

Discrete distributions

Michael Friendly

Psych 6136 http://friendly.github.io/psy6136

Discrete distributions: Basic ideas

- Quantitative data: often assumed Normal (μ , σ^2) unreasonable for CDA
- Binomial, Poisson, Negative binomial, ... are the building blocks for CDA
- Form the basis for modeling techniques
 - logistic regression, generalized linear models, Poisson regression
- Data:
 - outcome variable (k = 0, 1, 2, ...)
 - counts of occurrences (n_k): accidents, words in text, males in families of size k

Examples: binomial

Human sex ratio (Geissler, 1889): Is there evidence that Pr(male) = 0.5?

Example: Poisson

L. Von Bortkiewicz (1898) tallied the numbers of deaths by horse or mule kicks in 10 corps of the Prussian army over 20 years, \rightarrow 200 corps-years

- In how many corps-years were there 0, 1, 2, ... deaths?
- This is among the earliest examples of a Poisson distribution

```
> data(HorseKicks, package="vcd")
> HorseKicks
nDeaths
    0   1   2   3   4
109   65   22   3   1
```


The Poisson distribution arises as that of the probability of 0, 1, 2, ...

- Rare events, that
- Occur with constant probability

Examples: count data

Federalist papers: Disputed authorship

- 77 essays by Alexander Hamilton, John Jay, James Madison to persuade voters to ratify the US constitution, all signed with pseudonym "Publius"
 - Who wrote each?
 - 65 known, 12 disputed (H & M both claimed sole authorship)
- Mosteller & Wallace (1984): analysis of frequency distⁿs of key "marker" words: from, may, whilst, ...
- e.g., blocks of 200 words: occurrences (k) of "may" in how many blocks (n_k)

```
> data(Federalist, package = "vcd")
> Federalist
nMay
    0   1   2   3   4   5   6
156   63   29   8   4   1   1
```

Count data: models

For each word ("from", "may", "whilst", ...)

- Fit a probability model [Poisson(λ), NegBin(λ, p)]
- Estimate parameters (λ,p)
- \rightarrow Calculate log Odds (Hamilton vs. Madison)
- \rightarrow All 12 disputed papers most likely written by Madison

(pioneered the use of cross-validation to assess model fit)

Example: Type-token distributions

- Basic count, k: number of "types"; frequency, nk: number of instances observed
 - Frequencies of distinct words in a book or literary corpus
 - Number of subjects listing words as members of the semantic category "fruit"
 - Distinct species of animals caught in traps
- Differs from other distributions in that the frequency for k = 0 is unobserved
- Distribution is often extremely skewed (J-shaped)

Table: Number of butterfly species n_k for which k individuals were collected

Individuals (k)	1	2	3	4	5	6	7	8	9	10	11	12	
Species (n _k)	118	74	44	24	29	22	20	19	20	15	12	14	
Individuals (k)	13	14	15	16	17	18	19	20	21	22	23	24	Sι
Species (n_k)	6	12	6	9	9	6	10	10	11	5	3	3	5

Questions:

What is the total pop. of butterflies in Malaysia? How many wolves remain in Canada NWT? How many words did Shakespeare know?

Discrete distributions: Questions

- General questions
 - What process gave rise to the distribution?
 - What is the form: uniform, binomial, Poisson, negative binomial, ... ?
 - \rightarrow Fit & estimate parameters
 - Visualize goodness of fit
 - $\blacksquare \rightarrow$ Use in some larger context to tell a story
- Examples
 - Families in Saxony: might expect Bin(n=12, p); p=0.5?
 - *HorseKicks*: Poisson (λ); here, λ = mean = 0.61
 - *Federalist papers*: Perhaps Poisson(λ) or NegBin (λ , p)
 - Butterfly data: Perhaps a log-series distribution?

Fitting discrete distributions

Lack of fit:

- Lack of fit tells us something about the process giving rise to the data
- Poisson: assumes constant small probability of the basic event
- Binomial: assumes constant probability and independent trials
- Negative binomal: allows for *overdispersion*, relative to Poisson

Motivation:

- Models for more complex categorical data use these basic discrete distributions
- Binomial (with predictors) \rightarrow logistic regression
- Poisson (with predictors) \rightarrow poisson regression, loglinear models
- → many of these are special cases of generalized linear models

Common discrete distributions

Distribution	Counts <i>, k</i>	Values of <i>X</i>	Pr(<i>X=k</i>)	Mean, E(X)	Var, V(X)
Bernoulli(p)	Success in 1 trial	k={0, 1}	$p^k(1-p)^{1-k}$	p	p(1 - p)
Binomial(n,p)	<pre># successes in n trials</pre>	0, 1,, n	$\binom{n}{k}p^k(1-p)^{n-k}$	пр	np(1-p)
Geometric(p)	# of trials to 1 st success	0, 1, 2,	$p(1-p)^k$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
Neg. binomial(k,p)	# of trials to k th success	0, 1, 2,	$\binom{n+k-1}{k}p^n(1-p)^k$	$\frac{k(1-p)}{p}$	$\frac{k(1-p)}{p^2}$
Poisson(λ)	<pre># of events in interval</pre>	0, 1, 2,	$\frac{\lambda^k e^{-\lambda}}{k!}$	λ	λ
Log series(p)	# of types observed	0, 1, 2,	$\frac{p^k}{n\log(1-p)}$		

Discrete distributions: R

R functions: {d__, p__, q__, r__}

- d____ density function, Pr(X=k) = p(k)
- p____ cumulative **p**robability, F(k) = $\sum_{X \le k} p(k)$
- q____ quantile function, find k = F⁻¹ (p), smallest value such that $F(k) \ge p$
- r____ random number generator

Discrete	Density (pmf)	Cumulative	Quantile	Random #
distribution	function	(CDF)	CDF^{-1}	generator
Binomial	dbinom()	pbinom()	qbinom()	rbinom()
Poisson	dpois()	ppois()	qpois()	rpois()
Negative binomial	dnbinom()	pnbinom()	qnbinom()	rnbinom()
Geometric	dgeom()	pgeom()	qgeom()	rgeom()
Logarithmic series	dlogseries()	plogseries()	qlogseries()	rlogseries()

e.g., > dbinom(0:4, size=4, p=1/2) # number of H in 4 coin tosses [1] 0.0625 0.2500 0.3750 0.2500 0.0625 > dpois(0:4, lambda=3) # poisson, with $\lambda = 3$ [1] 0.0498 0.1494 0.2240 0.2240 0.1680

What is "binomial"

Bi-no-mi-al /bī'nōmēəl/

- Taxonomy: A two-part name, (genus, species) e.g., *Elephas maximus* for the Asian elephant
- Mathematics: An algebraic expression of a sum of two terms, (x + y) or expansion, (x + y)ⁿ

$$(x+y)^{0} = 1$$

$$(x+y)^{1} = 1x + 1y$$

$$(x+y)^{2} = 1x^{2} + 2x^{1}y^{1} + 1y^{2}$$

$$(x+y)^{3} = 1x^{3} + 3x^{2}y^{1} + 3x^{1}y^{2} + 1y^{3}$$

$$(x+y)^{4} = 1x^{4} + 4x^{3}y^{1} + 6x^{2}y^{2} + 4x^{1}y^{3} + 1y^{4}$$

$$(x+y)^{5} = 1x^{5} + 5x^{4}y^{1} + 10x^{3}y^{2} + 10x^{2}y^{3} + 5x^{1}y^{4} + 1y^{5}$$
(Pascal's triangle)

Binomial distribution

The binomial distribution, Bin(n, p), #ways to get k out of n
Pr(k events)
Pr(n-k non-events)
Bin(n, p) : $Pr\{X = k\} \equiv p(k) = \binom{n}{k} p^k (1-p)^{n-k} \quad k = 0, 1, ..., n$, (1)

arises as the distribution of the number of events of interest ("successes") which occur in *n* independent trials when the probability of the event on any one trial is the *constant* value p = Pr(event).

Examples

- Toss 10 fair coins— how many heads? Bin(10, ½)
- Toss 12 fair dice- how many 5s or 6s? Bin(12, 1/3)

Mean, variance, skewness:

Mean[X] = n p MLE from data: $\hat{p} = \frac{\bar{x}}{n} = \frac{\sum_{k} k \times nk / \sum_{k} n}{n}$ Var[X] = n p (1-p) = n p q Skew[X] = n p q (q-p)

Binomial distribution

Binomial distributions for k = 0, 1, 2, ..., 12 successes in n=12 trials, for 4 values of p

- Mean = n p
- Variance is maximum when $p = \frac{1}{2}$
- Skewed when $p \neq \frac{1}{2}$

Poisson distribution

The Poisson distribution, $Pois(\lambda)$,

$$\mathsf{Pois}(\lambda) : \mathsf{Pr}\{X = k\} \equiv p(k) = \frac{e^{-\lambda} \lambda^k}{k!} \qquad k = 0, 1, \dots$$
(2)

gives the probability of an event occurring k = 0, 1, 2, ... times over a *large number of independent* trials, when the probability, *p*, that the event occurs on any one trial (in time or space) is *small and constant*. Examples:

- Number of highway accidents at some given location
- Defects in a manufacturing process
- Number of goals scored in soccer games

Table: Total goals scored in 380 games in the Premier Football League, 1995/95 season

Total goals	0	1	2	3	4	5	6	7
Number of games	27	88	91	73	49	31	18	3

Poisson distribution

Poisson distributions for $\lambda = \frac{1}{2}$, 1, 2, 3, 6

Poisson distribution: Properties

Mean, variance, skewness:

Mean[X] = λ Var[X] = λ Skew[X] = $\lambda^{-1/2}$

MLE:
$$\hat{\lambda} = \bar{x}$$

Properties:

Sum of Pois $(\lambda_1, \lambda_2, \lambda_3, ...) = Pois(\sum \lambda_i)$ Approaches N (λ, λ) as n $\rightarrow \infty$

History: Who discovered the "Poisson" distribution

Stigler's Law: No discovery in science is ever named for its primary originator

- De Moivre (1718) Approximation to binomial as *n* gets largish
- Poisson (1837) Reserches sur la Probabilité des jugements en Matière criminelle... -- Derives e^{-λ} λ^k / k!
 - Stigler says main result anticipated by De Moivre
- S. Newcomb (1860) *Notes on a Theory of Probability*
 - First attempt at using this as a fit to data
 - Observations of stars: Pr(any small space, 1°) contains s stars, s = 0, 1, 2, ...
- Von Bortkiewicz (1898) *Law of Small Numbers*
 - Re-derives Poisson as limiting case of binomial
 - Several data sets (Horse kicks & others) "agreement between theory and observation leave nothing to be desired"
- Gosset (1907): Heamacytometer Counts
 - "Student"'s first paper first rigorous treatment of the Poisson for count data

See: Hanley & Bhatnagar (2022) The "Poisson" Distribution: History, Reenactments, Adaptations, *The American Statistician*, 76:4, 363-371, DOI: 10.1080/00031305.2022.2046159

Gosset: Heamacytometer Counts

Number of blood cells observed in a 20 x 20 grid on a slide

Source: http://www.medicine.mcgill.ca/epidemiology/hanley/Gosset/

Negative binomial distribution

The Negative binomial distribution, NBin(n, p),

NBin
$$(n, p)$$
: Pr $\{X = k\} \equiv p(k) = \binom{n+k-1}{k} p^n (1-p)^k \qquad k = 0, 1, ..., \infty$

arises when a series of independent Bernoulli trials is observed with constant probability p of some event, and we ask how many non-events (failures), k, it takes to observe n successful events.

Example: Toss a coin; what is probability of getting k = 0, 1, 2, ... tails before n = 3 heads?

This distribution is often used as an alternative to the Poisson when

- constant probability p or independence are violated
- variance is greater than the mean (overdispersion)

Properties:

$$\begin{split} \operatorname{Mean}(X) &= \mu = \frac{n(1-p)}{p} & \Longrightarrow \quad p = \frac{n}{n+\mu} \,, \\ \operatorname{Var}(X) &= \frac{n(1-p)}{p^2} \quad \Longrightarrow \quad \operatorname{Var}(X) = \mu + \frac{\mu^2}{n} \,. \end{split}$$

Negative binomial distributions for n = 2, 4, 6p = 0.2, 0.3, 0.4

Mean: Increases with *n* Decreases with *p*

DDAR Fig 3.13, p 85

Quiz: Name that distribution

1. Weldon tossed 12 dice 26,306 times & tallied the number of times a 5 or 6 occurred

> We	ldonD	Lce									
n56											
0	1	2	3	4	5	6	7	8	9	10+	Bin(n-12, n-1/3)
185	1149	3265	5475	6114	5194	3067	1331	403	105	18	Bin(n=12, p=1/3)

2. Pele practices penalty kicks for the upcoming 1958 FIFA World Cup. His average scoring has been p=0.4. What is the probability it will take him 1, 2, ... shots to score a goal?

```
Nbin(n=1, p=0.4) > dnbinom(1:5, size=1, p=0.4)
[1] 0.240 0.144 0.086 0.052 0.031
```

3. A Geiger counter records the number of scintillations of α particles from a radioactive source, with an average rate of 20/msec. What is the probability of observing 40 in a 1 msec. interval?

Pois(λ=20)

4. What is the distribution of the time between Geiger counter ticks?

Exponential distⁿ, $Pr(X=k) = \lambda e^{-\lambda k}$, mean = $1/\lambda$

Fitting discrete distributions

Fitting a discrete distribution involves the following steps:

- Estimate the parameter(s) from the data, e.g., p for binomial, λ for Poisson, etc. Typically done using maximum likelihood, but some distributions have simple expressions:
 - Binomial, $\hat{p} = \sum kn_k/(n \sum n_k) = \text{mean} / n$

• Poisson,
$$\hat{\lambda} = \sum k n_k / \sum n_k =$$
 mean

- ⁽²⁾ Calculate fitted probabilities, $\hat{p}(k)$ for the distribution, and then fitted frequencies, $N\hat{p}(k)$.
- 3 Assess Goodness of fit: Pearson X^2 or likelihood-ratio G^2

$$X^{2} = \sum_{k=1}^{K} \frac{(n_{k} - N\hat{p}_{k})^{2}}{N\hat{p}_{k}} \qquad G^{2} = \sum_{k=1}^{K} n_{k} \log(\frac{n_{k}}{N\hat{p}_{k}})$$

Both have asymptotic chisquare distributions, χ^2_{K-s} with *s* estimated parameters, under the hypothesis that the data follows the chosen distribution.

Fitting: Weldon's dice

Basic, naïve calculation of expected frequencies for a binomial distribution

```
> data(WeldonDice, package="vcd")
> Weldon.df <- as.data.frame(WeldonDice) # convert to data frame
> Prob <- dbinom(0:12, 12, 1/3)  # binomial probabilities</pre>
> Prob <- c(Prob[1:10], sum(Prob[11:13])) # sum values for 10+
> Exp= round(sum(WeldonDice)*Prob)  # expected frequencies
> Diff = Weldon.df[, "Freq"] - Exp # raw residuals
> Chisq = Diff^2 /Exp
                                    # contribution to chisquare
> data.frame(Weldon.df, Prob=round(Prob,5), Exp, Diff, Chisq)
  n56 Freq Prob Exp Diff Chisq
    0 185 0.00771 203 -18 1.596
1
2
    1 1149 0.04624 1216 -67 3.692
3
    2 3265 0.12717 3345 -80 1.913
                                           Doesn't calculate the MLE, \hat{p}
    3 5475 0.21195 5576 -101 1.829
4
                                           Manually sum k \ge 10
5
   4 6114 0.23845 6273 -159 4.030
    5 5194 0.19076 5018 176 6.173
6
7
    6 3067 0.11127 2927 140 6.696
8
    7 1331 0.04769 1255 76 4.602
9
    8 403 0.01490 392 11 0.309
    9 105 0.00331 87 18 3.724
10
11 10+ 18 0.00054 14 4 1.143
```

Fitting & graphing discrete distributions

In R, the vcd and vcdExtra packages provide functions to fit, visualize and diagnose discrete distributions

- Fitting: goodfit()
- Graphing: rootogram()
- **Ord plot**: **Ordplot()**

fits uniform, binomial, Poisson, neg bin, geometric, logseries, ... assess departure between observed, fitted counts diagnose form of a discrete distribution Robust plots: distplot() handle problems with discrepant counts

Example: Saxony families

Use goodfit() to fit the binomial; test with summary()

Example: Saxony families

The print() method for **goodfit** objects shows the details

> Sax.fit # print

Observed and fitted values for binomial distribution with parameters estimated by `ML'

count	observed	fitted	pearson	residual
0	3	0.933		2.140
1	24	12.089		3.426
2	104	71.803		3.800
3	286	258.475		1.712
4	670	628.055		1.674
5	1033	1085.211		-1.585
6	1343	1367.279		-0.657
7	1112	1265.630		-4.318
8	829	854.247		-0.864
9	478	410.013		3.358
10	181	132.836		4.179
11	45	26.082		3.704
12	7	2.347		3.037

Pay attention to the signs & magnitudes of residuals, d_k

Pearson $\chi^2 = \sum d_k^2$

What's wrong with simple histograms?

Discrete distributions are often graphed as histograms, with a theoretical fitted distribution superimposed The plot() method for goodfit objects provides some alternatives

> plot(Sax.fit, type = "standing", xlab = "Number of males")

Problems:

- Largest frequencies dominate
- Must assess deviations vs. the fitted curve

Hanging rootograms

> plot(Sax.fit, type = "hanging", xlab = "Number of males") # default

Tukey (1972, 1977):

- shift histogram bars to the fitted curve
- → judge deviations vs. horizontal line.
- plot √freq → smaller frequencies are emphasized.

We can now see clearly where the binomial doesn't fit

Deviation rootograms

> plot(Sax.fit, type = "deviation", xlab = "Number of males")

Deviation rootogram:

- emphasize differences between observed and fitted frequencies
- bars now show the residuals (gaps) directly

There are more families with very low or very high number of sons than the binomial predicts.

Q: Why is this so much better than the lack-of-fit test?

Q: What does this suggest about sex distribution of families in Saxony?

Example: Federalist papers

```
> data(Federalist, package="vcd")
> Federalist
nMay
    0   1   2   3   4   5   6
156   63   29   8   4   1   1
```

Fit the Poisson distribution

This fits very poorly!

Example: Federalist papers

Try the Negative binomial distribution

This now fits very well, indeed! Why?

- Poisson assumes that the probability of a given word ("may") is constant across all blocks of text.
- Negative binomial allows the rate parameter λ to vary over blocks of text

Federalist papers: Rootograms

Hanging rootograms for the Federalist papers data, comparing Poisson and Negative binomial

Poisson

Butterfly data

Both Poisson and Negative binomial are terrible fits! What to do??

```
But.fit1 <- goodfit(Butterfly, type="poisson")
But.fit2 <- goodfit(Butterfly, type="nbinomial")
plot(But.fit1, main="Poisson")
plot(But.fit2, main="Negative binomial")</pre>
```


Number of Occurrences

Number of Occurrences

Ord plots: Diagnose form of distribution

How to tell which discrete distributions are likely candidates?

- Ord (1967): for each of Poisson, Binomial, Negative binomial, and Logarithmic series distributions.
 - plot of kp_k/p_{k-1} against k is linear
 - signs of intercept and slope \rightarrow determine the form, give rough estimates of parameters

Slope	Intercept	Distribution	Parameter
(b)	(a)	(parameter)	estimate
0	+	Poisson (λ)	$\lambda = a$
_	+	Binomial (n, p)	p = b/(b-1)
+	+	Neg. binomial (n,p)	p=1-b
+	_	Log. series (θ)	$\theta = b$
			$\theta = -a$

- Fit line by WLS, using $\sqrt{n_k 1}$ as weights
- A heuristic method: doesn't always work, but often a good start.

Ord plot: Examples

Butterfly data: The slope and intercept correctly diagnoses the log-series distribution

Butterfly species collected in Malaya

+ slope

- intercept
- \rightarrow log-series

OLS line shown in black WLS line shown in red

Ord plots: Examples

Ord plots for the Saxony and Federalist data

> Ord_plot(Saxony, main = "Families in Saxony", gp=gpar(cex=1), pch=16)
> Ord_plot(Federalist, main = "Instances of 'may' in Federalist papers", gp=gpar(cex=1), pch=16)

Robust distribution plots

- Ord plots lack robustness
 - one discrepant frequency, n_k affects points for both k and k + 1
 - the use of WLS to fit the line is a small attempt to minimize this
- Robust plots for Poisson distribution (Hoaglin and Tukey, 1985)
 - For Poisson, plot **count metameter** = $\phi(n_k) = \log_e(k! n_k/N)$ vs. k
 - Linear relation \Rightarrow Poisson, slope gives $\hat{\lambda}$
 - CI for points, diagnostic (influence) plot
 - Implemented in distplot () in the vcd package

Poissonness plot: Details

- If the distribution of n_k is Poisson(λ) for some fixed λ, then each observed frequency, n_k ≈ m_k = Np_k.
- Then, setting $n_k = Np_k = e^{-\lambda} \lambda^k / k!$, and taking logs of both sides gives

$$\log(n_k) = \log N - \lambda + k \log \lambda - \log k!$$

which can be rearranged to

$$\phi(n_k) \equiv \log\left(\frac{k! \ n_k}{N}\right) = -\lambda + (\log \lambda) k$$

- \Rightarrow if the distribution is Poisson, plotting $\phi(n_k)$ vs. k should give a line with
 - intercept = $-\lambda$
 - slope = log λ
- Nonlinear relation → distribution is *not* Poisson
- Hoaglin and Tukey (1985) give details on calculation of confidence intervals and influence measures.

Other distributions

This idea extends readily to other discrete data distributions:

- The binomial, Poisson, negative binomial, geometric and logseries distributions are all members of a general power series family of discrete distributions. See: *DDAR*, Table 3.10 for details.
- This allows all of these to be represented in a plot of a suitable count metameter, φ(n_k) vs. k. See: DDAR, Table 3.12 for details.
- In these plots, a straight line confirms that the data follow the given distribution.
- Confidence intervals around the points indicate uncertainty for the count metameter.
- The slope and intercept of the line give estimates of the distribution parameters.

distplot: Federalist

Try both Poisson & Negative binomial

distplot(Federalist, type="poisson", xlab="Occurrences of 'may'")
distplot(Federalist, type="nbinomial", xlab="Occurrences of 'may'")

Again, the Poisson distribution is seen not to fit, while the Negative binomial appears reasonable.

distplot: Saxony

For purported binomial distributions, the result is a "binomialness" plot

plot(goodfit(Saxony, type="binomial", par=list(size=12)))
distplot(Saxony, type="binomial", size=12, xlab="Number of males")

Both plots show heavier tails than the binomial distribution. distplot() is more sensitive in diagnosing this

What have we learned?

Main points:

- Discrete distributions involve basic *counts* of occurrences of some event occurring with varying *frequency*.
- The ideas and methods for one-way tables are building blocks for analysis of more complex data.
- Commonly used discrete distributions include the binomial, Poisson, negative binomial, and logarithmic series distributions, all members of a *power series* family.
- Fitting observed data to a distribution → fitted frequencies, Np̂_k, → goodness-of-fit tests (Pearson X², LR G²)
- R: goodfit () provides print (), summary () and plot () methods.
- Plotting with rootograms, Ord plots and generalized distribution plots can reveal how orwhere a distribution does not fit.

What have we learned?

Some explantions:

- The Saxony data were part of a much larger data set from Geissler (1889) (Geissler in vcdExtra).
 - For the binomial, with families of size n = 12, our analyses give *p* = Pr(*male*) = 0.52.
 - Other analyses (using more complex models) conclude that p varies among families with the same size.
 - One explanation is that family decisions to have another child are influenced by the boy–girl ratio in earlier children.
- As suggested earlier, the lack of fit of the Poisson distribution for words in the Federalist papers can be explained by *context* of the writing:
 - Given "marker" words appear more or less often over time and subject than predicted by constant rates (λ) for a given author (Madison or Hamilton)
 - The negative binomial distribution fit much better.
 - The estimated parameters for these texts allowed assigning all 12 disputed papers to Madison.

Looking ahead: PhdPubs data

Example 3.24 in DDAR gives data on the number of publications by PhD candidates in the last 3 years of study

```
data("PhdPubs", package = "vcdExtra")
table(PhdPubs$articles)
##
##
##
0 1 2 3 4 5 6 7 8 9 10 11 12 16 19
## 275 246 178 84 67 27 17 12 1 2 1 1 2 1 1
```

N = 915, mean(articles) = 1.69

- There are predictors: gender, marital status, number of children, prestige of dept., # pubs by student's mentor
- We fit such models with **glm()**, but need to specify the form of the distribution
- Ignoring the predictors for now, a baseline model could be glm(articles ~ 1, data=PhdPubs, family = "poisson")

Looking ahead: PhdPubs

Poisson doesn't fit: Need to account for excess Os (some never published) Neg binomial: Sort of OK, but should take predictors into account

Looking ahead: Count data models

Count data regression models (DDAR Ch 11)

- Include predictors
- Allow different distributions for unexplained variation
- Provide tests of one model vs. another
- Special models handle the problems of excess zeros: zeroinlf(), hurdle()

```
# predictors: female, married, kid5, phdprestige, mentor
phd.pois <- glm(articles ~ ., data=PhdPubs, family=poisson)
phd.nbin <- glm.nb(articles ~ ., data=PhdPubs)
LRstats(phd.pois, phd.nbin)
## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## phd.pois 3313 3342 1634 909 <2e-16 ***
## phd.nbin 3135 3169 1004 909 0.015 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Looking ahead: Effect plots

Effect plots show the predicted values for each term in a model, averaging over all other factors.

These are better visual summaries for a model than a table of coefficients.

Summary

- Discrete distributions are the building blocks for categorical data analysis
 - Typically consist of basic counts of occurrences, with varying frequencies
 - Most common: binomial, Poisson, negative binomial
 - Others: geometric, log-series
- Fit with goodfit(); plot with rootogram()
 - Diagnostic plots: Ord_plot(), distplot()
- Models with predictors
 - Binomial → logistic regression
 - Poisson \rightarrow poisson regression; logliner models
 - These are special cases of generalized linear models