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Discrete distributions: Basic ideas
• Quantitative data: often assumed Normal ( , 2) –

unreasonable for CDA
• Binomial, Poisson, Negative binomial, … are the 

building blocks for CDA
• Form the basis for modeling techniques

logistic regression, generalized linear models, Poisson 
regression

• Data:
outcome variable (k = 0, 1, 2, … )
counts of occurrences (nk): accidents, words in text, males 
in families of size k
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Examples: binomial
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Human sex ratio (Geissler, 1889): Is there evidence that Pr(male) = 0.5?

Example: Poisson
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L. Von Bortkiewicz (1898) tallied the numbers of deaths by horse or mule kicks in 10 
corps of the Prussian army over 20 years, 200 corps-years
• In how many corps-years were there 0, 1, 2, … deaths?
• This is among the earliest examples of a Poisson distribution

> data(HorseKicks, package="vcd")
> HorseKicks
nDeaths
0   1   2   3   4 

109  65  22   3   1

The Poisson distribution arises as that of 
the probability of 0, 1, 2, … 
• Rare events, that
• Occur with constant probability



Examples: count data
Federalist papers: Disputed authorship
• 77 essays by Alexander Hamilton, John Jay, James Madison to persuade 

voters to ratify the US constitution, all signed with pseudonym “Publius”
Who wrote each?
65 known, 12 disputed (H & M both claimed sole authorship)

• Mosteller & Wallace (1984): analysis of frequency distns of key “marker” 
words: from, may, whilst, …

• e.g., blocks of 200 words: occurrences (k) of “may” in how many blocks 
(nk)
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> data(Federalist, package = "vcd")
> Federalist
nMay
0   1   2   3   4   5   6 

156  63  29   8   4   1   1 

Count data: models
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For each word (“from”, “may”, “whilst”, …)
• Fit a probability model [Poisson( ), NegBin( , p)]
• Estimate parameters ( ,p)
• Calculate log Odds (Hamilton vs. Madison)
• All 12 disputed papers most likely written by Madison
(pioneered the use of cross-validation to assess model fit)

Example: Type-token distributions
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data(Butterfly, package="vcd")
barplot(Butterfly,

xlab = "Number of individuals",
ylab = "Number of species",
col = "pink",
cex.lab = 1.5)

Questions:
What is the total pop. of butterflies in Malaysia?
How many wolves remain in Canada NWT?
How many words did Shakespeare know?

Answers depend on estimating Pr(k=0)



Discrete distributions: Questions
• General questions

What process gave rise to the distribution?
What is the form: uniform, binomial, Poisson, negative 
binomial, … ?

Fit & estimate parameters
• Visualize goodness of fit

Use in some larger context to tell a story
• Examples

Families in Saxony: might expect Bin(n=12, p); p=0.5?
HorseKicks: Poisson ( ); here, = mean = 0.61
Federalist papers: Perhaps Poisson( ) or NegBin ( , p)
Butterfly data: Perhaps a log-series distribution?
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Fitting discrete distributions
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Common discrete distributions
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Distribution Counts, k Values of 
X

Pr(X=k) Mean, 
E(X)

Var, V(X)

Bernoulli(p) Success in 1 
trial

k={0, 1} 1 (1 )
Binomial(n,p) # successes 

in n trials
0, 1, …, n 1 (1 )

Geometric(p) # of trials to 
1st success

0, 1, 2, … 1 1 2
Neg. 
binomial(k,p)

# of trials to 
kth success

0, 1, 2, … + 1 1 ( ) ( )
Poisson( ) # of events 

in interval
0, 1, 2, … !

Log series(p) # of types 
observed

0, 1, 2, …
log(1 )

kp
n p

Discrete distributions: R
R functions: {d__, p__, q__, r__}
• d___ density function, Pr(X=k) = p(k)
• p___ cumulative probability, F(k) = ( )
• q___ quantile function, find k = F-1 (p), smallest value such that ( )
• r___ random number generator
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> dbinom(0:4, size=4, p=1/2)                # number of H in 4 coin tosses
[1] 0.0625 0.2500 0.3750 0.2500 0.0625
> dpois(0:4, lambda=3)                          # poisson, with = 3
[1] 0.0498 0.1494 0.2240 0.2240 0.1680

e.g.,



What is “binomial”
Bi-no-mi-al / /
• Taxonomy: A two-part name, (genus, species) e.g.,  Elephas maximus for 

the Asian elephant
• Mathematics: An algebraic expression of a sum of two terms, (x + y) or 

expansion, (x + y)n
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Coefficients of terms

(Pascal’s triangle)

Binomial distribution

Examples
• Toss 10 fair coins– how many heads?   Bin(10, ½)
• Toss 12 fair dice– how many 5s or 6s?  Bin(12, 1/3)
Mean, variance, skewness:                                

Mean[X]   =   n p                           MLE from data: = = × /
Var[X]   =  n p (1-p) = n p q
Skew[X] = n p q (q-p)
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# ways to get k 
out of n Pr(k events) Pr(n-k non-

events)

Binomial distribution
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Binomial distributions for k = 0, 1, 2, …, 12 successes in n=12 trials, for 4 values of p

DDAR Fig 3.9, pp 76-77

• Mean = n p
• Variance is maximum when p = ½
•

Poisson distribution

16



Poisson distribution
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Poisson distributions for = ½, 1, 2, 3, 6

Poisson distribution: Properties
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Poisson distributions for = 1, 4, 10

Mean, variance, skewness:
Mean[X]  =   

Var[X]  =  
Skew[X]     =  -1/2

DDAR Fig 
3.10, p 81

Properties:
Sum of Pois ( 1, 2, 3 i)
Approaches N( , ) as n MLE: =

History: Who discovered the “Poisson” distribution

Stigler’s Law: No discovery in science is ever named for its primary originator
• De Moivre (1718) – Approximation to binomial as n gets largish
• Poisson (1837) – Reserches sur la Probabilité des jugements en Matière 

criminelle… -- Derives e- k / k!
Stigler says main result anticipated by De Moivre

• S. Newcomb (1860) – Notes on a Theory of Probability
First attempt at using this as a fit to data
Observations of stars: Pr(any small space, 1o) contains s stars, s = 0, 1, 2, …

• Von Bortkiewicz (1898) – Law of Small Numbers
Re-derives Poisson as limiting case of binomial
Several data sets (Horse kicks & others) – “agreement between theory and observation 
leave nothing to be desired”

• Gosset (1907): Heamacytometer Counts
“Student”’s first paper – first rigorous treatment of the Poisson for count data
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See: Hanley & Bhatnagar (2022) The “Poisson” Distribution: History, Reenactments, 
Adaptations, The American Statistician, 76:4, 363-371, DOI: 10.1080/00031305.2022.2046159  

Gosset: Heamacytometer Counts
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Source: http://www.medicine.mcgill.ca/epidemiology/hanley/Gosset/

Number of blood cells observed in a 20 x 20 grid on a slide



Negative binomial distribution
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Properties:
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Negative binomial 
distributions for
n = 2, 4, 6
p = 0.2, 0.3, 0.4

DDAR Fig 3.13, p 85

Mean:
Increases with n
Decreases with p

p
n

Quiz: Name that distribution
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1. Weldon tossed 12 dice 26,306 times & tallied the number of times a 5 or 6 occurred
> WeldonDice
n56

0    1    2    3    4    5    6    7    8    9   10+ 
185 1149 3265 5475 6114 5194 3067 1331  403  105   18 

2. Pele practices penalty kicks for the upcoming 1958 FIFA World Cup. His average 
scoring has been p=0.4. What is the probability it will take him 1, 2, … shots to score a 
goal?

3. A Geiger counter records the number of scintillations of particles from a 
radioactive source, with an average rate of 20/msec.  What is the probability of  
observing 40 in a 1 msec. interval?

4. What is the distribution of the time between Geiger counter ticks?

> dnbinom(1:5, size=1, p=0.4)
[1] 0.240 0.144 0.086 0.052 0.031

Bin(n=12, p=1/3)

Nbin(n=1, p=0.4)

Pois( =20)

Exponential distn, Pr(X=k) = e- k , mean = 1/

Fitting discrete distributions
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Fitting: Weldon’s dice
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> data(WeldonDice, package="vcd")
> Weldon.df <- as.data.frame(WeldonDice)   # convert to data frame

> Prob <- dbinom(0:12, 12, 1/3)            # binomial probabilities
> Prob <- c(Prob[1:10], sum(Prob[11:13]))  # sum values for 10+
> Exp= round(sum(WeldonDice)*Prob)         # expected frequencies
> Diff = Weldon.df[,"Freq"] - Exp          # raw residuals
> Chisq = Diff^2 /Exp                      # contribution to chisquare
> data.frame(Weldon.df, Prob=round(Prob,5), Exp, Diff, Chisq)

n56 Freq    Prob  Exp Diff Chisq
1    0  185 0.00771  203  -18 1.596
2    1 1149 0.04624 1216  -67 3.692
3    2 3265 0.12717 3345  -80 1.913
4    3 5475 0.21195 5576 -101 1.829
5    4 6114 0.23845 6273 -159 4.030
6    5 5194 0.19076 5018  176 6.173
7    6 3067 0.11127 2927  140 6.696
8    7 1331 0.04769 1255   76 4.602
9    8  403 0.01490  392   11 0.309
10   9  105 0.00331   87   18 3.724
11 10+   18 0.00054   14    4 1.143

Basic, naïve calculation of expected frequencies for a binomial distribution 

Doesn’t calculate the MLE, 

Fitting & graphing discrete distributions
In R, the vcd and vcdExtra packages provide functions to fit, 
visualize and diagnose discrete distributions

• Fitting: goodfit()      fits uniform, binomial, Poisson,  
neg bin, geometric, logseries, …

• Graphing: rootogram()  assess departure between 
observed, fitted counts

• Ord plot: Ordplot()     diagnose form of a discrete 
distribution

• Robust plots: distplot() handle problems with 
discrepant counts
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Example: Saxony families
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> data(Saxony, package="vcd")
> Saxony
nMales

0    1    2    3    4    5    6    7    8    9   10   11   12 
3   24  104  286  670 1033 1343 1112  829  478  181   45    7 

Use goodfit() to fit the binomial; test with summary()
> Sax.fit <- goodfit(Saxony, type = "binomial", par=list(size=12))
> summary(Sax.fit)

Goodness-of-fit test for binomial distribution

X^2 df P(> X^2)
Likelihood Ratio  97 11 6.98e-16

Specify parameters

Example: Saxony families
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The print() method for goodfit objects shows the details

> Sax.fit # print

Observed and fitted values for binomial distribution
with parameters estimated by `ML' 

count observed   fitted pearson residual
0        3    0.933            2.140
1       24   12.089            3.426
2      104   71.803            3.800
3      286  258.475            1.712
4      670  628.055            1.674
5     1033 1085.211           -1.585
6     1343 1367.279           -0.657
7     1112 1265.630           -4.318
8      829  854.247           -0.864
9      478  410.013            3.358
10      181  132.836            4.179
11       45   26.082            3.704
12        7    2.347            3.037

Pay attention to the 
signs & magnitudes of 
residuals, dk

Pearson 2
k

2



Graphing discrete distributions

Rootograms Ord plots
Robust 

distribution 
plots

What’s wrong with simple histograms?
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Discrete distributions are often graphed as histograms, with a theoretical fitted 
distribution superimposed
The plot() method for goodfit objects provides some alternatives

> plot(Sax.fit, type = "standing", xlab = "Number of males")

Problems:
• Largest frequencies dominate
• Must assess deviations vs. the 

fitted curve

Hanging rootograms
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> plot(Sax.fit, type = "hanging", xlab = "Number of males")  # default

Deviation rootograms
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> plot(Sax.fit, type = "deviation", xlab = "Number of males")

Q: What does this suggest about sex 
distribution of families in Saxony?



Example: Federalist papers
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> data(Federalist, package="vcd")
> Federalist
nMay

0   1   2   3   4   5   6 
156  63  29   8   4   1   1 

Fit the Poisson distribution

> Fed.fit0 <- goodfit(Federalist, type="poisson")
> summary(Fed.fit0)

Goodness-of-fit test for poisson
distribution

X^2 df P(> X^2)
Likelihood Ratio 25.2  5 0.000125

This fits very poorly!

Example: Federalist papers
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Try the Negative binomial distribution

> Fed.fit1<- goodfit(Federalist, type="nbinomial")
> summary(Fed.fit1)

Goodness-of-fit test for nbinomial distribution

X^2 df P(> X^2)
Likelihood Ratio 1.96  4    0.742

Federalist papers: Rootograms
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Hanging rootograms for the Federalist papers data, comparing Poisson and Negative 
binomial

> plot(Fed.fit0, main = "Poisson")
> plot(Fed.fit1, main = "Negative binomial")

Butterfly data
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Both Poisson and Negative binomial are terrible fits!   What to do??



Ord plots: Diagnose form of distribution
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Ord plot: Examples
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Butterfly data: The slope and intercept correctly diagnoses the log-series
distribution

> Ord_plot(Butterfly,
main = "Butterfly species collected in Malaya", 
gp=gpar(cex=1), pch=16)

+ slope

- intercept
log-series

OLS line shown in black
WLS line shown in red

Ord plots: Examples
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Ord plots for the Saxony and Federalist data

> Ord_plot(Saxony, main = "Families in Saxony", gp=gpar(cex=1), pch=16)
> Ord_plot(Federalist, main = "Instances of 'may' in Federalist papers", gp=gpar(cex=1), pch=16)

Robust distribution plots
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For the Poisson distribution, this is 
called a “poissonness plot”



Poissonness plot: Details

42

Other distributions
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distplot: Federalist

44

Try both Poisson & Negative binomial

distplot: Saxony
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For purported binomial distributions, the result is a “binomialness” plot

Both plots show heavier tails than the binomial distribution. distplot() is more 
sensitive in diagnosing this



What have we learned?
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What have we learned?
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Looking ahead: PhdPubs data

• There are predictors: gender, marital status, number of children, prestige 
of dept., # pubs by student’s mentor

• We fit such models with glm(), but need to specify the form of the 
distribution

• Ignoring the predictors for now, a baseline model could be
glm(articles ~ 1, data=PhdPubs, family = “poisson”)
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N = 915, mean(articles) = 1.69 

Looking ahead: PhdPubs
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Poisson doesn’t fit:  Need to account for excess 0s (some never published)
Neg binomial: Sort of OK, but should take predictors into account



Looking ahead: Count data models

50

Count data regression models (DDAR Ch 11)
• Include predictors
• Allow different distributions for unexplained variation
• Provide tests of one model vs. another
• Special models handle the problems of excess zeros: zeroinlf(), hurdle()

Looking ahead: Effect plots
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Summary
• Discrete distributions are the building blocks for 

categorical data analysis
Typically consist of basic counts of occurrences, with 
varying frequencies
Most common: binomial, Poisson, negative binomial
Others: geometric, log-series

• Fit with goodfit(); plot with rootogram()
Diagnostic plots: Ord_plot(), distplot()

• Models with predictors
Binomial logistic regression
Poisson poisson regression; logliner models
These are special cases of generalized linear models
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