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Loglinear and Logit Models for
Contingency Tables

{ch:loglin}
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9.4
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9.5 Zero
frequencies

This chapter extends the model-building approach to loglinear and logit models. These
comprise another special case of generalized linear models designed for contingency ta-
bles of frequencies. They are most easily interpreted through visualizations, including
mosaic displays and effect plots of associated logit models.

Numbers have an important story to tell. They rely on you to give them a clear and
convincing voice

Stephen Few

9.1 Introduction
{sec:loglin-intro}

The chapter continues the modeling framework begun in Chapter 7, and takes up the case of log-
linear models for contingency tables of frequencies, when all variables are discrete, another special
case of generalized linear models. These models provide a comprehensive scheme to describe and
understand the associations among two or more categorical variables. Whereas logistic regression
models focus on the prediction of one response factor, loglinear models treat all variables symmet-
rically, and attempt to model all important associations among them.

In this sense, loglinear models are analogous to a correlation analysis of continuous variables,
where the goal is to determine the patterns of dependence and independence among a set of vari-
ables. When one variable is a response and the others are explanatory, certain loglinear models

349



350 9. Loglinear and Logit Models for Contingency Tables

are equivalent to logistic models for that response. Such models are also particularly useful when
there are two or more response variables, a case that would require a multivariate version of the
generalized linear model, for which the current theory and implementations are thin at best.

Chapter 5 and Chapter 6 introduced some basic aspects of loglinear models in connection with
mosaic displays and correspondence analysis. In this chapter, the focus is on fitting and interpreting
loglinear models. The usual analyses with loglm() and glm() present the results in terms of
tables of parameter estimates. Particularly for larger tables, it becomes difficult to understand the
nature of these associations from tables of parameter estimates. Instead, we emphasize plots of
observed and predicted frequencies, probabilities or log odds (when there are one or more response
variables), as well as mosaic and other displays for interpreting a given model. We also illustrate
how mosaic displays and correspondence analysis plots may be used in a complementary way to the
usual numerical summaries, to provide additional insights into the data.

Section 9.2 gives a brief overview of loglinear models in relation to the more familiar ANOVA
and regression models for quantitative data. Methods and software for fitting these models are
discussed in Section 9.3. When one variable is a response, logit models for that response provide
a simpler, but equivalent means for interpreting and graphing results of loglinear models, as we
describe in Section 9.4. In Section 9.5 we consider problems that arise in sparce contingency tables
containing cells with frequencies of zero.

9.2 Loglinear models for frequencies
{sec:loglin-counts}

Loglinear models have been developed from two formally distinct, but related perspectives. The
first is a discrete analog of familiar ANOVA models for quantitative data, where the multiplicative
relations among joint and marginal probabilities are transformed into an additive one by transform-
ing the counts to logarithms. The second is an analog of regression models, where the log of the cell
frequency is modeled as a linear function of discrete predictors, with a random component often
taken as the Poisson distribution and called Poisson regression; this approach is treated in more
detail as generalized linear models for count data in Chapter 11.

9.2.1 Loglinear models as ANOVA models for frequencies

For two discrete variables, A and B, suppose we have a multinomial sample of nij observations
in each cell i, j of an I × J contingency table. To ease notation, we replace a subscript by + to
represent summation over that dimension, so that ni+ = Σjnij , n+j = Σinij , and n++ = Σijnij .

Let πij be the joint probabilities in the table, and let mij = n++πij be the expected cell fre-
quencies under any model. Conditional on the observed total count, n++, each count has a Poisson
distribution, with mean mij . Any loglinear model may be expressed as a linear model for the
logmij . For example, the hypothesis of independence means that the expected frequencies, mij ,
obey

mij =
mi+ m+j

m++
.

This multiplicative model can be transformed to an additive (linear) model by taking logarithms
of both sides:

log(mij) = log(mi+) + log(m+j)− log(m++) ,

which is usually expressed in an equivalent form in terms of model parameters,

log(mij) = µ+ λAi + λBj (9.1){eq:lmain}
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where µ is a function of the total sample size, λAi is the “main effect” for variable A, λAi = log πi+−∑
k(log πk+)/I , and λBj is the “main effect” for variable B, λBj = log π+j −

∑
k(log π+k)/J .

Model Eqn. (9.1) is called the loglinear independence model for a two-way table.
In this model, there are 1+I+J parameters, but only (I−1)+(J−1) are separately estimable.

Hence, the typical ANOVA sum-to-zero restrictions are usually applied to the parameters:
I∑
i

λAi =

J∑
j

λBj = 0 .

These “main effects” in loglinear models pertain to differences among the marginal probabilities of
a variable (which are usually not of direct interest).

Other restrictions to make the parameters identifiable are also used. Setting the first values, λA1
and λB1 , to zero (the default in glm()), defines λAi = log πi+ − log π1+, and λBj = log π+j −
log π+1, as deviations from the first, reference category, but these parameterizations are otherwise
identical. For modeling functions in R (lm(), glm(), etc.) the reference category parameteri-
zation is obtained using contr.treatment(), while the sum-to-zero constraints are obtained
with contr.sum().

Model Eqn. (9.1) asserts that the row and column variables are independent. For a two-way
table, a model that allows an arbitrary association between the variables is the saturated model,
including an additional term, λABij :

log(mij) = µ+ λAi + λBj + λABij , (9.2) {eq:lsat}

where again, restrictions must be imposed for estimation:
I∑
i

λAi = 0,

J∑
j

λBj = 0,

I∑
i

λABij =

J∑
j

λABij = 0 . (9.3) {eq:lrestrict}

There are thus I−1 linearly independent λAi row parameters, J−1 linearly independent λBj column
parameters, and (I − 1)(J − 1) linearly independent λABij association parameters. This model is
called the saturated model because the number of parameters in µ, λAi , λBj , and λABij is equal to the
number of frequencies in the two-way table,

1
(µ)

+ (I − 1)
(λA

i
)

+ (J − 1)
(λB

j
)

+ (I − 1)(J − 1)
(λAB

ij
)

= IJ
(nij)

.

The association parameters λABij express the departures from independence, so large absolute values
pertain to cells that differ from the independence model.

Except for the difference in notation, model Eqn. (9.2) is formally the same as a two-factor
ANOVA model with an interaction, typically expressed as E(yij) = µ+αi + βj + (αβ)ij . Hence,
associations between variables in loglinear models are analogous to interactions in ANOVA models.
The use of superscripted symbols, λAi , λ

B
j , λ

AB
ij , rather than separate Greek letters is a convention

in loglinear models, and useful mainly for multiway tables.
Models such as Eqn. (9.1) and Eqn. (9.2) are examples of hierarchical models. This means that

the model must contain all lower-order terms contained within any high-order term in the model.
Thus, the saturated model in Eqn. (9.2) contains λABij , and therefore must contain λAi and λBj . As a
result, hierarchical models may be identified by the shorthand notation that lists only the high-order
terms: model Eqn. (9.2) is denoted [AB], while model Eqn. (9.1) is [A][B].

9.2.2 Loglinear models for three-way tables
{sec:loglin-3way}

Loglinear models for three-way contingency tables were described briefly in Section 5.4.2. Each
type of model allows associations among different sets of variables and each has a different inde-
pendence interpretation, as illustrated in Table 5.2.
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For a three-way table, the saturated model, denoted [ABC] is

log mijk = µ+ λAi + λBj + λCk + λABij + λACik + λBCjk + λABCijk . (9.4) {eq:lsat3}

This model allows all variables to be associated; Eqn. (9.4) fits the data perfectly because the number
of independent parameters equals the number of table cells. Two-way terms, such as λABij , pertain
to the conditional association between pairs of factors, controlling for the remaining variable. The
presence of the three-way term, λABCijk , means that the partial association (conditional odds ratio)
between any pair varies over the levels of the third variable.

Omitting the three-way term in Model Eqn. (9.4) gives the model [AB][AC][BC],

log mijk = µ+ λAi + λBj + λCk + λABij + λACik + λBCjk , (9.5){eq:lno3way}

in which all pairs are conditionally dependent given the remaining one. For any pair, the conditional
odds ratios are the same at all levels of the remaining variable, so this model is often called the
homogeneous association model.

The interpretation of terms in this model may be illustrated using the Berkeley admissions data
(Example 4.11 and Example 4.15), for which the factors are Admit, Gender, and Department, in a
2× 2× 6 table. In the homogeneous association model,

log mijk = µ+ λAi + λDj + λGk + λADij + λAGik + λDGjk , (9.6){eq:berk1}

the λ-parameters have the following interpretations:

• The main effects, λAi , λ
D
j , and λGk pertain to differences in the one-way marginal probabilities.

Thus λDj relates to differences in the total number of applicants to these departments, while λGk
relates to the differences in the overall numbers of men and women applicants.

• λADij describes the conditional association between admission and department, that is, different
admission rates across departments (controlling for gender).

• λAGik relates to the conditional association between admission and gender, controlling for de-
partment. This term, if significant, might be interpreted as indicating gender-bias in admissions.

• λDGjk , the association between department and gender, indicates whether males and females
apply differentially across departments.

As we discussed earlier (Section 5.4), loglinear models for three-way (and larger) tables often
have an interpretation in terms of various types of independence relations, as illustrated in Ta-
ble 5.2. The model Eqn. (9.5) has no such interpretation. However the smaller model [AC][BC]
can be interpreted as asserting that A and B are (conditionally) independent controlling for C; this
independence interpretation is symbolized as A ⊥ B |C. Similarly, the model [AB][C] asserts that
A and B are jointly independent of C: (A,B) ⊥ C, while the model [A][B][C] is the model of
mutual (complete) independence, A ⊥ B ⊥ C.

9.2.3 Loglinear models as GLMs for frequencies
{sec:loglin-glms}

In the GLM approach, a loglinear model may be cast in the form of a regression model for logm,
where the table cells are reshaped to a column vector. One advantage is that models for tables of
any size and structure may be expressed in a compact form.

For a contingency table of variablesA,B,C, · · ·, withN = I×J×K×· · · cells, let n denote a
column vector of the observed counts arranged in standard order, and letm denote a similar vector
of the expected frequencies under some model. Then any loglinear model may be expressed in the
form

logm = Xβ ,
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where X is a known design or model matrix and β is a column vector containing the unknown λ
parameters.

For example, for a 2×2 table, the saturated model Eqn. (9.2) with the usual zero-sum constraints
Eqn. (9.3) can be represented as

log


m11

m12

m21

m22

 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




µ
λA1
λB1
λAB11

 .

Note that only the linearly independent parameters are represented here. λA2 = −λA1 , because
λA1 + λA2 = 0, and λB2 = −λB1 , because λB1 + λB2 = 0, and so forth.

An additional substantial advantage of the GLM formulation is that it makes it easier to express
models with ordinal or quantitative variables. glm(), with a model formula of the form Freq ~ .
involving factors A,B, . . . and quantitative variables x1, x2, . . ., constructs the model matrix X
from the terms given in the formula. A factor with K levels gives rise to K − 1 columns for its
main effect and sets of K − 1 columns in each interaction effect. A quantitative predictor, say, x1
(with a linear effect) creates a single column with its values, and interactions with other terms are
calculated at the products of the columns for the main effects.

The parameterization for factors is controlled by the contrasts assigned to a given factor (if any),
or by the general contrasts option, that gives the contrast functions used for unordered and
ordered factors:

> options("contrasts")

$contrasts
unordered ordered

"contr.treatment" "contr.poly"

This says that, by default, unordered factors use the baseline (first) reference-level parameteriza-
tion, while ordered factors are given a parameterization based on orthogonal polynomials, allowing
linear, quadratic, ... effects, assuming integer-spacing of the factor levels.

9.3 Fitting and testing loglinear models
{sec:loglin-fitting}

For a given table, possible loglinear models range from the baseline model of mutual independence,
[A][B][C][. . .] to the saturated model, [ABC . . .] that fits the observed frequencies perfectly, but
offers no simpler description or interpretation than the data itself.

Fitting a loglinear model is usually a process of deciding which association terms are large
enough (“significantly different from zero”) to warrant inclusion in a model to explain the observed
frequencies. Terms that are excluded from the model go into the residual or error term, which
reflects the overall badness-of-fit of the model. The usual goal of loglinear modeling is to find a
small model (few association terms), which nonetheless achieves a reasonable fit (small residuals).

9.3.1 Model fitting functions
{sec:loglin-functions}

In R, the most basic function for fitting loglinear models is loglin() in the stats package. This
uses the classical iterative proportional fitting (IPF) algorithm described in Haberman (1972) and
Fienberg (1980, Section 3.4). It is designed to work with the frequency data in table form, and
a model specified in terms of the (high-order) table margins to be fitted. For example, the model
Eqn. (9.5) of homogenous association for a three-way table is specified as
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> loglin(mytable, margin = list(c(1, 2), c(1, 3), c(2, 3)))

The variables are represented by their margin index; margins combined in the same vector represent
an interaction term. The function loglm() in MASS (Ripley, 2015) provides a more convenient
front-end to loglin() to allow loglinear models to be specified using a model formula. With
table variables A, B, and C, the same model can be fit using loglm() as

> loglm(~ (A + B + C)^2, data = mytable)

(Note that the formula expression expands to A*A + A*B + A*C + B*A + B*B + B*C +
C*A + C*B + C*C. Since terms like A*A become A and duplicate terms are ignored, this eventu-
ally yields A + B + C + A*B + A*C + B*C—all second-order terms and the corresponding
main effects.)

When the data is a frequency data frame with frequencies in Freq, for example, the result of
mydf <- as.data.frame(mytable), you can also use a two-sided formula:

> loglm(Freq ~ (A + B + C)^2, data = mydf)

As implied in Section 9.2.3, loglinear models can also be fit using glm(), using
family=poisson, which constructs the model for log(Freq). The same model is fit with
glm() as:

> glm(Freq ~ (A + B + C)^2, data = mydf, family = poisson)

While all of these fit equivalent models, the details of the printed output, model objects, and
available methods differ, as indicated in some of the examples that follow.

It should be noted that both the loglin()/loglm() methods based on iterative proportional
fitting, and the glm() approach using the Poisson model for log frequency, give maximum like-
lihood estimates, m̂, of the expected frequencies, as long as all observed frequencies n are all
positive. Some special considerations when there are cells with zero frequencies are described in
Section 9.5.

9.3.2 Goodness-of-fit tests
{sec:loglin-goodfit}

For an n-way table, global goodness-of-fit tests for a loglinear model attempt to answer the question,
“How well does the model reproduce the observed frequencies?” That is, how close are the fitted
frequencies estimated under the model to those of the saturated model or the data?

To avoid multiple subscripts for an n-way table, let n = (n1, n2, . . . , nN ) denote the observed
frequencies in a table with N cells, and corresponding fitted frequencies m̂ = (m̂1, m̂2, . . . , m̂N )
according to a particular loglinear model. The standard goodness-of-fit statistics are sums over the
cells of measures of the difference between the n and m̂.

The most commonly used are the familiar Pearson chi-square,

X2 =

N∑
i

(ni − m̂i)
2

m̂i
, (9.7){eq:pchi}

and the likelihood-ratio G2 or deviance statistic,

G2 = 2

N∑
i

ni log

(
ni
m̂i

)
. (9.8){eq:pgsq}
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Both of these statistics have asymptotic χ2 distributions (as Σn → ∞), reasonably well-
approximated when all expected frequencies are large.1 The (residual) degrees of freedom are the
number of cells (N ) minus the number of estimated parameters. The likelihood-ratio test can also
be expressed as twice the difference in log-likelihoods under saturated and fitted models,

G2 = 2 log

[
L(n;n)

L(m̂;n)

]
= 2[logL(n;n)− logL(m̂;n)] ,

where L(n;n) is the likelihood for the saturated model and L(m̂;n) is the corresponding maxi-
mized likelihood for the fitted model.

In practice such global tests are less useful for comparing competing models. You may find
that several different models have an acceptable fit or, sadly, that none do (usually because you are
“blessed” with a large sample size). It is then helpful to compare competing models directly, and
two strategies are particularly useful in these cases.

First, the likelihood-ratio G2 statistic has the property in that one can compare two nested mod-
els by their difference in G2 statistics, which has a χ2 distribution on the difference in degrees of
freedom. Two models, M1 and M2, are nested when one, say, M2, is a special case of the other.
That is, model M2 (with ν2 residual df) contains a subset of the parameters of M1 (with ν1 residual
df), the remaining ones being effectively set to zero. Model M2 is therefore more restrictive and
cannot fit the data better than the more general model M1, i.e., G2(M2) ≥ G2(M1). The least
restrictive of all models, with G2 = 0 and ν = 0 df, is the saturated model for which m̂ = n.

Assuming that the less restrictive model M1 fits, the difference in G2,

∆G2 ≡ G2(M2 |M1) = G2(M2)−G2(M1) (9.9) {eq:gsqnest1}

= 2
∑
i

ni log(m̂i1/m̂i2) (9.10) {eq:gsqnest2}

has a chi-squared distribution with df = ν2 − ν1. The last equality, Eqn. (9.10), follows from
substituting in Eqn. (9.8).

Rearranging terms in Eqn. (9.9), we see that we can partition the G2(M2) into two terms,

G2(M2) = G2(M1) +G2(M2 |M1) .

The first term measures the difference between the data and the more general model M1. If this
model fits, the second term measures the additional lack of fit imposed by the more restrictive
model. In addition to providing a more focused test, G2(M2 |M1) also follows the chi-squared
distribution more closely when some {mi} are small (Agresti, 2013, Section 10.6.3).

Alternatively, a second strategy uses other measures that combine goodness-of-fit with model
parsimony and may also be used to compare non-nested models. The statistics described below are
all cast in the form of badness-of-fit relative to degrees of freedom, so that smaller values reflect
“better” models.

The simplest idea (Goodman, 1971) is to use G2/df (or χ2/df ), which has an asymptotic ex-
pected value of 1 for a good-fitting model. This type of measure is not routinely reported by R
software, but is easy to calculate from output.

The Akaike Information Criterion (AIC) statistic (Akaike, 1973) is a very general criterion
for model selection with maximum likelihood estimation, based on the idea of maximizing the
information provided by a fitted model. AIC is defined generally as

AIC = −2 logL+ 2k ,

1Except in bizarre or borderline cases, these tests provide the same conclusions when expected frequencies are at least
moderate (all m̂ > 5). However, G2 approaches the theoretical chi-squared distribution more slowly than does χ2, and the
approximation may be poor when the average cell frequency is less than 5.
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where logL is the maximized log likelihood and k is the number of parameters estimated in the
model. Better models correspond to smaller AIC. For loglinear models, minimizing AIC is equiva-
lent to minimizing

AIC? = G2 − 2 ν ,

where ν is the residual df, but the values of AIC and AIC? differ by an arbitrary constant. This form
is easier to calculate by hand from the output of any modeling function if AIC is not reported, or an
AIC() method is not available.

A third statistic of this type is the Bayesian Information Criterion (BIC) due to Schwartz (1978)
and Raftery (1986),

BIC = G2 − log(n) ν ,

where n is the total sample size. Both AIC and BIC penalize the fit statistic for increasing number of
parameters. BIC also penalizes the fit directly with (log) sample size, and so expresses a preference
for less complex models than AIC as the sample size increases.

9.3.3 Residuals for loglinear models
{sec:loglin-residuals}

Test statistics such as G2 can determine whether a model has significant lack of fit, and model
comparison tests using ∆G2 = G2(M2 |M1) can assess whether the extra term(s) in model M1

significantly improves the model fit. Beyond these tests, the pattern of residuals for individual cells
offers important clues regarding the nature of lack of fit and can suggest associations that could be
accounted for better.

As with logistic regression models (Section 7.5.1), several types of residuals are available for
loglinear models. For cell i in the vector form of the contingency table, the raw residual is simply
the difference between the observed and fitted frequencies, ei = ni − m̂i.

The Pearson residual is the square root of the contribution of the cell to the Pearson χ2,

ri =
ni − m̂i√

m̂i

. (9.11){eq:reschi2}

Similarly, the deviance residual can be defined as

gi = sign(ni − m̂i)
√

2ni log(ni/m̂i)− 2(ni − m̂i) . (9.12){eq:resdev2}

Both of these attempt to standardize the distribution of the residuals to a standard normal,
N(0, 1) form. However, as pointed out by Haberman (1973), the asymptotic variance of these is less
than one (with average value df/N ) but, worse—the variance decreases with m̂i. That is, residuals
for cells with small expected frequencies have larger sampling variance as might be expected.

Consequently, Haberman suggested dividing the Pearson residual by its estimated standard error,
giving what are often called adjusted residuals. When loglinear models are fit using the GLM
approach, the adjustment may be calculated using the leverage (“hat value”), hi to give appropriately
standardized residuals,

r?i = ri/
√

1− hi ,
g?i = gi/

√
1− hi .

These standardized versions are generally preferable, particularly for visualizing model lack of fit
using mosaic displays. The reason for preferring adjusted residuals is illustrated in Figure 9.1, a plot
of the factors,

√
1− hi, determining the standard errors of the residuals against the fitted values, m̂i,

in the model for the UCBAdmissions data described in Example 9.2 below. The values shown in
this plot are calculated as:
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> berkeley <- as.data.frame(UCBAdmissions)
> berk.glm1 <- glm(Freq ~ Dept * (Gender + Admit), data = berkeley,
+ family = "poisson")
> fit <- fitted(berk.glm1)
> hat <- hatvalues(berk.glm1)
> stderr <- sqrt(1 - hat)
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Figure 9.1: Standard errors of residuals,
√

1− hi decrease with expected frequencies. This plot
shows why ordinary Pearson and deviance residuals may be misleading. The symbol size in the
plot is proportional to leverage, hi. Labels abbreviate Department, Gender, and Admit, colored by
Admit. {fig:stres-plot}

In R, raw, Pearson and deviance residuals may be obtained using residuals(model, type=),
where type is one of "raw", "pearson", and "deviance". Standardized (adjusted) residu-
als can be calculated using rstandard(model, type=), for type="pearson" and type=
"deviance" versions.

9.3.4 Using loglm()
{loglin-loglin}

Here we illustrate the basics of fitting loglinear models using loglm(). As indicated in Sec-
tion 9.3.1, the model to be fitted is specified by a model formula involving the table variables. The
MASS package provides a coef() method for "loglm" objects that extracts the estimated param-
eters and a residuals() method that calculates various types of residuals according to a type
argument, one of "deviance", "pearson", "response". vcd (Meyer et al., 2015) and
vcdExtra (Friendly, 2015) provide a variety of plotting methods, including assoc(), sieve(),
mosaic(), and mosaic3d() for "loglm" objects. {ex:berkeley5}

EXAMPLE 9.1: Berkeley admissions
The UCBAdmissions on admissions to the six largest graduate departments at U.C. Berke-

ley was examined using graphical methods in Chapter 4 (Example 4.15) and in Chapter 5 (Exam-
ple 5.14). We can fit and compare several loglinear models as shown below.
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The model of mutual independence, [A][D][G], is not substantively reasonable here, because the
association of Dept and Gender should be taken into account to control for these variables, but we
show it here to illustrate the form of the printed output, giving the Pearson χ2 and likelihood-ratio
G2 tests of goodness of fit, as well as some optional arguments for saving additional components in
the result.

> data("UCBAdmissions")
> library(MASS)
> berk.loglm0 <- loglm(~ Dept + Gender + Admit, data = UCBAdmissions,
+ param = TRUE, fitted = TRUE)
> berk.loglm0

Call:
loglm(formula = ~Dept + Gender + Admit, data = UCBAdmissions,

param = TRUE, fitted = TRUE)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 2097.7 16 0
Pearson 2000.3 16 0

The argument param = TRUE stores the estimated parameters in the loglinear model and
fitted = TRUE stores the fitted frequencies m̂ijk. The fitted frequencies can be extracted from
the model object using fitted().

> structable(Dept ~ Admit + Gender, fitted(berk.loglm0))

Dept A B C D E F
Admit Gender
Admitted Male 215.10 134.87 211.64 182.59 134.64 164.61

Female 146.68 91.97 144.32 124.51 91.81 112.25
Rejected Male 339.63 212.95 334.17 288.30 212.59 259.91

Female 231.59 145.21 227.87 196.59 144.96 177.23

Similarly, you can extract the estimated parameters with coef(berk.loglm0), and the Pear-
son residuals with residuals(berk.loglm0, type = "pearson").

Next, consider the model of conditional independence of gender and admission given depart-
ment, [AD][GD], which allows associations of admission with department and gender with depart-
ment.

> # conditional independence in UCB admissions data
> berk.loglm1 <- loglm(~ Dept * (Gender + Admit), data = UCBAdmissions)
> berk.loglm1

Call:
loglm(formula = ~Dept * (Gender + Admit), data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 21.736 6 0.0013520
Pearson 19.938 6 0.0028402

Finally, for this example, the model of homogeneous association, [AD][AG][GD], can be fit as
follows.2

2It is useful to note here that the added term [AG] allows a general association of admission with gender (controlling for
department). A significance test for this term, or for model berk.loglm2 against berk.loglm1, is a proper test for the
assertion of gender bias in admissions.
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> berk.loglm2 <-loglm(~ (Admit + Dept + Gender)^2, data = UCBAdmissions)
> berk.loglm2

Call:
loglm(formula = ~(Admit + Dept + Gender)^2, data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 20.204 5 0.0011441
Pearson 18.823 5 0.0020740

Neither of these models fits particularly well, as judged by the goodness-of-fit Pearson χ2 and
likelihood-ratio G2 test against the saturated model. The anova() method for a nested collection
of "loglm" models gives a series of likelihood-ratio tests of the difference, ∆G2, between each
sequential pair of models, according to Eqn. (9.9).

> anova(berk.loglm0, berk.loglm1, berk.loglm2, test = "Chisq")

LR tests for hierarchical log-linear models

Model 1:
~Dept + Gender + Admit
Model 2:
~Dept * (Gender + Admit)
Model 3:
~(Admit + Dept + Gender)^2

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 2097.671 16
Model 2 21.736 6 2075.9357 10 0.00000
Model 3 20.204 5 1.5312 1 0.21593
Saturated 0.000 0 20.2043 5 0.00114

The conclusion from these results is that the model berk.loglm1 is not much worse than
model berk.loglm2, but there is still significant lack of fit. The next example, using glm(),
shows how to visualize the lack of fit and account for it.

4

9.3.5 Using glm()
{sec:loglin-glm}

Loglinear models fit with glm() require the data in a data frame in frequency form, for example
as produced by as.data.frame() from a table. The model formula expresses the model for the
frequency variable, and uses family = poisson to specify the error distribution. More general
distributions for frequency data are discussed in Chapter 11. {ex:berkeley6}

EXAMPLE 9.2: Berkeley admissions
For the 2× 2× 6 UCBAdmissions table, first transform this to a frequency data frame:

> berkeley <- as.data.frame(UCBAdmissions)
> head(berkeley)

Admit Gender Dept Freq
1 Admitted Male A 512
2 Rejected Male A 313
3 Admitted Female A 89
4 Rejected Female A 19
5 Admitted Male B 353
6 Rejected Male B 207
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Then, the model of conditional independence corresponding to berk.loglm1 can be fit using
glm() as shown below.

> berk.glm1 <- glm(Freq ~ Dept * (Gender + Admit),
+ data = berkeley, family = "poisson")

Similarly, the all two-way model of homogeneous association is fit using

> berk.glm2 <- glm(Freq ~ (Dept + Gender + Admit)^2,
+ data = berkeley, family = "poisson")

These models are equivalent to those fit using loglm() in Example 9.1. We get the same
residual G2 as before, and the likelihood-ratio test of ∆G2 given by anova() gives the same
result, that the model berk.glm2 offers no significant improvement over model berk.glm1.

> anova(berk.glm1, berk.glm2, test = "Chisq")

Analysis of Deviance Table

Model 1: Freq ~ Dept * (Gender + Admit)
Model 2: Freq ~ (Dept + Gender + Admit)^2
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 6 21.7
2 5 20.2 1 1.53 0.22

Among other advantages of using glm() as opposed to loglm() is that an anova() method
is available for individual "glm" models, giving significance tests of the contributions of each term
in the model, as opposed to the tests for individual coefficients provided by summary().3

> anova(berk.glm1, test = "Chisq")

Analysis of Deviance Table

Model: poisson, link: log

Response: Freq

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 23 2650
Dept 5 160 18 2491 <2e-16 ***
Gender 1 163 17 2328 <2e-16 ***
Admit 1 230 16 2098 <2e-16 ***
Dept:Gender 5 1221 11 877 <2e-16 ***
Dept:Admit 5 855 6 22 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We proceed to consider what is wrong with these models and how they can be improved. A
mosaic display can help diagnose the reason(s) for lack of fit of these models. We focus here on the
model [AD][GD] that allows an association between gender and department (i.e., men and women
apply at different rates to departments).

3Unfortunately, in the historical development of R, the anova() methods for linear and generalized linear models
provide only sequential (“Type I”) tests that are computationally easy, but useful only under special circumstances. The
car (Fox and Weisberg, 2015) package provides an analogous Anova() method that gives more generally useful partial
(“Type II”) tests for the additional contribution of each term beyond the others, taking marginal relations into account.
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The mosaic() method for "glm" objects in vcdExtra provides a residuals_type argu-
ment, allowing residuals_type = "rstandard" for standardized residuals. The formula
argument here pertains to the order of the variables in the mosaic, not a model formula.

> library(vcdExtra)
> mosaic(berk.glm1, shade = TRUE,
+ formula = ~ Dept + Admit + Gender, split = TRUE,
+ residuals_type = "rstandard",
+ main = "Model: [AdmitDept][GenderDept]",
+ labeling = labeling_residuals,
+ abbreviate_labs = c(Gender = TRUE),
+ keep_aspect_ratio = FALSE)
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Figure 9.2: Mosaic display for the model [AD][GD], showing standardized residuals for the cell
contributions to G2. {fig:berk-glm1-mosaic}

The mosaic display, shown in Figure 9.2, indicates that this model fits well (residuals are small)
except in Department A. This suggests a model that allows an association between Admission and
Gender in Department A only,

log mijk = µ+ λAi + λDj + λGk + λADij + λDGjk + I(j = 1)λAGik , (9.13) {eq:berk2}

where the indicator function I(j = 1) equals 1 for Department A (j = 1) and is zero otherwise. This
model asserts that Admission and Gender are conditionally independent, given Department, except
in Department A. It has one more parameter than the conditional independence model, [AD][GD],
and forces perfect fit in the four cells for Department A.

Model Eqn. (9.13) may be fit with glm() by constructing a variable equal to the interaction of
gender and admit with a dummy variable having the value 1 for Department A and 0 for other
departments.

> berkeley <- within(berkeley,
+ dept1AG <- (Dept == "A") *
+ (Gender == "Female") *
+ (Admit == "Admitted"))
> head(berkeley)
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Admit Gender Dept Freq dept1AG
1 Admitted Male A 512 0
2 Rejected Male A 313 0
3 Admitted Female A 89 1
4 Rejected Female A 19 0
5 Admitted Male B 353 0
6 Rejected Male B 207 0

Fitting this model with the extra term dept1AG gives berk.glm3

> berk.glm3 <- glm(Freq ~ Dept * (Gender + Admit) + dept1AG,
+ data = berkeley, family = "poisson")

This model does indeed fit well, and represents a substantial improvement over model berk.glm1:

> vcdExtra::LRstats(berk.glm3)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

berk.glm3 200 222 2.68 5 0.75

> anova(berk.glm1, berk.glm3, test = "Chisq")

Analysis of Deviance Table

Model 1: Freq ~ Dept * (Gender + Admit)
Model 2: Freq ~ Dept * (Gender + Admit) + dept1AG
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 6 21.74
2 5 2.68 1 19.1 1.3e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The parameter estimate for the dept1AG term, λ̂AGik = 1.052, may be interpreted as the
log odds ratio of admission for females as compared to males in Dept. A. The odds ratio is
exp(1.052) = 2.86, the same as the value calculated from the raw data (see Section 4.4.2).

> coef(berk.glm3)[["dept1AG"]]

[1] 1.0521

> exp(coef(berk.glm3)[["dept1AG"]])

[1] 2.8636
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Figure 9.3: Mosaic display for the model berk.glm3, allowing an association of gender and
admission in Department A. This model now fits the data well.{fig:berk-glm3-mosaic}

Finally, Figure 9.3 shows the mosaic for this revised model. The absence of shading indicates a
well-fitting model.

> mosaic(berk.glm3, shade = TRUE,
+ formula = ~ Dept + Admit + Gender, split = TRUE,
+ residuals_type = "rstandard",
+ main = "Model: [DeptGender][DeptAdmit] + DeptA*[GA]",
+ labeling = labeling_residuals,
+ abbreviate_labs = c(Gender = TRUE),
+ keep_aspect_ratio = FALSE)

4

9.4 Equivalent logit models
{sec:loglin-logit}

Because loglinear models are formulated as models for the log (expected) frequency, they make
no distinction between response and explanatory variables. In effect, they treat all variables as
responses and describe their associations.

Logit (logistic regression) models, on the other hand, describe how the log odds for one variable
depends on other, explanatory variables. There is a close connection between the two: When there
is a response variable, each logit model for that response is equivalent to a loglinear model.

This relationship often provides a simpler way to formulate and test the model, and to plot and
interpret the fitted results. Even when there is no response variable, the logit representation for one
variable helps to interpret a loglinear model in terms of odds ratios. The price paid for this simplicity
is that associations among the explanatory variables are not expressed in the model.

Consider, for example, the model of homogeneous association, [AB][AC][BC], Eqn. (9.5), for
a three-way table, and let variable C be a binary response. Under this model, the logit for variable
C is

Lij = log

(
πij|1

πij|2

)
= log

(
mij1

mij2

)
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= log(mij1)− log(mij2) .

Substituting from Eqn. (9.5), all terms that do not involve variable C cancel, and we are left with

Lij = log(mij1/mij2) = (λC1 − λC2 ) + (λACi1 − λACi2 ) + (λBCj1 − λBCj2 )

= 2λC1 + 2λACi1 + 2λBCj1 , (9.14){eq:logitab1}

because all λ terms sum to zero. We are interested in how these logits depend on A and B, so
we can simplify the notation by replacing the λ parameters with more familiar ones, α = 2λC1 ,
βAi = 2λACi1 , etc., which express this relation more directly,

Lij = α+ βAi + βBj . (9.15){eq:logitab2}

In the logit model Eqn. (9.15), the response, C, is affected by both A and B, which have additive
effects on the log odds of response category C1 compared to C2. The terms βAi and βBj correspond
directly to [AC] and [BC] in the loglinear model Eqn. (9.5). The association among the explanatory
variables, [AB], is assumed in the logit model, but this model provides no explicit representation of
that association. The logit model Eqn. (9.14) is equivalent to the loglinear model [AB][AC][BC]
in goodness-of-fit and fitted values, and parameters in the two models correspond directly.

Table 9.1: Equivalent loglinear and logit models for a three-way table, with C as a binary response
variable{tab:loglin-logit}

Loglinear model Logit model Logit formula
[AB][C] α C ~ 1
[AB][AC] α+ βAi C ~ A
[AB][BC] α+ βBj C ~ B
[AB][AC][BC] α+ βAi + βBj C ~ A + B
[ABC] α+ βAi + βBj + βABij C ~ A * B

Table 9.1 shows the equivalent relationships between all loglinear and logit models for a three-
way table when variable C is a binary response. Each model necessarily includes the [AB] associa-
tion involving the predictor variables. The most basic model, [AB][C], is the intercept-only model,
asserting constant odds for variable C. The saturated loglinear model, [ABC], allows an interaction
in the effects of A and B on C, meaning that the AC association or odds ratio varies with B.

More generally, when there is a binary response variable, say R, and one or more explanatory
variables, A,B,C, . . ., any logit model for R has an equivalent loglinear form. Every term in the
logit model, such as βACik , corresponds to an association of those factors with R, that is, [ACR] in
the equivalent loglinear model.

The equivalent loglinear model must also include all associations among the explanatory fac-
tors, the term [ABC . . .]. Conversely, any loglinear model that includes all associations among the
explanatory variables has an equivalent logit form. When the response factor has more than two
categories, models for generalized logits (Section 8.3) also have an equivalent loglinear form.{ex:berkeley7}

EXAMPLE 9.3: Berkeley admissions
The homogeneous association model, [AD][AG][DG], did not fit the UCBAdmissions data

very well, and we saw that the term [AG] was unnecessary. Nevertheless, it is instructive to con-
sider the equivalent logit model. We illustrate the features of the logit model that lead to the same
conclusions and simplified interpretation from graphical displays.

Because Admission is a binary response variable, model Eqn. (9.6) is equivalent to the logit
model,
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Lij = log

(
mAdmit(ij)

mReject(ij)

)
= α+ βDept

i + βGender
j . (9.16){eq:berk3}

That is, the logit model Eqn. (9.16) asserts that department and gender have additive effects on the
log odds of admission. A significance test for the term βGender

j here is equivalent to the test of the
[AG] term for gender bias in the loglinear model. The observed log odds of admission here can be
calculated as:

> (obs <- log(UCBAdmissions[1,,] / UCBAdmissions[2,,]))

Dept
Gender A B C D E F
Male 0.4921 0.5337 -0.5355 -0.704 -0.957 -2.770
Female 1.5442 0.7538 -0.6604 -0.622 -1.157 -2.581

With the data in the form of the frequency data frame berkeley we used in Example 9.2, the
logit model Eqn. (9.16) can be fit using glm() as shown below. In the model formula, the binary
response is Admit == "Admitted". The weights argument gives the frequency, Freq in
each table cell.4

> berk.logit2 <- glm(Admit == "Admitted" ~ Dept + Gender,
+ data = berkeley, weights = Freq, family = "binomial")
> summary(berk.logit2)

Call:
glm(formula = Admit == "Admitted" ~ Dept + Gender, family = "binomial",

data = berkeley, weights = Freq)

Deviance Residuals:
Min 1Q Median 3Q Max

-25.342 -13.058 -0.163 16.017 21.320

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.5821 0.0690 8.44 <2e-16 ***
DeptB -0.0434 0.1098 -0.40 0.69
DeptC -1.2626 0.1066 -11.84 <2e-16 ***
DeptD -1.2946 0.1058 -12.23 <2e-16 ***
DeptE -1.7393 0.1261 -13.79 <2e-16 ***
DeptF -3.3065 0.1700 -19.45 <2e-16 ***
GenderFemale 0.0999 0.0808 1.24 0.22
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6044.3 on 23 degrees of freedom
Residual deviance: 5187.5 on 17 degrees of freedom
AIC: 5201

Number of Fisher Scoring iterations: 6

As in logistic regression models, parameter estimates may be interpreted as increments in the
log odds, or exp(β) may be interpreted as the multiple of the odds associated with the explanatory
categories. Because glm() uses a baseline category parameterization (by default), the coefficients
of the first category of Dept and Gender are set to zero. You can see from the summary()

4Using weights gives the same fitted values, but not the same LR tests for model fit.
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output that the coefficients for the departments decline steadily from A–F.5 The coefficient βGender
F =

0.0999 for females indicates that, overall, women were exp(0.0999) = 1.105 times as likely as male
applicants to be admitted to graduate school at U.C. Berkeley, a 10% advantage.

Similarly, the logit model equivalent of the loglinear model Eqn. (9.13) berk.glm3 containing
the extra 1 df term for an effect of gender in Department A is

Lij = α+ βDept
i + I(j = 1)βGender . (9.17){eq:berk4}

This model can be fit as follows:

> berkeley <- within(berkeley,
+ dept1AG <- (Dept == "A") * (Gender == "Female"))
> berk.logit3 <- glm(Admit == "Admitted" ~ Dept + Gender + dept1AG,
+ data = berkeley, weights = Freq, family = "binomial")

In contrast to the tests for individual coefficients, the Anova()method in the car package gives
likelihood-ratio tests of the terms in a model. As mentioned earlier, this provides partial (“Type II”)
tests for the additional contribution of each term beyond all others.

> library(car)
> Anova(berk.logit2)

Analysis of Deviance Table (Type II tests)

Response: Admit == "Admitted"
LR Chisq Df Pr(>Chisq)

Dept 763.4 5 <2e-16 ***
Gender 1.5 1 0.216
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> Anova(berk.logit3)

Analysis of Deviance Table (Type II tests)

Response: Admit == "Admitted"
LR Chisq Df Pr(>Chisq)

Dept 646.7 5 < 2e-16 ***
Gender 0.1 1 0.724
dept1AG 17.6 1 2.66e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Plotting logit models

Logit models are easier to interpret than the corresponding loglinear models because there are fewer
parameters, and because these parameters pertain to the odds of a response category rather than to
cell frequency. Nevertheless, interpretation is often easier still from a graph than from the parameter
values.

The simple interpretation of these logit models can be seen by plotting the logits for a given
model. To do that, it is necessary to construct a data frame containing the observed (obs) and fitted
(fit) for the combinations of gender and department.

> pred2 <- cbind(berkeley[,1:3], fit = predict(berk.logit2))
> pred2 <- cbind(subset(pred2, Admit == "Admitted"), obs = as.vector(obs))
> head(pred2)

5In fact, the departments were labeled A–F in decreasing order of rate of admission.
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Admit Gender Dept fit obs
1 Admitted Male A 0.58205 0.49212
3 Admitted Female A 0.68192 1.54420
5 Admitted Male B 0.53865 0.53375
7 Admitted Female B 0.63852 0.75377
9 Admitted Male C -0.68055 -0.53552
11 Admitted Female C -0.58068 -0.66044

In this form, these results can be plotted as a line plot of the fitted logits vs. department, with
separate curves for males and females, and adding points to show the observed values. Here, we
use ggplot2 (Wickham and Chang, 2015) as shown below, with the aes() arguments group =
Gender, color = Gender. This produces the left panel in Figure 9.4. The same steps for the
model berk.logit3 gives the right panel in this figure. The observed logits, of course, are the
same in both plots.

> library(ggplot2)
> ggplot(pred2, aes(x = Dept, y = fit, group = Gender, color = Gender)) +
+ geom_line(size = 1.2) +
+ geom_point(aes(x = Dept, y = obs, group = Gender, color = Gender),
+ size = 4) +
+ ylab("Log odds (Admitted)") + theme_bw() +
+ theme(legend.position = c(.8, .9),
+ legend.title = element_text(size = 14),
+ legend.text = element_text(size = 14))
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Figure 9.4: Observed (points) and fitted (lines) log odds of admissions in the logit models for the
UCBAdmissions data. Left: the logit model Eqn. (9.16) corresponding to the loglinear model
[AD] [AG] [DG]. Right: the logit model Eqn. (9.17), allowing only a 1 df term for Department A. {fig:berk-logit}

The effects seen in our earlier analyses (Examples 5.14, 5.15, and 9.2) may all be observed in
these plots. In the left panel of Figure 9.4, corresponding to the loglinear model [AD][AG][DG], the
effect of gender, βGender

j , in the equivalent logit model is shown by the constant separation between
the two curves. From the plot we see that this effect is very small (and nonsignificant). In the
right panel, corresponding to the logit model Eqn. (9.17), there is no effect of gender on admission,
except in department A, where the extra parameter allows perfect fit.

4
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9.5 Zero frequencies
{sec:loglin-zeros}

Cells with frequencies of zero create problems for loglinear and logit models. For loglinear models,
most of the derivations of expected frequencies by maximum likelihood and other quantities that
depend on these (e.g., G2 tests) assume that all nijk··· > 0. In analogous logit models, the observed
log odds (e.g., for a three-way table), log(nij1/nij2), will be undefined if either frequency is zero.

Zero frequencies may occur in contingency tables for two different reasons:

• structural zeros (also called fixed zeros) will occur when it is impossible to observe values for
some combinations of the variables. For these cases we should have m̂i = 0 wherever ni = 0.
For example, suppose we have three different methods of contacting people at risk for some
obscure genetically inherited disease: newspaper advertisement, telephone campaign, and radio
appeal. If each person contacted in any way is classified dichotomously by the three methods
of contact, there can never be a non-zero frequency in the ‘No-No-No’ cell.6 Similarly, in a
tabulation of seniors by gender and health concerns, there can never be males citing menopause
or females citing prostate cancer. Square tables, such as wins and losses for sporting teams often
have structural zeros in the main diagonal.

• sampling zeros (also called random zeros) occur when the total size of the sample is not large
enough in relation to the probabilities in each of the cells to assure that someone will be observed
in every cell. Here, it is permissible to have m̂i > 0 when ni = 0. This problem increases with
the number of table variables. For example, in a European survey of religious affiliation, gen-
der, and occupation, we may not happen to observe any female Muslim vineyard-workers in
France, although such individuals surely exist in the population. Even when zero frequencies
do not occur, tables with many cells relative to the total frequency tend to produce small ex-
pected frequencies in at least some cells, which tends to make the G2 statistics for model fit and
likelihood-ratio statistics for individual terms unreliable.

Following Birch (1963), Haberman (1974) and many others (e.g., Bishop et al., 1975) identified
conditions under which the maximum likelihood estimate for a given loglinear model does not
exist, meaning that the algorithms used in loglin() and glm() do not converge to a solution.
The problem depends on the number and locations of the zero cells, but not on the size of the
frequencies in the remaining cells. Fienberg and Rinaldo (2007) give a historical overview of the
problem and current approaches, and Agresti (2013, Section 10.6) gives a compact summary.

In R, the mechanism to handle structural zeros in the IPF approach of loglin() and loglm()
is to supply the argument start, giving a table conforming to the data, containing values of 0 in
the locations of the zero cells, and non-zero elsewhere.7 In the glm() approach, the argument
subset=Freq > 0 can be used to remove the cells with zero frequencies from the data; alter-
natively, zero frequencies can be set to NA. This usually provides the correct degrees of freedom;
however, some estimated coefficients may be infinite.

For a complete table, the residual degrees of freedom are determined as

df = # of cells− # of fitted parameters .

For tables with structural zeros, an analogous general formula is

df = (# cells− # of parameters)− (# zero cells− # of NA parameters) , (9.18){eq:dfzeros}

6Yet, if we fit an unsaturated model, expected frequencies may be estimated for all cells, and provide a means to estimate
the total number at risk in the population. See Lindsey (1995, Section 5.4).

7If structural zeros are present, the calculation of degrees of freedom may not be correct. loglm() deducts one degree
of freedom for each structural zero, but cannot make allowance for patterns of zeros based on the fitted margins that lead to
gains in degrees of freedom due to smaller dimension in the parameter space. loglin() makes no such correction.
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where NA parameters refers to parameters that cannot be estimated due to zero marginal totals in
the model formula.

In contrast, sampling zeros are often handled by some modification of the data frequencies to
ensure all non-zero cells. Some suggestions are:

• Add a small positive quantity (0.5 is often recommended) to every cell in the contingency table
(Goodman, 1970), as is often done in calculating empirical log odds (Example 10.10); this sim-
ple approach over-smooths the data for unsaturated models, and should be deprecated, although
it is widely used in practice.

• Replace sampling zeros by some small number, typically 10−10 or smaller (Agresti, 1990).
• Add a small quantity, like 0.1, to all zero cells, sampling or structural (Evers and Namboordiri,

1977).

In complex, sparse tables, a sensitivity analysis, comparing different approaches, can help determine
if the substantive conclusions vary with the approach to zero cells. {ex:health}

EXAMPLE 9.4: Health concerns of teenagers
Fienberg (1980, Table 8-3) presented a classic example of structural zeros in the analysis of

the 4 × 2 × 2 table shown in Table 9.2. The data come from a survey of health concerns among
teenagers, originally from Brunswick (1971). Among the health concerns, the two zero entries for
menstrual problems among males are clearly structural zeros and therefore one structural zero in
the concern-by-gender marginal table. As usual, we abbreviate the table variables concern, age, and
gender by their initial letters, C, A, G below.

Table 9.2: Results from a survey of teenagers, regarding their health concerns. Note: Two cells
with structural zeros are highlighted. Source: Fienberg (1980, Table 8-3) {tab:health}

Health Gender: Male Female
Concerns Age: 12–15 16–17 12–15 16–17
sex, reproduction 4 2 9 7
menstrual problems 0 0 4 8
how healthy I am 42 7 19 10
nothing 57 20 71 21
Note: Two cells with structural zeros are highlighted. Source: Fienberg
(1980, Table 8-3)

The Health data is created as a frequency data frame as follows.

> Health <- expand.grid(concerns = c("sex", "menstrual",
+ "healthy", "nothing"),
+ age = c("12-15", "16-17"),
+ gender = c("M", "F"))
> Health$Freq <- c(4, 0, 42, 57, 2, 0, 7, 20,
+ 9, 4, 19, 71, 7, 8, 10, 21)

In this form, we first use glm() to fit two small models, neither of which involves the
{CG} margin. Model health.glm0 is the model of mutual independence, [C][A][G]. Model
health.glm1 is the model of joint independence, [C][AG], allowing an association between age
and gender, but neither with concern. As noted above, the argument subset = (Freq>0) is
used to eliminate the structural zero cells.

> health.glm0 <- glm(Freq ~ concerns + age + gender, data = Health,
+ subset = (Freq > 0), family = poisson)
> health.glm1 <- glm(Freq ~ concerns + age * gender, data = Health,
+ subset = (Freq > 0), family = poisson)
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Neither of these fits the data well. To conserve space, we show only the results of the G2 tests
for model fit.

> vcdExtra::LRstats(health.glm0, health.glm1)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

health.glm0 100.7 105 27.7 8 0.00053 ***
health.glm1 99.9 104 24.9 7 0.00080 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To see why, Figure 9.5 shows the mosaic display for model health.glm1, [C][AG]. Note
that mosaic() takes care to make cells of zero frequency more visible by marking them with a
small “0,” as these have an area of zero.

> mosaic(health.glm1, ~ concerns + age + gender,
+ residuals_type = "rstandard", rot_labels = c(left = 65))
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Figure 9.5: Mosaic display for the Health data, model health.glm1.{fig:health-mosaic}

This suggests that there are important associations at least between concern and gender ([CG])
and between concern and age ([CA]). These are incorporated into the next model:

> health.glm2 <- glm(Freq ~ concerns*gender + concerns*age, data = Health,
+ subset = (Freq > 0), family = poisson)
> vcdExtra::LRstats(health.glm2)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

health.glm2 87.7 94.7 4.66 3 0.2

The degrees of freedom are correct here. Eqn. (9.18), with 2 zero cells and 1 NA parameter due
to the zero in the {CG} margin, gives df = (16 − 12) − (2 − 1) = 3. The loss of one estimable
parameter can be seen in the output from summary.
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> summary(health.glm2)

Call:
glm(formula = Freq ~ concerns * gender + concerns * age, family = poisson,

data = Health, subset = (Freq > 0))

Deviance Residuals:
1 3 4 5 7 8 9 10 11 12

0.236 0.585 -0.173 -0.300 -1.202 0.302 -0.149 0.000 -0.795 0.158
13 14 15 16

0.176 0.000 1.348 -0.282

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.266 0.445 2.84 0.0045 **
concernsmenstrual -0.860 0.586 -1.47 0.1425
concernshealthy 2.380 0.471 5.05 4.4e-07 ***
concernsnothing 2.800 0.462 6.07 1.3e-09 ***
genderF 0.981 0.479 2.05 0.0405 *
age16-17 -0.368 0.434 -0.85 0.3964
concernsmenstrual:genderF NA NA NA NA
concernshealthy:genderF -1.505 0.533 -2.82 0.0047 **
concernsnothing:genderF -0.803 0.503 -1.60 0.1105
concernsmenstrual:age16-17 1.061 0.750 1.41 0.1574
concernshealthy:age16-17 -0.910 0.513 -1.77 0.0761 .
concernsnothing:age16-17 -0.771 0.469 -1.64 0.1005
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 252.4670 on 13 degrees of freedom
Residual deviance: 4.6611 on 3 degrees of freedom
AIC: 87.66

Number of Fisher Scoring iterations: 4

In contrast, loglm() reports the degrees of freedom incorrectly for models containing zeros in
any fitted margin. For use with loglm(), we convert it to a 4× 2× table.

> health.tab <- xtabs(Freq ~ concerns + age + gender, data = Health)

The same three models are fitted with loglm() as shown below. The locations of the positive
frequencies are marked in the array nonzeros and supplied as the value of the start argument.

> nonzeros <- ifelse(health.tab>0, 1, 0)
> health.loglm0 <- loglm(~ concerns + age + gender,
+ data = health.tab, start = nonzeros)
> health.loglm1 <- loglm(~ concerns + age * gender,
+ data = health.tab, start = nonzeros)
> # df is wrong
> health.loglm2 <- loglm(~ concerns*gender + concerns*age,
+ data = health.tab, start = nonzeros)
> LRstats(health.loglm0, health.loglm1, health.loglm2)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

health.loglm0 104.7 111 27.74 8 0.00053 ***
health.loglm1 103.9 111 24.89 7 0.00080 ***
health.loglm2 93.7 104 4.66 2 0.09724 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results agree with those of glm(), except for the degrees of freedom for the last model.
4
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9.6 Chapter summary
{sec:loglin-summary}

• Loglinear models provide a comprehensive scheme to describe and understand the associations
among two or more categorical variables. It is helpful to think of these as discrete analogs of
ANOVA models, or of regression models, where the log of cell frequency is modelled as a linear
function of predictors.

• Loglinear models typically make no distinction between response and explanatory variables.
When one variable is a response, however, any logit model for that response has an equiva-
lent loglinear model. The logit form is usually simpler to formulate and test, and plots of the
observed and fitted logits are easier to interpret.

• In all these cases, the interplay between graphing and fitting is important in arriving at an under-
standing of the relationships among variables, and an adequate descriptive model that is faithful
to the details of the data.

• Cells with zero frequencies create problems for estimation and testing hypotheses in loglinear
models. Different methods are available to handle structural zeros and sampling zeros.

9.7 Lab exercises
{sec:loglin-lab}{lab:9.1}

Exercise 9.1 Consider the data set DaytonSurvey (described in Example 2.6), giving results of
a survey of use of alcohol (A), cigarettes (C), and marijuana (M) among high school seniors. For this
exercise, ignore the variables sex and race, by working with the marginal table Dayton.ACM, a
2× 2× 2 table in frequency data frame form.

> Dayton.ACM <- aggregate(Freq ~ cigarette + alcohol + marijuana,
+ data=DaytonSurvey, FUN=sum)

(a) Use loglm() to fit the model of mutual independence, [A][C][M].
(b) Prepare mosaic display(s) for associations among these variables. Give a verbal description of

the association between cigarette and alcohol use.
(c) Use fourfold() to produce fourfold plots for each pair of variables, AC, AM, and CM,

stratified by the remaining one. Describe these associations verbally.
{lab:9.2}

Exercise 9.2 Continue the analysis of the DaytonSurvey data by fitting the following models:

(a) Joint independence, [AC][M]
(b) Conditional independence, [AM][CM]
(c) Homogeneous association, [AC][AM][CM]
(d) Prepare a table giving the goodness-of-fit tests for these models, as well as the model of

mutual independence, [A][C][M], and the saturated model, [ACM]. Hint: anova() and
LRstats() are useful here. Which model appears to give the most reasonable fit?

{lab:9.3}{lab:caesar-loglin}

Exercise 9.3 The data set Caesar in vcdExtra gives a 3 × 23 frequency table classifying 251
women who gave birth by Caesarian section by Infection (three levels: none, Type 1, Type2)
and Risk, whether Antibiotics were used, and whether the Caesarian section was Planned
or not. Infection is a natural response variable, but the table has quite a few zeros.

(a) Use structable() and mosaic() to see the locations of the zero cells in this table.
(b) Use loglm() to fit the baseline model [I][ RAP]. Is there any problem due to zero cells

indicated in the output?
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(c) For the purpose of this excercise, treat all the zero cells as sampling zeros by adding 0.5 to all
cells, e.g., Caesar1 <- Caesar + 0.5. Refit the baseline model.

(d) Now fit a “main effects” model [IR][ IA][ IP][ RAP] that allows associations of Infection
with each of the predictors.

{lab:9.4}

Exercise 9.4 The Detergent in vcdExtra gives a 23 × 3 table classifying a sample of 1,008
consumers according to their preference for (a) expressed Preference for Brand “X” or Brand
“M” in a blind trial, (b) Temperature of laundry water used, (c) previous use (M_user) of
detergent Brand “M,” and (d) the softness (Water_softness) of the laundry water used.

(a) Make some mosaic displays to visualize the associations among the table variables. Try using
different orderings of the table variables to make associations related to Preference more
apparent.

(b) Use a doubledecker() plot to visualize how Preference relates to the other factors.
(c) Use loglm() to fit the baseline model [P][TMW] for Preference as the response variable.

Use a mosaic display to visualize the lack of fit for this model.
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