether any of the two-factor interactions among Infl, Type, and Cont add
substantially to goodness of fit of this model. (Hint: use stepAIC(), with the scope formula
~ .^2 and direction="forward".)

(c) For your chosen model from the previous step, use the methods of Section 8.1.5 to plot the
probabilities of the categories of satisfaction.

(d) Write a brief summary of these analyses, interpreting how satisfaction with housing depends
on the predictor variables.

{lab:8.3}

Exercise 8.3 The data TV on television viewing was analyzed using correspondence analysis in
Example 6.4, ignoring the variable Time, and extended in Exercise 6.9. Treating Network as a
three-level response variable, fit a generalized logit model (Section 8.3) to explain the variation in
viewing in relation to Day and Time. The TV data is a three-way table, so you will need to convert
it to a frequency data frame first.

> data("TV", package="vcdExtra")
> TV.df <- as.data.frame.table(TV)

(a) Fit the main-effects model, Network ~ Day + Time, with multinom(). Note that you
will have to supply the weights argument because each row of TV.df represents the number
of viewers in the Freq variable.

(b) Prepare an effects plot for the fitted probabilities in this model.
(c) Interpret these results in comparison to the correspondence analysis in Example 6.4.

{lab:8.4}

Exercise 8.4 ? Refer to Exercise 5.10 for a description of the Vietnam data set in vcdExtra (Friendly,{lab:logist-vietnam}
2015). The goal here is to fit models for the polytomous response varialble in relation to year
and sex.

(a) Fit the proportional odds model to these data, allowing an interaction of year and sex.
(b) Is there evidence that the proportional odds assumption does not hold for this data set? Use

the methods described in Section 8.1 to assess this.
(c) Fit the multinomial logistic model, also allowing an interaction. Use car::Anova() to assess

the model terms.
(d) Produce an effect plot for this model and describe the nature of the interaction.
(e) Fit the simpler multinomial model in which there is no effect of year for females and the effect

of year is linear for males (on the logit scale). Test whether this model is significantly worse
than the general multinomial model with interaction.
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