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Two-way tables: Overview

Two-way frequency tables are a convenient way to represent a dataset cross-classified
by two discrete variables, A & B

Special cases:

@ 2 x 2 tables: two binary factors (e.g., gender, admitted?, died?, ...)
@ 2 x 2 x k tables: a collection of 2 x 2s, stratified by another variable
@ r x ctables

@ r x c tables, with ordered factors

@ Are A and B statistically independent? (vs. associated)

@ If associated, what is the strength of association?

@ Measures: 2 x 2— odds ratio; r x c— Pearson \?, LR G?
@ How to understand the pattern or nature of association?



* The methods discussed this week are generally
simple non-parametric or randomization methods

®* There is no underlying formal model with parameters

* Hypothesis tests based on some test statistic:

" Pearson X?
= QOdds ratio, 6

= Cohen’s k
* Friendly’s ® or © Plenty of room for new stats!

= Arjun’s
* p-values, confidence intervals based on:

= Large sample theory: X?~x? as N — o= (smaller suffices)
" Permutation or simulation distributions



2 x 2 Example: Berkeley admissions

Table: Admissions to Berkeley graduate programs

Admitted Rejected | Total 9% Admit Odds(Admit)
Males 1198 1493 | 2691 4459 0.802 odds ratio
Females 557 1278 | 1835  30.35 0.437 (0)€1.83)
Total 1755 5771 | 4526 38.78 0.633

Males were nearly twice as likely to be admitted

* |sthere an association between gender & admission?
* |f so, is this evidence for gender bias?

°* How to measure strength of association?

°* How to test for significance?

°* How to visualize?



UCBAdmissions data

In R, the data is contained in UCBAdmissions, a2 x2x6 table for 6 departments.
We collapse over department

> data (UCBAdmissions)
> UCB <- margin. table (UCBAdmissions, 2:1)

> UCB
Admit
Gender Admitted Rejected
Male 1198 1493 OddSM =1198 / 1493 =0.802
Female 557 1278 OddSF = 557 /1278 =0.437

Association in 2 x 2 table can be measured by the odds ratio (8): odds of admission for
males vs. females

> oddsratio (UCB, 1log=FALSE)
odds ratios for Gender and Admit

[1] 1.84 ,

> confint (oddsratio (UCB, log=FALSE)) «<—— Note use of Confmt() for
2.5 % 97.5 % obtaining the CI(0)

Male:Female/Admitted:Rejected 1.62 2.0

O



L Q
" YE'S, ON THE SURFACE IT WOULD APPEAR TO BE SEX-BIRS
BUT LET US ASK THE FOLLOWING QUESTIONS,.."

Questions:

** How to analyze these results? What tests for odds ratio?
** How to visualize & interpret?

** Does it matter that we collapsed over Department?

Admit: Admitted

Gender: Male

Gender: Female

Admit: Rejected



Table notation

Row 1C0Iun;n Total Gender | Admit Reject Tot
Male | 1198 1493 | 2691

12 ﬁ” 219 ﬁ” Female | 557 1278 | 1835
21 T2 | 24 Total | 1755 2771 | 4526
Total | n.y  Neo | Nt

@ N = {n;} are the observed frequencies.

@ + subscript means sum over: row sums: n;, ; col sums: N4j; total sample
size:n.. =n

@ Similar notation for:
e Cell joint population probabilities: 7;; also use my = w14+ and m2 = w2+
e Population marginal probabilities: m;, (rows), m; (cols)
e Sample proportions: use p; = nj;/n, etc.



r x ¢ Example: Hair color, eye color

Data from 592 students in a statistics class: write down your hair and eye color

/ / / K/ K/
000 000 000 000 000

Table: Hair-color eye-color data

Eye Hair Color

Color | Black Brown Red Blond Total
Brown 68 119 26 7 | 220
Blue 20 84 17 94 | 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64
Total 108 286 71 127 | 592

Is there an association between hair color and eye color?
How to measure strength of association?
How to test for significance?

How to visualize?
How to understand the pattern (nature) of association?



HairEyeColor data

In R, the datasetis HairEyeColor,a4 x4 x 2 table: Hair x Eye x Sex.
For now, collapse over sex.

> data (HairEyeColor)
> HEC <- margin.table(HairEyeColor, 2:1)

> chisqg.test (HEC) Association can be tested by
the standard Pearson x? test.
Details later

Pearson's Chi-squared test

data: HEC
X-squared = 138, df = 9, p-value <Z2e-16

> MASS::loglm(~Hair + Eye, data=HEC) Cn'asaloghnearrnodelfor
14

independence

X~2 df P (> X"2) Formula:*A+B = A 1 B
Likelihood Ratio 146 9 0
Pearson 138 9 0

Statistics:



Measures of association

ved: tassocstats () collects tests and measures in a convenient summary

> assocstats (HEC)
X"2 df P(> X*2)

Likelihood Ratio 146.44 9 0
Pearson 138.29 9 0
Phi-Coefficient : NA

Contingency Coeff.: 0.435

Cramer's V : 0.279

For 3+ way tables, it gives the results for the strata defined by all last dimensions

> assocstats (HairEyeColor)

S Sex:Male"” S Sex:Female”

X"2 df P (> X"2) X"2 df P(> X"2)
Likelihood Ratio 44.445 9 1.168e-06 Likelihood Ratio 112.23 9 0
Pearson 41.280 9 4.447e-06 Pearson 106.66 9 0
Phi-Coefficient : NA Phi-Coefficient : NA
Contingency Coeff.: 0.359 Contingency Coeff.: 0.504

Cramer's V : 0.222 Cramer's V : 0.337



Measures of association

o
2.>< 2 tablgs 0= odds(B, | 4) _ m,/n,
Odds ratio odds(B,|4,) n, /n,,
u Phl CoefﬂC'ent nllnzz_nlznzl / 2
* Analog of correlation ¢ = =EN
n Iy ngn,,

* 92 = % of variance

* rxctables

" Cramer’s V — generalization of phi
Cramer V :\/ 4

nmin(r —1,c—1)

2

= Pearson contingency coef

Pearson C =

11



Example: Bartlett data

2 x 2 x 2 Data on plum root cuttings: Length (short|long), planted (Now|Spring),
Survived? (Alive| Dead)

— Does survival depend on time of planting?

— Is there a 3-way association, i.e., does (Alive, Time) differ by Length? (0, =0, )

> assocstats (Bartlett)

S Length:Long’ S Length:Short"

X"2 df P(> X"2) X*"2 df P (> X*2)
Likelihood Ratio 43.87 1 3.50e-11 Likelihood Ratio 61.31 1 4.88e-15
Pearson 43.20 1 4.94e-11 Pearson 58.74 1 1.80e-14
Phi-Coefficient 0.3 Phi-Coefficient : 0.35
Contingency Coeff.: 0.287 Contingency Coeff.: 0.33
Cramer's V : 0.3 Cramer's V : 0.35

Length: Long Length: Short
Alive: Alive Alive: Alive

oddsratio (Bartlett, log=FALSE)
odds ratios for Alive and Time
by Length

Time: Mo

Time: Spring
Tirme: MNow

Time: Spring

Long Short
3.45 5.42

12

Alive: Dead Alive: Dead



Simple plots for r x c tables

barplot (HEC, beside=TRUE, .. ) tile (HEC, shade=TRUE)

Hair
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But: harder to compare across hair-color Neither of these extend to more

groups than within them than 2 variables
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Ordered tables

r x c table with ordered categories: Mental health and Parents’ SES categories

(1="High" and 6="Low")

J/
000

*e

<

/ /
000 000

Table: Mental impairment and parents’ SES

Mental impairment
SES | Well Mild Moderate Impaired
1 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78
6 21 71 54 71

Mental impairment is the response, SES is a predictor

How to measure strength of association?

How to understand the pattern of association?

How to take ordinal nature of variables into account?

14



Mental data: Association

The data is contained in vedExtra: :Mental, a frequency data frame, with ordered
factors

> data (Mental, package="vcdExtra")
> str (Mental)

'data.frame': 24 obs. of 3 wvariables:
S ses : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<, .+ 111122223
S mental: Ord.factor w/ 4 levels "Well"<"Mild"<..: 1 2 3 4 1 2 3 4 1 2

$ Freg : int 64 94 58 46 57 94 54 40 57 105

Convert to a contingency table using xtabs(), and test association

> mental.tab <- xtabs(Freqg ~ ses + mental, data=Mental)
> chisqg.test (mental.tab)

Pearson's Chi-squared test

data: mental.tab
X-squared = 46, df = 15, p-value = 5e-05

This %2 test doesn’t take ordinality into account. It just tests for general association.

15



Mental data: Ordinal tests

For ordinal factors, more powerful (focused) tests are available with Cochran-Mantel-
Haenszel tests in vedExtra: :CMHtest ()

> CMHtest (mental.tab)
Cochran-Mantel-Haenszel Statistics for ses by mental

AltHypothesis Chisqg Df Prob
cor Nonzero correlation 37.2 1 1.09e-09 both ordinal
rmeans Row mean scores differ 40.3 5 1.30e-07 cols ordinal
cmeans Col mean scores differ 40.7 3 7.70e-09 rows ordinal
general General association 46.0 15 5.40e-05 neither

X2 / df shows why ordered tests are more powerful

> xx <- CMHtest (mental.tab)
> xxStable[,"Chisg"] / xxStable[,"Df"]
COor rmeans cmeans general
37.16 8.06 13.56 3.06

Think: more df — more diffuse; less focused; less powerful against H,
16



Independence

Two categorical variables, A and B are statistically independent when:
@ The conditional distributions of B given A are the same for all levels of A

T = T = = T

@ Joint cell probabilities are the product of the marginal probabilities

For 2 x 2 tables, this gives rise to tests and measures based on:
Difference in row/col marginal probabilities: Test H, : i, = m2

Odds ratio, 8 = (ny, / ny,) / (ny, / nyy). TestH,:0=1
Standard x2 test, with largish n

Small samples: Fisher’s exact test, or simulation / permutation tests

e

*

J/ J/ J
000 000 0’0

17



Independence: Example

A contrived example, where | generate cell frequencies as the product of row and
column marginal totals: n; = n,, x n,;

> educ <- c¢ (50, 100, 50) # marginal frequencies
> names (educ) <- c("Low", "Med", "High")

> party <- c (20, 50, 30) # marginal frequencies
> names (party) <- c("NDP", "Liberal", "Cons")

> table <- outer (educ, party) / sum(party) # cell = row * col / n
> names (dimnames (table)) <- c("Education", "Party")
> table
Party

Education NDP Liberal Cons

Low 10 25 15

Med 20 50 30

High 10 25 15

C

Outer product:

outer(r,c)| = | X

18



Independence: Example

» The row proportions of party are the same for each educ group
» The col proportions of educ are the same for each party

> prop.table(table, 1) > prop.table (table, 2)

NDP Liberal Cons NDP ILiberal Cons
Low |0.2 0.5 0.3 Low |0.25 0.25 0.25
Med |0.2 0.5 0.3 Med 0.50 0.50 0.50
High|0.2 0.5 0.3 High 0.25 0.25 0.25

So, the X2 is exactly zero, and measures of strength are zero

> vcd: :assocstats (table)
X"2 df P(> X*2)

Likelihood Ratio 0 4 1
Pearson 0 4 1
Phi-Coefficient : NA

Contingency Coeff.: 0

Cramer's V )
19



Independence?: Arthritis data

In the Arthritis data, people are classified by sex, Treatment and
Improved. Are Treatment and Improved independent?

@ — row proportions are the same for Treated and Placebo
@ — cell frequencies ~ row total x column total

> data (Arthritis, package = "vcd")

> arth.tab <- xtabs(~ Treatment + Improved, data = Arthritis)
> round (prop.table(arth.tab, 1), 3 )
Improved

Treatment None Some Marked
Placebo 0.163 0.163
Treated 0.3 0.171 @

But, more people given the Placebo show no improvement; more people Treated
show marked improvement

20



Independence?: Arthritis data

If Treatment and Improved were independent, frequencies ~ row x col margins

> row.totals <- margin.table(arth.tab, 1)
> col.totals <- margin.table (arth.tab, 2)
> round (outer (row.totals, col.totals)/ sum(arth.tab), 0)

Improved
Treatment None Some Marked
Placebo 22 7 14
Treated 20 7 14

These are the expected frequencies, under independence; but for the data:

2
> chisqg.test (arth.tab) Pearson x
(O, —E,)
Pearson's Chi-squared test }(fr_l)x(c_l)zz Y y _Zd;
i,j ij

data: arth.tab
X-squared = 13.1, df = 2, p-value = 0.0015

21



Sampling models: Poisson, Binomial, Multinomial

Subtle distinctions arise concerning whether the row and/or
margins are fixed by design or random

* Poisson: each n; is regarded as an independent Poisson variate; nothing
fixed

° Binomial: each row (or col) is regarded as an independent binomial dist",
with one fixed margin (group total), other random (response)

°* Multinomial: only the total sample size, n,,, is fixed; frequencies n; are
classified by A and B

°* Makes a difference in how hypothesis tests are justified & explained

* Happily, for most inferential methods, ~ same results are obtained under
the three sampling models

Q: what is an appropriate sampling model for the UCB admissions data? For
hair-eye color? For the mental impairment data?

22



Odds and log(Odds)

For a binary response where m = Pr(success), the odds of a success is
odds = —-
1—m
@ Odds vary multiplicatively around 1 (“even odds”, m = %}

@ Taking logs, the log(odds), or logit varies symmetrically around 0,

Iogit(wjzlog(odds)zlog( il )

1—7

> p <- c¢( 0.05, .1, .25, .50, .75, .9, .95)

> odds <- p / (1-p)
> logodds <- log(odds)
> (odds.df <- data.frame (p, odds, logodds))
P odds logodds
1 0.05 0.0526 -2.94
2 0.10 0.1111 -2.20
3 0.25 0.3333 -1.10
4 0.50 1.0000 0.00
5 0.75 3.0000 1.10
6 0.90 9.0000 2.20
7 0.95 19.0000 2.94

23



Log odds

plot (logodds, p, type='b', xlab="log odds", ylab="Probability", ..)
abline (Ilm(p ~ logodds, subset=(p>=.2 & p<=.8)), col="blue")

o Symmetric around t=%:
logit(m) = - logit(1- m)
W@
< Fairly linear in the middle,
- 0.2 < <08
= o |
—_ L]
E The logit transformation of
o < | probability is the basis for logistic
o regression
L]
S 7 (An alternative, the cumulative
normal, ®-1(m), gives rise to probit
S regression)

log odds

24



For two groups, with probabilities of success 4, 7o, the odds ratio, 0, is the

ratio of the odds for the two groups:
Cross-product

: odds; T f('l _ W1} oF ffﬂm T11 790 / ratio
odds ratio =0 = — ; — f —
odds; w2/ (1 - ?TE} To1 /Moo T12T01
@ /=1 = m =™ = independence, no association

@ Same value when we interchange rows and columns (transpose)
@ Sample value, ¢ obtained using nj.

More convenient to characterize association by log odds ratio, ' = log(f)
which is symmetric about O:

/(1 —m)

m2/(1 — m2)

log odds ratio = ' = log(#) = log [ ] = logit(my) — logit(7z) .

25



Odds ratio: Inference & hypothesis tests

Symmetry of the distribution of the log odds ratio v» = log(#) makes it more

convenient to carry out tests independence as tests of Hy : v =log(#) =0
rather than Hy : 6 = 1
@ z =log(f)/SE(log(f)) ~ N(0,1) SE(log(0)) = Zijni]‘.l

ved: :oddsratio () has option, log=, TRUE by default
The summary () method calculates z tests

> summary (oddsratio (UCB) )
z test of coefficients:

Estimate Std. Error z value Pr(>|z])
Male:Female/Admitted:Rejected 0.6104 0.0639 9.55 <2e-16 **x*

Signif. codes: 0 ‘*x**xr (0,001 ‘**’ 0.01 ‘*" 0.05 '.” 0.1 ¥ " 1

26



Odds ratio: Confidence intervals

Results should be reported with confidence intervals, either for the odds ratio, 86, or
for v = log(0)

> confint (oddsratio (UCB, log = FALSE))

2.5 % 97.5 %
Male:Female/Admitted:Rejected 1.624 2.087
> confint (oddsratio (UCB))

2.5 % 97.5 %
Male:Female/Admitted:Rejected 0.4851 0.7356

Summary in words:

For the Berkeley admissions data:

* The Pearson ¥? test of association between Gender and Admission was highly
significant, x,?> = 91.6, p <.0001

e This corresponded to an odds ratio of admission for Males vs. Females of 6 = 1.84
(Cl: 1.62, 2.09), meaning that overall, males were 84% more likely to be admitted

* On the scale of log odds, { = log(0), the estimate was { = 0.610 (Cl: 0.485, 0.736),
meaning a significant positive association between Gender(Male) and admission.

27



Small sample size

¢ Pearson X2 and LR G? tests are valid when most expected frequencies > 5
** Otherwise, use Fisher’s exact test or simulated p-values

Example: Cholesterol diet and heart disease

> fat <- matrix(c (6, 2,
4, 11), nrow=2, ncol=2)
> dimnames (fat) <- list(cholesterol=c("low", "high"),
disease=c ("no", "yes"))

> fat
disease
cholesterol no yes
low 6 4
high 2 11

28



Small sample size

The standard Pearson ¥? test is not significant
For 2 x 2 tables with small n, a correction |O—E | - % is standardly applied (Yates)

> chisqg.test (fat)
Pearson's Chi-squared test with Yates' continuity correction

data: fat
X-squared = 3.19, df =1, p-value = 0.074

Yet, we get a warning. Maybe Friendly’s ® ?

Warning message:
In chisq.test(fat) : Chi-squared approximation may be incorrect

29



Small sample size: Simulation

A Monte-Carlo method uses simulation to calculate a p-value, Friendly’s ©
> chisqg.test (fat, simulate=TRUE)

Pearson's Chi-squared test with simulated p-value (based
on 2000 replicates)

data: fat
X-squared = 4.96, df = NA, p-value = 0.04

This method repeatedly samples cell frequencies from tables with the same
margins, and calculates a x? for each.

* The p-value compares the observed X? to its’ distribution in the simulations.

* The 2 test is now significant; well, barely, but ©

* The main point is that the test no longer depends on large sample theory © ©
* Simulation is a general principle for testing hypotheses © © ©

30



Small sample size: Fisher exact test

Fisher’s exact test: calculates probability for all 2 x 2 tables with odds ratio as or more
extreme than that in the data, keeping the margins fixed.

> fisher.test(fat)
Fisher's Exact Test for Count Data

data: fat
p-value = 0.039
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.86774 105.56694
sample estimates:
odds ratio
7.4019

The p-value is similar to that obtained using simulation.

Fisher’s test is available for larger r x c tables, but the method gets computationally
intensive as r * c increases

31



disease: no

Visualizing association

cholesterol: low

11

cholesterol: high

Eye

Hazel

Brown

Blue

Green

Brown

disease: yes

Hair

LOR{Admit / Gender)
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Visualizing: fourfold plots

fourfold (UCB, std="ind.max") # maximum frequency

Gender: Male

Friendly (1994a):

@ Fourfold display: area ~
frequency, nj

@ Color: blue (+), red(-)
@ This version: Unstandardized

@ Odds ratio: ratio of products of
blue / red cells

Admit: Admitted
Admit: Rejected

Gender: Female
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Visualizing: fourfold plots

fourfold (UCB) #standardize

Admit: Admitted

Gender: Male

Gender: Female

both margins

Admit: Rejected

Better version:

@ Standardize to equal row, col
margins

@ Preserves the odds ratio

@ Confidence bands: significance of
odds ratio

@ Ifdon'toverlap — 0 # 1

34



Cholesterol data

fourfold(fat)

cholesterol: low

disease: no
disease: yes

cholesterol: high
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Stratified tables: 2 x 2 x k

The UC Berkeley data was obtained from 6 graduate departments

> ftable (addmargins (UCBAdmissions, 3))

Dept A B C D E F'  Sum

Admit Gender
Admitted Male 512 353 120 138 53 22 1198
Female 89 17 202 131 94 24 557
Rejected Male 313 207 205 279 138 351 1493
Female 19 8 391 244 299 317 1278

@ Does the overall association between gender and admission apply in
each department?

@ Do men and women apply equally to all departments?

@ Do departments differ in their rates of admission?

Stratified analysis tests association between a main factor and a response
within the levels of control variable(s)

36



Odds ratios by department

> summary (oddsratio (UCBAdmissions))
z test of coefficients:

Estimate Std. Error z value Pr(>|z])

A -1.052 0.263 -4.00 ©6.2e-05 ***
B -0.220 0.438 -0.50 0.62
C 0.125 0.144 0.87 0.39
D -0.082 0.150 -0.55 0.59
E 0.200 0.200 1.00 0.32
I -0.189 0.305 -0.62 0.54

(@)

Signif. codes: ‘Vexk*Xr0.001 M<*" 0.01 MY 0.05 M.’ 0.1 Y " 1

+** Odds ratio only significant, log(0) = 0, for department A

*** For dept. A, men are only exp(-1.05) = .35 times as likely to be admitted as women

** The overall analysis (ignoring department) is misleading: falsely assumes no
association of {admission, department} and {gender, department}

37



Stratified fourfold plots

Fourfold plots by department (intense shading where significant)

> fourfold (UCBAdmissions)

Dept: A
Admit: Admitted

Gender: Male

Gender: Male

512

313 19

Admit: Rejected

Dept: B
Admit: Admitted

Admit: Rejected

Gender: Female

Gender: Female

Dept: C
Admit: Admitted

Gender: Male

Gender: Male

120

202

Admit: Rejected

Dept: D
Admit: Admitted

2749

244

Admit: Rejected

Gender: Female

Gender: Female

Dept E
Admit: Admitted

53

Gender: Male

128 1 299

Admit: Rejected

Dept: F
Admit: Admitted

Gender Male

Admit: Rejected

Gender: Female

Gender: Female
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Log odds ratio plot

Plot the log odds ratios with confidence limits

> plot (oddsratio (UCBAdmissions), cex=2, xlab="Department")

log odds ratios for Admit and Gender by Dept

LOR{AdmIt/ Gender)

| | | | | |
A B C D E F

Department
39



Stratified tables: Homogeneity of association

Questions:

* Arethe k odds ratios all equal, 6,=6,=...=96,?
" Woolf’s test: vcd: :woolftest ()

* Thisis the same as the hypothesis of no three-way association

* |f homogeneous, is the common odds ratio different from 1°?
" Mantel-Haenszel test: stats: :mantelhaen.test ()

> woolf test (UCBAdmissions)
Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.)

data: UCBAdmissions
X-squared = 17.9, df = 5, p-value = 0.0031

The odds ratios differ across departments, so no sense testing their common value

40



What happened at UC Berkeley?

Why do results collapsed over department disagree with the results by department?

Simpson’s paradox
@ Aggregate data are misleading because they falsely assume men and
women apply equally in each field.

@ But:

e Large differences in admission rates across departments.
o Men and women apply to these departments differentially.
@ Women applied in large numbers to departments with low admission rates.

@ Other graphical methods can show these effects.

@ (This ignores possibility of structural bias against women: differential
funding of fields to which women are more likely to apply.)

41



Mosaic matrices

Admit

Female

Male

Admit Reject

Feject

Admit

Gender

Female

Male

Scatterplot matrix
analog for categorical
data

All pairwise views
Small multiples — comparison

The answer: Simpson’s Paradox

* Depts A, B were easiest

* Applicants to A, B mostly male

* ..Males more likely to be
admitted overall
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r x ¢ tables: Overall analysis

@ Overall tests of association: assocstats () : Pearson chi-square and
LR G?

@ Strength of association: ¢ coefficient, contingency coefficient (C),
Cramers V(0 < V <1)

2 2 o
B2 _ A . C=. \ . V = . AL
n n+ x?2 min(r—1,c—1)

@ Fora?2 x 2table, V = o.
@ (If the data table was collapsed from a 3+ way table, the two-way
analysis may be misleading)

> assocstats (HEC)
X"2 df P(> X*2)

Likelihood Ratio 146.44 9 0
Pearson 138.29 9 0
Phi-Coefficient : NA

Contingency Coeff.: 0.435

Cramer's V : 0.279
43



r x ¢ tables: Overall analysis

@ The Pearson X? and LR G? statistics have the following forms:

njj — mj;)? n
XEZE:(”,..” §:‘ | (”)
ms; IM o9 nm

if i

@ Expected (fitted) frequencies under independence: mj = njyn.j/n. .
@ Each of these is a sum-of-squares of corresponding residuals
@ Degrees of freedom: df = (r — 1)(c — 1) — # independent residuals

Residuals, fitted values, test statistics returned by MASS: : loglm ()

> (mod <- MASS::loglm(~ Hair + Eye, data=HEC, fitted = TRUE))
Call:
MASS::loglm(formula = ~Hair + Eye, data = HEC, fitted = TRUE)

Statistics:

X"2 df P(> X"2)
Likelihood Ratio 146.44 9 0
Pearson 138.29 9 0
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Residuals and fitted values are obtained with “extractor” methods

> res.P <- residuals (mod,
type="pearson")

> res.LR <- residuals (mod,
type="deviance")

> res.P
Hair
Eye Black Brown
Brown 4.398 1.233
Blue -3.069 -1.949
Hazel -0.477 1.353
Green -1.954 -0.345

-0.
-1.
0.
2

Red
075
730
852

.283

Blond
-5.851
7.050
-2.228
0.613

Direct calculation of Pearson & LR x?2

> sum(res.P”"2) # Pearson chisqg

[1] 138.29

> sum(res.LR"2) # LR chisqg

[1] 146.44

> fitted (mod)
Hair
Eye Black Brown Red Blond
Brown 40.1 106.3 26.39 47.2
Blue 39.2 103.9 25.79 46.1
Hazel 17.0 44.9 11.15 20.0
Green 11.7 30.9 7.68 13.7

loglm() returns an object (mod) of class
A\ loglmll

Method functions, *.loglm(), include:

residuals(), fitted(), anova(), summary()
& various plot methods
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Plots for two-way tables

Barplots are easy, but not often very useful. Why?

col <= ¢ ("brown", "darkblue", "tan", barplot (HEC, col = col,
"darkgreen") beside=TRUE, legend=TRUE, ..)
barplot (HEC, col = col, legend=TRUE)

Brown
o B Green Blue
&7 O Hazel o
o - S Hazel
Blue Green
E Brown

200
|

1580
I
80
|

100
|
40

50
I

20
I

Red

Blond Black Brown Red Blond

Black Brown
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Spine plots

Spine plots show the marginal proportions of one variable, and the conditional
proportions of the other.
Independence: cells align

col <- c("darkgrey", "brown", "red", col <= c¢("brown", "blue", "tan",
"yellow") "darkgreen")
spineplot (HEC, col=rev(col)) spineplot (t (HEC), col=rev(col))
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Tile plots

Tile plots show a matrix of rectangular tiles, area ~ frequency.
They can be scaled to facilitate different types of comparisons: cells, rows, cols
They can be shaded to show the sign & magnitude of residuals from independence

tile(HEC, shade=TRUE, legend=FALSE) tile(HEC, tile_type=“width”, ...)
Hair Hair
Black Brown Red Blond Black Brown Red Blond
s S
: - ¢ I
5 o - H I
& & -
T[] ] k: ] | }
P m TR
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Sieve diagrams

Visual metaphor: count ~ area

@ When row/col variables are independent, nj; ~ fh,;,- ~ NjyNyj
@ = each cell can be represented as a rectangle, with area = height x
width ~ frequency, n; (under independence)

Green '”T BN L O TT ST 64 This display shows expected
Hazel 93 frequenCIes, mij, as # boxes within
e each cell
5 Blue % P Under independence, boxes all of the
=} LI, . .
o same size & equal density
4
w
Real sieve diagrams use # boxes =
ooiende observed frequencies, n..
Brown AT 220 ')

Hair Color
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Sieve diagrams

@ Height, width ~ marginal frequencies, nj;, n;

@ — Area ~ expected frequency, Mmj ~ nj.n.;

@ Shading ~ observed frequency, nj, color: sign(nj — mj).

@ — Independence: Shown when density of shading is uniform.

Green ——-i-i—i—— ";‘_L_i_“f_jﬁil_i’_i"i_f_i'— e 1]
! I j'!‘L The rectangles have area ™
11 L1 | __I _I_ I__
Hazel || 45| 54 i3 IR expected frequency
EEE.
|| S AN N A AN B R )
I R R R # boxes = observed frequency
. I o O O O I e
Soue [z T
o B o o e R n; > m; —> greater density
$ HEN e oo .
w R | i e A e i R n. < m. — less denSIty
S S Y A | . ) )
ot | N S
b — ] |
BN .
Brown [ 68 1hg e
- — |
] I —
HEE I
(1 I
Black Brown Red Blond
Hair Color
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Sieve diagrams: Subtle patterns

Vision classification of 7477 women in Royal Ordnance factories: visual acuity grade in

left & right eyes

Unaided distant vision data

High

8]

Right Eyve Grade

)

Low

High 2 3 Low
Left Eye Grade

** The obvious association is apparent
in the diagonal cells

** A more subtle pattern appears in
the off-diagonal cells

¢ Analysis methods for square tables
allow testing hypotheses beyond
independence
= Symmetry
= Quasi-symmetry, ...
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Ordinal factors

The standard Pearson 2 and LR G2 give tests of general
association, with (r-1) x (c-1) df

More powerful CMH tests:

°* When either row or col levels are ordered, more specific CMH (Cochran—
Mantel-Haentszel) tests which take order into account have greater
power to detect ordered relations.

= Use fewer df, so ordinal tests are more focused on detecting a particular “signal”

® This is similar to testing for linear trends in ANOVA

* Essentially, these assign scores to the categories & test for differences in
row / col means, or non-zero correlation
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CMH tests for ordinal factors

Three types of CMH tests:

Non-zero correlation
@ Use when both row and column variables are ordinal.
@ CMH y? = (N — 1)r?, assigning scores (1, 2, 3, ...)
@ most powerful for linear association

Row/Col Mean Scores Differ

@ Use when only one variable is ordinal
@ Analogous to the Kruskal-Wallis non-parametric test (ANOVA on rank
scores)

General Association

@ Use when both row and column variables are nominal.
@ Similar to overall Pearson y? and Likelihood Ratio G2.



Sample CMH profiles

Only general association:

| bl | b2 | b3 b4 b5 | Total
———————— e e et
al | 0 | 15 | 25 15 0 | 55
az | 5 | 20 | 5 20 5 | 55
a3 | 20 | 5 | 5 5 20 | 55
———————— e e et
Total 25 40 35 40 25 165
Output:

Statistic Alternative Hypothesis DF Value

1 Nonzero Correlation 1 0.000
2 Row Mean Scores Differ Z 0.000
3 General Association 8 891.797

Cochran—-Mantel-Haenszel Statistics (Based on Table Scores)
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Sample CMH profiles

Linear Association:
| bl | b2 | b3 b4 b5 | Total Mean
———————— -ttt
al | 2 | 5 | ] 3 g8 | 31 3.48
a2 | 2 | g | ] 3 5 | 31 3.19
a3l | 5 | g | ] 3 2 | 31 2.81
a4 | 8 | 8 | ] 5 2 | 31 2.52
———————— +--—r 4+
Total 17 29 32 29 17 124
Qutput:

Cochran—-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 10.639 0.001
2 Row Mean Scores Differ 3 10.67 0.014
3 General Association 12 13.400 0.341
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Visualizing the association

The association here is U-shaped
Only general association detects this

General Association

al
I I I
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a?
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ad

Higher levels of A are associated
with lower levels of B

Linear Association

|
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I R | ettt
T
| |
1 = 3 | 5
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Example: Mental health data

For the mental health data, both ses and mental are ordinal
All tests are significant, but the nonzero correlation test, with 1 df has the smallest p-
value & largest x2 / df

> CMHtest (mental.tab)
Cochran-Mantel-Haenszel Statistics for ses by mental

AltHypothesis Chisqg Df Prob
cor Nonzero correlation 37.2 1 1.09e-09 both ordina
rmeans Row mean scores differ 40.3 5 1.30e-07 cols ordinal
cmeans Col mean scores differ 40.7 3 7.70e-09 rows ordinal
general General association 46.0 15 5.40e-05 neither

x2 / df shows why ordered tests are more powerful

> xxX <- CMHtest (mental.tab)
> xxStable[,"Chisqg"] / xxStable[,"Df"]
COor rmeans cmeans general

37.16 8.06 13.56 3.06
58



Observer agreement

@ Inter-observer agreement often used as to assess reliability of a
subjective classification or assessment procedure

@ — square table, Rater 1 x Rater 2
o Levels: diagnostic categories (normal, mildly impaired, severely impaired)

@ Agreement vs. Association: Ratings can be strongly associated without
strong agreement

@ Marginal homogeneity: Different frequencies of category use by raters
affects measures of agreement

@ Measures of Agreement:
o Intraclass correlation: ANOVA framework— multiple raters!
e Cohen’s k: compares the observed agreement, P, = 3~ pj;, to agreement
expected by chance if the two observer’s ratings were independent,

Pe =) pis psi- p_p

A =)
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Cohen’s K

Properties of Cohen’s x:

@ perfect agreement: x = 1
@ minimum x may be < 0; lower bound depends on marginal totals

@ Unweighted x: counts only diagonal cells (same category assigned by
both observers).

@ Weighted «: allows partial credit for near agreement. (Makes sense only
when the categories are ordered.)

Weights:

@ Cicchetti-Alison (inverse integer spacing)
@ Fleiss-Cohen (inverse square spacing)

Integer Weights Fleiss-Cohen Weights
1 2/3 1/3 0 1 8/9 5/9 0
2/3 1 2/3 1/3 8/9 1 8/9 5/9
1/3 2/3 1 2/3 5/9 8/9 1 8/9
0 1/3 2/3 1 0 5/9 8/9 1
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Example: Cohen’s

The table below summarizes responses of 91 married couples to a
guestionnaire item,

Sex is fun for me and my partner (a) Never or occasionally, (b) fairly
often, (c) very often, (d) almost always.

————————— Wife's Rating ——————-—
Husband's Never Fairly Very Almost
Rating fun often Often always SUM
Never fun 7 7 2 3 19
Fairly often 2 8 3 7 20
Very often 1 5 4 9 19
Almost always 2 8 9 14 33
SUM 12 28 18 33 91
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Example: Cohen’s

ved: :Kappa () calculates unweighted and weighted k, using equal-spacing weights
by default

> data (SexualFun, package="vcd")
> Kappa (SexualFun)

value ASE z Pr(>|z])
Unweighted 0.129 0.0686 1.89 0.05939 x
Weighted 0.237 0.0783 3.03 0.00244 v
> Kappa (SexualFun, weights = "Fleiss-Cohen")

value ASE z Pr(>|z])
Unweighted 0.129 0.0686 1.89 0.059387 x
Weighted 0.332 0.0973 3.41 0.000643 4

Unweighted k is not significant, but both weighted versions are
You can obtain confidence intervals with the confint () method
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Observer agreement: Multiple strata

When the individuals rated fall into multiple groups, one can test for:

@ Agreement within each group
@ Overall agreement (controlling for group)
@ Homogeneity: Equal agreement across groups

Example: Diagnostic Classification of MS patients

Patients in Winnipeg and New Orleans were each classified by a neurologist
in each city

Winnipeg patients New Orleans patients
NO rater:
Cert Prob Pos Doubt Cert Prob Pos Doubt
Winnipeqg rater:

Certain MS 38 5 0 1 5 3 0 0
Probable 33 11 3 0 3 11 4 0
Possible 10 14 5 6 2 13 3 -
Doubtful MS 3 7 3 10 1 2 4 14

To what extent to the neurologists agree?
Do they agree equally for the patients for the two cities
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Observer agreement: Multiple strata

Here, simply assess agreement between the two raters in each stratum
separately

data (MSPatients, package="vcd")
Kappa (MSPatients[,,1]) Winnipeg patients
*F value ASE z Pr(>|z|)

## Unweighted 0.208 0.0505 4.12 3.77e-05
## Welghted 0.380 0.0517 7.35 1.99%e-13

|

Kappa (MSPatients[,,2]) New Orleans patients

T value ASE 7z Pr(>|z|)
## Unweighted 0.297 0.0785 3.78 1.5%9e-04
## Weighted 0.477 0.0730 6.54 6.35e-11

Somewhat larger agreement for the New Orleans patients

The irr package (inter-rater-reliability) provides ICC and other measures; also handles
the case of k > 2 raters
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Bangdiwala’s Observer agreement chart

The observer agreement chart (Bangdiawala, 1987) provides:
» A simple graphic representation of the strength of agreement
» A measure of strength of agreement with an intuitive interpretation

W —
B =0.146 B*=0.498
Unweighted Weighted
12 28 | 18 33 2 28 A 18 33
= 33 -
= 2
= =
T c T c
55 55
a2 | 1 oz
L -
& &
S 20 S 20
= =
;| _ _
c =
L Y
'g 19 g 19
‘M s
Mever Fun Fairly Ofien  Very Often Always fun Mever Fun Fairly Often  Very Often Always fun

Wife Wife
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Bangdiwala’s Observer agreement chart

@ n x nsquare, n=total sample size
@ Black squares, each of size n; x n; — observed agreement

@ Positioned within larger rectangles, each of size nj. x n.; — maximum
possible agreement

@ = visual impression of the strength of agreement is B:

k
g _ area of dark squares > ng
- T K
area of rectangles SO Ny Ny

@ = Perfect agreement: B = 1, all rectangles are completely filled.

o

- .
T maximum:n,xn,

Always fun

Husband
Often Very Often
|

ly
]

_ Never Fun Fa
i Il

L]

g

Very Of
Wife
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Weighted agreement chart: Partial agreement

Partial agreement: include weighted contribution from off-diagonal cells, b
steps from the main diagonal, using weights 1 > wy > wo > - - -.

Ni—b.i
i i Wo
. WA
Niji—p -~ nf,r' T ”f’.f'-|—b Wo Wy 1 Wi Wo
Wi
Wao
Ni—p.i

@ Add shaded rectangles, size ~ sum of frequencies, Ap;, within b steps of
main diagonal

@ = weighted measure of agreement,

_ weighted sum of agreement - Z? [niene — e —>"7_, WpAp]

k

BW
area of rectangles S Ny Ny

67



Husbands and wives: B = 0.146, BY = 0.498

agreementplot (SexualFun,
agreementplot (SexualFun,

33

33

Unweighted
12 28 , 18

g

=
T§
g 8 /
% &
Ele

s

‘W

19

20

19

Mewver Fun Fairly Ofien

Very Often

Wife

Always fun

Husband
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Wife

The smallest exact agreement occurs for “very often”, but husbands & wives more
on this allowing + 1 step disagreement
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Marginal homogeneity & observer bias

@ Different raters may consistently use higher or lower response categories
@ Test— marginal homogeneity: Hy : nj. = ny;
@ Shows as departures of the squares from the diagonal line

New Orleans patients
29 11

Winnipeg patients
84 | a7 I1‘I 17 11 | | 18

Daoubtful

21

Do uabst fual

Possible

22

Probable
Possible

18

New Orleans Neurologist

New Orleans Neurologist
Certain  Probable

Certain

Certain Probable PossiBeubtiul Certain Probable Po=zsible Doubtful

Winnipeg Neurologist Winnipeg Neurologist

@ Winnipeg neurologist tends to use more severe categories -



Looking ahead: Correspondence analysis

Like PCA for categorical data

* Account for max % of x? in few (2-3) dimensions

Finds scores for row and col categories

Plot of row/col scores shows associations

Dim 1: dark to light
Dim 2: something about red
hair, green eyes?

Blond

Dimension 2 (9.5%)

Dimension 1 (89.4%)
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Looking ahead: Correspondence analysis

Multiple correspondence analysis extends this to 3+ way tables
* Analyses all two-way associations together
* Category points: nearness indicates positive associations

Dim 1: Admission
Dim 2: ??? (only 4%)

The relations of Dept to Gender and
Admit are easy to interpret

Dimension 2 (4%)

UCBadmissions data

C
.

Hemale Admitted
»

Factor
® Admit
A Gender
+ Dept

-0.4 -0.2 0.0 02 04

Dimension 1 (80.5%)

I
0.6
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Looking ahead: Models

Loglinear models [logim()]

* Generalize the Pearson X% and LR G? tests of association to 3-way and
larger tables.

* Allows a range of models from mutual independence ([A] [B] [C]) to the
saturated model ([ABC])

* Intermediate models address questions of conditional independence,
controlling for some factors

* Can test associations in 2-way, 3-way, ... terms, analogously to tests of
interactions in ANOVA

Generalized linear models [gIm()]

* Similar to ordinary Im(), but w/ Poisson dist" of counts: family="poisson”
°* Formula notation: Freq~A+B+C; Freq~ (A +B + C)"2
° Familiar diagnostic methods & plots (outliers, influence)
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Looking ahead: Models

Example: UC Berkeley data

Mutual independence: [Admit][Gender][Dept] =~A+G+D

Joint independence: [Admit][Gender Dept] =~A+G*D

Conditional independence: [D Admit][D Gender] =~D*(A+Q)
= Specific test of absence of gender bias, controlling for department

No three-way association: [A G][A D][G D] =~(A+D+G)>?

library (MASS)

loglm(~ Admit + Dept + Gender, data=UCBAdmissions) # mutual independence
loglm(~ Admit + Dept * Gender, data=UCBAdmissions) # Joint independence
loglm(~ Dept * (Admit + Gender), data=UCBAdmissions) # conditional independence
loglm(~ (Admit + Gender + Dept )"2, data=UCBAdmissions) # all two-way, no three-way

Bracket notation:

terms in the same bracket are allowed to be associated [AG] =A*G
terms in separate brackets are asserted to be independent [A] [G]=A+G
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Looking ahead: Mosaic plots

Mosaic plots provide visualizations of associations in 2+ way tables

Tiles ~ frequency; conditioned by A, then B, then C, ...

Fit: any loglinear model [A][B][C], [AB][C], [AB][AC], ..., [ABC]
Shading: ~ residuals, contributions to x?

Show: associations not accounted for by model

Mutual Marginal Joint

Eroam

D S 3

. — 1l I | =

& I I I ]

= e i =
Im——— B I s

[Hair] [Eye] [SeX] [Hair] [Eye] [Hair Eye] [Sex]
6?24) — 166.30 Gfg] — 146.44 Gﬁﬁ} — 19.86
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°* Two-way tables summarize frequencies of two
categorical factors
= 2 x 2:aspecial case, with odds ratio as a measure
= rxc: factors can be unordered or ordered
" rxcxk:stratified tables, r x ¢ with groups or circumstances

* Tests & measures of association

= Pearson X%, LR G2: general association

" More powerful CMH tests for ordered factors
* Visualization

= 2 x 2:fourfold plots

= rx c:sieve diagrams, tile plots, ...

®" More graphical methods to come ...
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