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Discrete distributions: Basic ideas

* Quantitative data: often assumed Normal (u, 2) —
unreasonable for CDA

* Binomial, Poisson, Negative binomial, ... are the
building blocks for CDA
* Form the basis for modeling techniques

= |ogistic regression, generalized linear models, Poisson
regression

* Data:
® outcome variable (k=0,1, 2, ...)

= counts of occurrences (n,): accidents, words in text, males
in families of size k

Examples: binomial

Human sex ratio (Geissler, 1889): Is there evidence that Pr(male) = 0.5?

Saxony families

Saxony families with 12 children having k = 0.1,...12 sons.

k|0 1 2 3 4 5 6 7 8 9 10 11 12
ng|3 24 104 286 670 1033 1343 1112 829 478 181 45 7

Number of families

%_

§,

d B

o m e [—

o 6 7 ] 9 10 1" 12

Number of males

Example: Poisson

L. Von Bortkiewicz (1898) tallied the numbers of deaths by horse or mule kicks in 10
corps of the Prussian army over 20 years, — 200 corps-years

* In how many corps-years were there 0, 1, 2, ... deaths?

¢ This is among the earliest examples of a Poisson distribution

> data (HorseKicks, package="vcd")
> HorseKicks
nDeaths
0 1 2 3 4
109 65 22 3 1

The Poisson distribution arises as that of
the probability of 0, 1, 2, ...

* Rare events, that

e Occur with constant probability

Number of corps-years
20 40 60 80 100

]

0 1 2 3 4

0

Number of deaths




Examples: count data

Federalist papers: Disputed authorship

* 77 essays by Alexander Hamilton, John Jay, James Madison to persuade
voters to ratify the US constitution, all signed with pseudonym “Publius”
" Who wrote each?
= 65 known, 12 disputed (H & M both claimed sole authorship)
* Mosteller & Wallace (1984): analysis of frequency dist"s of key “marker”
words: from, may, whilst, ...

* e.g., blocks of 200 words: occurrences (k) of “may” in how many blocks
(ny)

> data(Federalist, package = "vcd")
> Federalist
nMay
0 1 2 3 4 5 6
156 63 29 8 4 1 1

Count data: models

Number of blocks of text

. [ p—

o 1 2 3 4 5 6

Occurrences of 'may’

For each word (“from”, “may”, “whilst”, ...)

* Fit a probability model [Poisson(A), NegBin(A, p)]

* Estimate parameters (A,p)

* — Calculate log Odds (Hamilton vs. Madison)

* — All 12 disputed papers most likely written by Madison

(pioneered the use of cross-validation to assess model fit)

Example: Type-token distributions

@ Basic count, k: number of “types”; frequency, ng: number of instances
observed

@ Frequencies of distinct words in a book or literary corpus
o Number of subjects listing words as members of the semantic category “fruit”
@ Distinct species of animals caught in traps

o Differs from other distributions in that the frequency for k = 0 is
unobserved

@ Distribution is often extremely skewed (J-shaped)

Table: Number of butterfly species ny for which k individuals were collected

Individuals (k) 1 2 3 4 5 6 7 8 9 10 11 12
Species (nk) 118 74 44 24 29 22 20 19 20 15 12 14

Individuals (k) 13 14 15 16 17 18 19 20 21 22 23 24 | St
Species (ng) 6 12 6 9 9 6 10 10 11 5 3 3 5

data(Butterfly, package="vcd")

barplot(Butterfly,
xlab = "Number of individuals",
ylab = "Number of species”,
col = "pink",

cex.lab = 1.5)

Questions:

What is the total pop. of butterflies in Malaysia?
How many wolves remain in Canada NWT?

How many words did Shakespeare know?

Answers depend on estimating Pr(k=0)

Number of species

0 20 40 60 80

123456789 N 13 15 17 23

Number of individuals




Discrete distributions: Questions

* General questions
= What process gave rise to the distribution?

® What is the form: uniform, binomial, Poisson, negative
binomial, ... ?

" — Fit & estimate parameters
* Visualize goodness of fit

= — Use in some larger context to tell a story

* Examples
® Families in Saxony: might expect Bin(n=12, p); p=0.5?
= HorseKicks: Poisson (A); here, A = mean =0.61
® federalist papers: Perhaps Poisson(\) or NegBin (A, p)
= Butterfly data: Perhaps a log-series distribution?

Fitting discrete distributions
Lackoffit: . |

Lack of fit:
@ Lack of fit tells us something about the process giving rise to the data
@ Poisson: assumes constant small probability of the basic event
@ Binomial: assumes constant probability and independent trials
@ Negative binomal: allows for overdispersion, relative to Poisson

Motivation:

@ Models for more complex categorical data use these basic discrete
distributions

@ Binomial (with predictors) — logistic regression

@ Poisson (with predictors) — poisson regression, loglinear models

@ = many of these are special cases of generalized linear models

Common discrete distributions

Discrete distributions: R

Distribution | Counts, k Values of Var, V(X)
X
Bernoulli(p)  Successin1 k={0, 1} p*(1 —p)t=k p p(1—-p)
trial
Binomial(n,p) # successes O, 1, .., n (Z) Pk — p)rk np np(1l —p)
in n trials
Geometric(p) #of trialsto 0,1, 2, ... p(1—p)¥ i-p 1-p
15t success 14 p?
Neg. #oftrialsto 0,1,2, ... ("*ﬁfl)p"(l—p)k k(1-p) k(1-p)
binomial(k,p)  kth success p p
Poisson(\) #tofevents 0,1,2,.. Ake=2 A A
in interval k!
Log series(p)  # of types 0,1,2,.. P
observed nlog(1-p)

R functions: {d__,p_,q_,r_}

° d density function, Pr(X=k) = p(k)
°* p cumulative probability, F(k) = Y.y <x p (k)
* g quantile function, find k = F (p), smallest value such that F (k) = p
° r random number generator
Discrete Density (pmf) Cumulative Quantile Random #
distribution function (CDF) CDF! generator
Binomial dbinom () pbinom /() gbinom() rbinom ()
Poisson dpois() ppois() gpois () rpois ()
Negative binomial | dnbinom() pnbinom() gnbinom() rnbinom ()
Geometric dgeom () pgeom () ggeom () rgeom ()
Logarithmic series | dlogseries () plogseries() glogseries() rlogseries()
eg., > dbinom(0:4, size=4, p=1/2) # number of H in 4 coin tosses
[1] 0.0625 0.2500 0.3750 0.2500 0.0625
> dpois(0:4, lambda=3) # poisson, with A =3

[1] 0.0498 0.1494 0.2240 0.2240 0.1680




What is “binomial”

Bi-no-mi-al /bi'noméal/
* Taxonomy: A two-part name, (genus, species) e.g., Elephas maximus for
the Asian elephant

* Mathematics: An algebraic expression of a sum of two terms, (x +y) or
expansion, (x +y)"

(x+y)'= 1 Coefficients of terms
(x+p)'= 1x+1y

(x+y) = 12 4200 1,7 cr = (n) _ 7/
(I"'}’)z: ng+333y’+3z]y2+1y3 k k‘l(n — k)l
(x+2¥'= Az +ax% 657 +4x + 1y

Pascal’s triangle
(x+p0= 107 4520 +10x°2 +102%° +5x"' +1 57 ( gle)

Binomial distribution

The binomial distribution, Bin(n, p), # ways to get k r(k events) __"{n-knon-

events)

/Gut of n

Bin(n, p) : P{X =k} = p(k) = (:) pr(1 —p)"k k=0,1,..., n, (1)

arises as the distribution of the number of events of interest (“successes") which
occur in n independent trials when the probability of the event on any one trial is
the constant value p = Pr(event).

Examples

® Toss 10 fair coins— how many heads? Bin(10, %)

® Toss 12 fair dice— how many 5s or 6s? Bin(12, 1/3)
Mean, variance, skewness:

Ykxnk/Yen,
n

Mean[X] = np MLE from data: p = §=

Var[X] = np(l-p)=npq
Skew[X] =np q (g-p)

Binomial distribution

Binomial distributions for k=0, 1, 2, ..., 12 successes in n=12 trials, for 4 values of p

Il 1 L 1 1 1 1

0.30
Pr(success)
i [ ] 1/6 L
s ° 113
A — 12

> 020 o A 2/3 r

E

@© 0.15 =

Q

2]

o 0.10 q -
0.05 -
0.00 o— -

T T T T T T T
0 2 4 6 8 10 12

Number of successes
* Mean=np
* Variance is maximum when p = %
* Skewed when p # %

DDAR Fig 3.9, pp 76-77

Poisson distribution

The Poisson distribution, Pois(A),

e™ M Ak
Pois(\) : Pr{X = k} = p(k) = 0 k=0,1,... (2)
gives the probability of an event occurring k = 0,1,2,... times over a large

number of independent trials, when the probability, p, that the event occurs on
any one trial (in time or space) is small and constant.
Examples:

@ Number of highway accidents at some given location
@ Defects in a manufacturing process
@ Number of goals scored in soccer games

Table: Total goals scored in 380 games in the Premier Football League, 1995/95 season

Total goals o 1 2 3 4 5 6 7
Number of games | 27 88 91 73 49 31 18 3




Poisson distribution: Properties

Poisson distribution

Poisson distributions for A =1,1, 2, 3,6

A=05
—— A=1
0.6 —— A=2
—@— A=3
0.5 —@— \=6
0.4
F
S o3
Qo
[
& b2
0.1 H
0.0 +
T T T T T T T
[0} 2 4 6 8 10 12

Poisson distributions for A =1, 4, 10

0 5 10 15 20
I I I 1 L |

4 10 DDAR Fig
3.10,p 81

o e
Y »
I 1

Probability

=)
I

||II IIHIh, :...,Zﬂl][llhr...;

Number of events (k)
Mean, variance, skewness: Properties:

Mean[X] = A — Sum of Pois (A, Ay,A5, ...) = Pois(3A)
Var[X] = A Approaches N(A, 1) as n — oo

Skew[X] = A2

History: Who discovered the “Poisson” distribution

Gosset: Heamacytometer Counts

Stigler’s Law: No discovery in science is ever named for its primary originator
* De Moivre (1718) — Approximation to binomial as n gets largish
* Poisson (1837) — Reserches sur la Probabilité des jugements en Matiére
criminelle... -- Derives e Ak / k!
= Stigler says main result anticipated by De Moivre
* S. Newcomb (1860) — Notes on a Theory of Probability
" First attempt at using this as a fit to data
= QObservations of stars: Pr(any small space, 1°) contains s stars,s=0, 1, 2, ...
* Von Bortkiewicz (1898) — Law of Small Numbers
® Re-derives Poisson as limiting case of binomial

= Several data sets (Horse kicks & others) — “agreement between theory and observation
leave nothing to be desired”

® Gosset (1907): Heamacytometer Counts
=  “Student”’s first paper — first rigorous treatment of the Poisson for count data

See: Hanley & Bhatnagar (2022) The “Poisson” Distribution: History, Reenactments,
Adaptations, The American Statistician, 76:4, 363-371, DOI: 10.1080/00031305.2022.2046159

Number of blood cells observed in a 20 x 20 grid on a slide

Source: http://www.medicine.mcgill.ca/epidemiology/hanley/Gosset/




Negative binomial distribution o mEmeT e ey

. . T I
The Negative binomial distribution, NBin(n, p), ] | Negative binomial
_ Nk -1 o5 ‘ ”Hm ””“ | distributions for
NBin(n.p) - Prx =k} = o) = (7T e - k=0 e 2 MW A e | =222,
Bo3 p03 Bo3 p=0.2,03,0.4
arises when a series of independent Bernoulli trials is observed with constant ::
probability p of some event, and we ask how many non-events (failures), k, it £ Mean:
takes to observe n successful events. g " Increases with n
Example: Toss a coin; what is probability of getting k = 0,1,2, ... tails before =] ‘ H”Ihnn 'I]””Hm“"m" "ﬂ””l”mm” | Decreases with p
n = 3 heads? | p:02 b p:02 - p:0.2 o
n:2 n:4 n:6
This distribution is often used as an alternative to the Poisson when 015 L
@ constant probability p or independence are violated 010 H
@ variance is greater than the mean (overdispersion) 005

Ouoywllllnnmm. ot

o ﬂ(l—p) o n 0 5 10 15 20
Properties: Mean(X) = = P - = n+ g Number of failures (k)
1—3 2
Var(X) = % — | Var(X)=p+ *:T . DDAR Fig 3.13, p 85

Quiz: Name that distribution

Fitting discrete distributions

1. Weldon tossed 12 dice 26,306 times & tallied the number of times a 5 or 6 occurred

) Fitting a discrete distribution involves the following steps:
> WeldonDice

ns6 © Estimate the parameter(s) from the data, e.g., p for binomial, A for Poisson,
0 1 2 3 4 5 6 7 8 9 10+ Bin(n=12, p=1/3) etc. Typically done using maximum likelihood, but some distributions have
185 1149 3265 5475 6114 5194 3067 1331 403 105 18 simple expressions:

o Binomial, p=3"kn/(n37 mk) = mean / n

2. Pele practices penalty kicks for the upcoming 1958 FIFA World Cup. His average o Poisson, A =S knk/ S m = mean
scoring has been p=0.4. What is the probability it will take him 1, 2, ... shots to score a
goal? ; ) . ~ @ Calculate fitted probabilities, p(k) for the distribution, and then fitted
Nbin(nzl, p:0'4) > dnbinom(1l:5, size=1, p=0.4) frequencies NAU()
[1] 0.240 0.144 0.086 0.052 0.031 q . WPLK).

. o ) Assess Goodness of fit: Pearson X2 or likelihood-ratio G2
3. A Geiger counter records the number of scintillations of a particles from a ©

radioactive source, with an average rate of 20/msec. What is the probability of K N, )2 K
) . . 2 _ (ne — Npy) 2 _ M
observing 40 in a 1 msec. interval? X = E T G = E ny log( Np )
— k — k
Pois(A=20) k=1 k=1
4. What is the distribution of the time between Geiger counter ticks? Both have asymptotic chisquare distributions, vk _, with s estimated

parameters, under the hypothesis that the data follows the chosen
Exponential dist", Pr(X=k) = A e*, mean = 1/A distribution.




Fitting: Weldon’s dice

Basic, naive calculation of expected frequencies for a binomial distribution InR, the ved and vcdExtra packages provide functions to fit,

Fitting & graphing discrete distributions

visualize and diagnose discrete distributions

> data (WeldonDice, package="vcd")

> Weldon.df <- as.data.frame (WeldonDice) # convert to data frame

> Prob <- dbinom(0:12, 12, 1/3) # binomial pT:{babiTitlES ° Fitting: good-Fi't() flts unifor'm' binomial’ Poisson'
> Prob <- c(Prob[1:10], sum(Prob[11:13])) # sum values for 10+

> Exp= round (sum(WeldonDice) *Prob) # d frequencies H H H

> Diff = Weldon.df[,"Freq"] - Exp # iduals neg bln' geometrlc' Iogserles' o
> Chisq = Diff"2 /Exp # contribution to chisquare ° H .

> data.frame (Weldon.df, Prob=round(Prob,5), Exp, Diff, Chisq) Graphlng' r‘OOtOgr‘am() assess departure between

nS6 Freq — Prob Exp Diff Chisq observed, fitted counts
7’

1 0 185 0.00771 203 -18 1.596

S e e el ’ A * Ord plot: Ordplot () diagnose form of a discrete
4 3 5475 0.21195 5576 -101 1.829 Doesn’t calculate the MLE, p distributi

5 4 6114 0.23845 6273 -159 4.030 Manually sum k > 10 Istribution

6 55194 0.19076 5018 176 6.173 . .

7 6 3067 0.11127 2927 140 6.696 * Robust plots: distplot() handle problems with

8 7 1331 0.04769 1255 76 4.602 .

9 8 403 0.01490 392 11 0.309 discrepant counts

10 9 105 0.00331 87 18 3.724

11 10+ 18 0.00054 14 4 1.143

Example: Saxony families Example: Saxony families

> data(Saxony, package="vcd") The prlnt() method for gOOdflt Objects shows the details
> Saxony
nMales

0 1 2 3 4 5 6 7 8 9 1o 11 12 > Sax.fit # print

3 24 104 286 670 1033 1343 1112 829 478 181 45 7
Observed and fitted values for binomial distribution

with parameters estimated by "ML'

Use goodfit () to fit the binomial; test with summary () coun; observeg f;t;gg pearson res;dﬁ; Pay attention to the
1 24 12.089 3.426 signs & magnitudes of
> Sax.fit <- goodfit(Saxony, type = "binomial", par=list(size=12)) 2 le4  71.803 3.800 residuals, dy
> SUMTERA(GE ) 3 286 258.475 1.712
4 670 628.055 1.674 Pearson y2=3 d, ?
Goodness-of-fit test for binomial distribution > 1633 1085.211 -1.585
6 1343 1367.279 -0.657
Xr2 df P(> X*2) 7 1112 1265.630 -4.318
Likelihood Ratio 97 11 6.98e-16 8 829 854.247 -0.864
9 478 410.013 3.358
Specify parameters 10 181 132.836 4.179
11 45 26.082 3.704
12 7 2.347 3.037




g with simple histograms?

G ra ph | ng d iSC rete d iStri bUtio ns Discrete distributions are often graphed as histograms, with a theoretical fitted

distribution superimposed

The plot() method for goodfit objects provides some alternatives
Robust > plot(Sax.fit, type = "standing", xlab = "Number of males")
Rootograms Ord plots distribution
35 4 ?(
7{ s Problems:
g I .

* Must assess deviations vs. the
fitted curve

Fanilies in Sazony.

30 \ * Largest frequencies dominate
25 o 7[

sartFrequency)
sqrt(Frequency)

o 2 4 & 8 W w o 2+ &+ w0 w2 = I S = -

o 1 2 3 4 5 B 7 & 9 10 11 12

Number of males

Hanging rootograms

Deviation rootograms

> plot(Sax.fit, type = "deviation", xlab = "Number of males")

> plot(Sax.fit, type = "hanging", xlab = "Number of males") # default

o
o f( \ Tukey (1972, 1977): Deviation rootogram:
shift histogram bars to the fitted w0 o emphasize differences between
s SHIYE o ) observed and fitted frequencies
%-_D "% judge deviations vs. horizontal 5] o bars now show the residuals (gaps)
& |||ne. " - : directly
g o plot v/freq — smaller frequencies <
o Zre emphgsized o B There are more families with very low or
c! 10 . .
] very high number of sons than the bino-
L e | We can now see clearly where the bino- mial oredicts
CTEHEETE sl mial doesn't fit O i
R L Lo i = Q: Why is this so much better than the
0012 3 4 5 B 7 8B 9 101 12 lack-of-fit test?
Number of males 0 1 2 3 4 5 6 7 8 9 10 11 12 :

Number of males.

Q: What does this suggest about sex
distribution of families in Saxony?




Example: Federalist papers

Example: Federalist papers

> data (Federalist, package="vcd")
> Federalist
nMay
0 1 2 3 4 5 6
156 63 29 8 4 1 1

Fit the Poisson distribution

> Fed.fit0 <- goodfit (Federalist, type="poisson")
> summary (Fed.£fitO0)

Goodness-of-fit test for poisson
distribution

X*2 df P (> X"2)
Likelihood Ratio 25.2 5 0.000125

This fits very poorly!

Try the Negative binomial distribution

> Fed.fitl<- goodfit (Federalist, type="nbinomial")
> summary (Fed.fitl)

Goodness-of-fit test for nbinomial distribution

X2 df P (> X"2)
Likelihood Ratio 1.96 4 0.742

This now fits very well, indeed! Why?

@ Poisson assumes that the probability of a given word (“may”) is constant
across all blocks of text.

@ Negative binomial allows the rate parameter A to vary over blocks of text

: Rootograms

Hanging rootograms for the Federalist papers data, comparing Poisson and Negative
binomial

> plot (Fed.fit0, main = "Poisson")
> plot (Fed.fitl, main = "Negative binomial")
Poisson Negative binomial
12
10
10
= 8 =
2 g B
w w
E 4 E 4
g g
2 2
0 — 2 0 —
[} 1 2 3 4 5 ] 1] 1 2 3 4 5 -]

Number of Occurrences: Number of Occurrences:

Butterfly data

Both Poisson and Negative binomial are terrible fits! What to do??

But.fitl <- goodfit (Butterfly, type="poisson")
But.fit2 <- goodfit (Butterfly, type="nbinocmial®)
plot (But.fitl, main="Poisson")

pleot (But.fit2, main="Negative binomial™)

Poisson Negative binomial
6
5
= = 4
g g
¥ g :
0
£ - = L T
£ =
) ) J HU R
-5 (.
2
01234567 8 9101112131415161718192021222324 01234567 89101112131415161718192021222324
Number of Occurrences Number of Occurrences:




Ord plots: Diagnose form of distribution

How to tell which discrete distributions are likely candidates?

@ Ord (1967): for each of Poisson, Binomial, Negative binomial, and
Logarithmic_series distribution

@ plot of(kpx /pxk—1 against k is linear

@ signs of intercept and slope — determine the form, give rough estimates of

parameters

Slope Intercept Distribution Parameter
(b) (a) (parameter) estimate
0 + Poisson () A=a
— + Binomial (n, p) p=b/(b—1)
+ + Neg. binomial (n.p) p=1->b
- — Log. series () #=>b

! =—a

@ Fitline by WLS, using v/nx — 1 as weibhts
@ A heuristic method: doesn’t always work, but often a good start.

Ord plot: Examples

Butterfly data: The slope and intercept correctly diagnoses the log-series
distribution

> Ord_plot (Butterfly,
main = "Butterfly species collected in Malaya",
gp=gpar (cex=1), pch=16)

Butterfly species collected in Malaya

+ slope
30 4 Slope=1061 hd .
intercept = -0.709 * - intercept
257 type: log-series . — log-series

estimate: theta = 1.061 -
OLS line shown in black
. WLS line shown in red

Freguency ratio

Number of occurrences

Ord plots: Examples

Ord plots for the Saxony and Federalist data

> Ord_plot(Saxony, main = "Families in Saxony", gp=gpar(cex=1), pch=16)
> Ord_plot(Federalist, main = "Instances of 'may' in Federalist papers", gp=gpar(cex=1), pch=16)

Families in Saxony Instances of 'may' in Federalist papers
6 siope=0424 .
intercept = -0.023
5
type: nbinomial
4 - estimate: prob = 0.576
=] -]
£ [
& g
- =
E ]
g g
s I
a7
T T T T T T T T T T T T T T
o 2 4 6 8 10 12 o 1 2 3 4 5 6

Number of occurrences Number of occurrences

Robust distribution plots

@ Ord plots lack robustness

@ one discrepant freqency, ny affects points for both k and k + 1
o the use of WLS to fit the line is a small attempt to minimize this

@ Robust plots for Poisson distribution (Hoaglin and Tukey, 1985
o For Poisson, plot count metameter = ¢ (nx) =/log, (k! nx/N) vs. k
o Linear relation = Poisson, slope gives A
[}
(]

Cl for points, diagnostic (influence) plot
Implemented in distplot () in the ved package

For the Poisson distribution, this is
called a “poissonness plot”

slope =0228
intercept = -1.53

Distribution metameter

lambda - ML = 0656
exp(siope) = 1256




her distributions

Poissonness plot: Details

@ If the distribution of nk is Poisson(\) for some fixed A, then each observed
frequency, nk ~ my = Npx.
@ Then, setting nx = Npx = e M /k!, and taking logs of both sides gives

log(rg) =log N — A+ k log A — log k!

which can be rearranged to

& (ny) = log (k%) =|-A+ (log A) k

@ = if the distribution is Poisson, plotting ¢(nk) vs. k should give a line with

@ intercept = —A
@ slope = log A

@ Nonlinear relation — distribution is not Poisson

@ Hoaglin and Tukey (1985) give details on calculation of confidence
intervals and influence measures.

This idea extends readily to other discrete data distributions:

@ The binomial, Poisson, negative binomial, geometric and logseries
distributions are all members of a general power series family of discrete
distributions. See: DDAR, Table 3.10 for details.

@ This allows all of these to be represented in a plot of a suitable count
metameter, ¢(nk) vs. k. See: DDAR, Table 3.12 for details.

@ In these plots, a straight line confirms that the data follow the given

distribution.

@ Confidence intervals around the points indicate uncertainty for the count
metameter.

@ The slope and intercept of the line give estimates of the distribution
parameters.

distplot: Federalist

Try both Poisson & Negative binomial

distplot (Federalist, type="poisson", xlab="Occurrences of 'may'")
distplot (Federalist, type="nbincmial", xlab="Occurrences of 'may'")

Poissoness piot Negative binomiainess plot

slope = -D.874
intercept = ~0.634

pron: ML= 0.644
N -5 7 1-exp(ziope) = 0.623
-2 4 cope=0228

intercept = -1.53

Distrioution metameter
L]
ew L
Distribution metameter

lambda - ML = D.656
expisiope) = 1.256

T T T T T T T
0 1 2 3 4 s 6 [ 1 2 a a s 6

Oecurences of may Oecunrences of may

Again, the Poisson distribution is seen not to fit, while the Negative binomial
appears reasonable.

distplot: Saxony

For purported binomial distributions, the result is a “binomialness” plot

plot (goodfit (Saxony, type="binomial", par=list (size=12)))
distplot (Saxony, type="binomial", size=12, xlab="Number of males")

Binomiainess plot
7 K -6 o
siope = 0.058
= 55 -| ntercept = ~8.41
/ ; :
| pron £ ML~ 0518 i
\ H v logitisiope) = D.517 |
g 20 ] H
4 e H.
4 s
£ — %
¥ / 4
10 '
i toe
o B e =
T T T T T T T
o 1 s 45 6 7 8 8 10M 12 o 4 ] [ 10 1

Number of Desurrences Number of males

Both plots show heavier tails than the binomial distribution. distplot() is more
sensitive in diagnosing this




What have we learned?

hat have we learned?

Main points:
@ Discrete distributions involve basic counts of occurrences of some event
occurring with varying frequency.
@ The ideas and methods for one-way tables are building blocks for
analysis of more complex data.

@ Commonly used discrete distributions include the binomial, Poisson,
negative binomial, and logarithmic series distributions, all members of a
power series family.

@ Fitting observed data to a distribution — fitted frequencies, Npx, —
goodness-of-fit tests (Pearson X2, LR G?)

@ R:goodfit () provides print (), summary () and plot () methods.

@ Plotting with rootograms, Ord plots and generalized distribution plots can
reveal how orwhere a distribution does not fit.

Some explantions:

@ The Saxony data were part of a much larger data set from Geissler
(1889) (Geissler in vedExtra).

@ For the binomial, with families of size n = 12, our analyses give
p = Pr(male) = 0.52.

@ Other analyses (using more complex models) conclude that p varies among
families with the same size.

@ One explanation is that family decisions to have another child are influenced
by the boy—girl ratio in earlier children.

@ As suggested earlier, the lack of fit of the Poisson distribution for words in
the Federalist papers can be explained by context of the writing:
e Given “marker” words appear more or less often over time and subject than
predicted by constant rates () for a given author (Madison or Hamilton)
@ The negative binomial distribution fit much better.
@ The estimated parameters for these texts allowed assigning all 12 disputed
papers to Madison.

Looking ahead: PhdPubs data

Example 3.24 in DDAR gives data on the number of publications by PhD
candidates in the last 3 years of study

data ("PhdPubs", package = "vcdExtra")
table (PhdPubsSarticles)

##

## o 1 2 3 4 5 6 7
## 275 246 178 84 67 27 17 12

N =915, mean(articles) = 1.69

® There are predictors: gender, marital status, number of children, prestige
of dept., # pubs by student’s mentor

° We fit such models with glm (), but need to specify the form of the
distribution

* Ignoring the predictors for now, a baseline model could be
glm(articles ~ 1, data=PhdPubs, family = “poisson”)

Looking ahead: PhdPubs

plot (goodfit (PhdPubs$articles), xlab = "Number of Articles",
main = "Poisson")
plot (goodfit (PhdPubs$articles, type = "nbinomial"),
xlab = "Number of Articles", main = "Negative binomial")
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Poisson doesn’t fit: Need to account for excess Os (some never published)
Neg binomial: Sort of OK, but should take predictors into account




Looking ahead: Count data models

Count data regression models (DDAR Ch 11)

¢ Include predictors

e Allow different distributions for unexplained variation

e Provide tests of one model vs. another

* Special models handle the problems of excess zeros: zeroinlf(), hurdle()

# predictors: female, married, kidb, phdprestige, mentor
phd.peis <—- glm(articles " ., data=PhdPubs, family=poisson)
phd.nbin <- glm.nb(articles ” ., data=PhdPubs)

LRstats (phd.peis, phd.nbin)

## Likelihood summary table:

## AIC BIC LR Chisg Df Pr(>Chisq)

## phd.pois 3313 3342 1634 909 <2e-16 **x

## phd.nbin 3135 3169 1004 909 Qz015 =

s ==

## Signifs codes: 0 Twsx! 0,001 Yo' 0:01 "=' 0:05 "' 0.1 ¥ ' 1

Looking ahead: Effect plots

Effect plots show the predicted values for each term in a model, averaging

over all other factors.
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These are better visual summaries for a model than a table of coefficients.

* Discrete distributions are the building blocks for
categorical data analysis

= Typically consist of basic counts of occurrences, with
varying frequencies
®= Most common: binomial, Poisson, negative binomial
= QOthers: geometric, log-series
* Fit with goodfit(); plot with rootogram()
® Diagnostic plots: Ord_plot(), distplot()
* Models with predictors
= Binomial — logistic regression
® Poisson — poisson regression; logliner models
® These are special cases of generalized linear models




