

Loglinear models & mosaic displays

Michael Friendly

Psych 6136 http://friendly.github.io/psy6136

Today's topics

- Mosaic displays: basic ideas
- Models for count data
 - Fitting loglinear models
- Two-way tables
- Fitting & graphing LLMs
- Three-way tables: different kinds of independence
- Sequential plots & models
- Marginal & partial displays

Mosaic displays

- Similar to sieve plot, tile plot, using area ~ frequency
- Mosaic plots generalize more readily to n-way tables (subject to resolution of the display)
- Intimately connected to loglinear & generalized linear models
 - Can fit sequential models as variables are entered
 - Show the pattern of association not accounted for in a given model

Mosaic displays: basic ideas

Mosaic displays theory: Hartigan & Kleiner (1981); Friendly (1994, 1999)

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V

V₁: width ~ marginal frequencies, n_{i++} V₂: height ~ cond freq: V₂ | V₁ = n_{ij} / n_{i++} V₃: width ~ cond freq: V₃ | V₁, V₂ = n_{ikj} / n_{ij+}

 \rightarrow Area ~ cell frequency, n_{ijk}

UCB Admissions: Gender frequencies

Mosaic displays: basic ideas

UCB Admissions: Gender x Admit

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V

V₁: width ~ marginal frequencies, n_{i++} V₂: height ~ cond freq: V₂ | V₁ = n_{ij} / n_{i++} V₃: width ~ cond freq: V₃ | V₁, V₂ = n_{ikj} / n_{ij+}

 \rightarrow Area ~ cell frequency, n_{iik}

Mosaic displays: basic ideas

Gender x Admit x Dept frequencies

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V

V₁: width ~ marginal frequencies, n $_{i++}$ V₂: height ~ cond freq: V₂ | V₁ = n_{ij} / n_{i++} V₃: width ~ cond freq: V₃ | V₁, V₂ = n_{ikj} / n_{ij+}

 \rightarrow Area ~ cell frequency, n_{ijk}

Mosaic displays: Independence

Expected frequencies if Admit \perp Gender

Expected frequencies under independence are products of the row / col margins

$$\widehat{m}_{ij} = \frac{n_{i+}n_{+j}}{n_{++}} = n_{++}$$
row %col %

 \rightarrow Row and col tiles align when variables are independent

8

Mosaic displays: Residuals & shading

• Pearson residuals:

$d_{ij} = \frac{n_{ij} - \widehat{m}_{ij}}{\sqrt{\widehat{m}_{ij}}}$

• Pearson
$$\chi^2 = \Sigma \Sigma d_{ij}^2 = \Sigma \Sigma rac{(n_{ij} - \hat{m}_{ij})^2}{\hat{m}_{ij}}$$

 Other residuals: deviance (LR), Freeman-Tukey (FT), adjusted (ADJ), ...

• Shading:

- Sign: negative in red; + positive in blue
- Magnitude: intensity of shading: |d_{ij}| > 0, 2, 4, ...
- → Independence: rows align, or cells are empty!

UCB Admissions: ~ Admit + Gender

History corner: von Mayr

Georg von Mayr (1877) was the first to suggest an area-proportional display for two categorical variables

Total count = 1000

Divided into (cows, pigs, sheep?) A = 600, B= 300, C= 100)

Each of these sub-divided by a 2nd variable (region: a, b, c)

The name: "bottle diagram with double divisions" suggests further splits

See: Friendly (2002), "A Brief History of the Mosaic Display", *JCGS*, 11:1,89-107, http://dx.doi.org/10.1198/106186002317375631

History corner: Minard

Charles Joseph Minard used an early form of an area-proportional plot to show the value of transport of goods along the Canal du Centre, from Chalon to Dijon.

• Width ~ distance

 \rightarrow Value = distance × amount

Height ~ amount of goods

Un millimette pour mille tonneaux- Prois millimettes pour un kilomètre.

On a compris dans le transit les marchandises allant de Châlon au lanal lateral à la Loire se réciproquement.

History corner: Francis Walker

In the 1870 *Statistical Album of the US Census*, Francis Walker wanted to show the populations of the states as comprised of {foreign, native colored, native white} and born {within, outside} their state of residence.

States are ordered by total pop, shown by area

For each state, a small mosaic, supplemented by a marginal one (w/in, outside)

Mosaic cartograms

US map provides a spatial framework for showing the distribution of categorical data

Each mosaic is positioned as in a schematic US map

COLLABORATORS RESEARCH + WRITING Anupa Iman Ghosh, Raul Amoros | DESIGN Zack Aboutazm | ART DIRECTION Melissa Haavisto

Loglinear models: Perspectives

Loglinear models grew up and developed from three different ideas and ways of thinking about notions of independence in frequency data

- Loglinear approach: analog of ANOVA; associations are ~ interactions
- glm() approach: analog of general regression model, for log(Freq), with Poisson distⁿ of errors
- Logit models: Loglinear, simplified for a binary response

Loglinear approach

First developed as analog of classical ANOVA models, where multiplicative relations are re-expressed in additive form as models for log(Freq)

$$\log m_{ij} = \mu + \lambda_i^{A} + \lambda_j^{B} \equiv [A][B] \equiv \sim A + B$$

- This expresses the independence model for a 2-way table as no A*B association
- Short-hand notations: $[A][B] = A \perp B = ~A + B$
- Fit by simple iterative proportional scaling: MASS::loglm()
 - Parameters aren't estimated; only fitted frequencies.

glm() approach

Extension of classical linear models recognized loglinear models as a model for log(Freq), with Poisson distⁿ for cell counts

$$\log m = X \beta$$

- Looks like std ANOVA/regression model, but for log(Freq)
- This allows quantitative predictors and special ways to treat ordinal factors
- Fit by maximum likelihood using glm(..., family=poisson)
 - Can estimate parameters; do structured tests
- Standard diagnostic methods available

```
glm( Freq ~ A + B + C, family = poisson  # [A] [B] [C]
glm( Freq ~ A * B + C, family = poisson)  # [A B] [C]
glm( Freq ~ A * (B+C), family = poisson  # [A B] [A C]
```

Logit models

When one variable is a binary response, a logit model is a simpler way to specify a loglinear model

 $\log(m_{1jk}/m_{2jk}) = \alpha + \beta_j^B + \beta_k^C \equiv [AB][AC][BC]$

- $\log(m_{1jk}/m_{2jk})$ is the log odds of response A1 vs A2
- The model only includes terms for the effect of A on B & C
- Equivalent loglinear model: [AB][AC] [BC]
- The logit models assumes the [BC] association;

 $[AB] \rightarrow \beta_{j}{}^{B} \quad [AC] \rightarrow \beta_{k}{}^{C}$

Fit using family=binomial

glm(outcome=="survived" ~ B + C, family = binomial)

Two-way tables: loglinear approach

For two discrete variables, *A* and *B*, suppose a multinomial sample of total size *n* over the *IJ* cells of a two-way $I \times J$ contingency table, with cell frequencies n_{ij} , and cell probabilities $\pi_{ij} = n_{ij}/n$.

• The table variables are statistically independent when the cell (joint) probability equals the product of the marginal probabilities, $Pr(A = i \& B = j) = Pr(A = i) \times Pr(B = j)$, or,

$$\pi_{ij} = \pi_{i+}\pi_{+j} \; .$$

• An equivalent model in terms of expected frequencies, $m_{ij} = n\pi_{ij}$ is

$$m_{ij} = (1/n) m_{i+} m_{+j}$$
.

 This multiplicative model can be expressed in additive form as a model for log m_{ij},

$$\log m_{ij} = -\log n + \log m_{i+} + \log m_{+j} .$$
 (1)

Two-way tables: loglinear approach

Independence model

By anology with ANOVA models, the independence model (1) can be expressed as

$$\log m_{ij} = \mu + \lambda_i^{\mathcal{A}} + \lambda_j^{\mathcal{B}} , \qquad (2)$$

- μ is the grand mean of log m_{ij}
- the parameters λ_i^A and λ_j^B express the marginal frequencies of variables A and B — "main effects"
- typically defined so that $\sum_i \lambda_i^A = \sum_j \lambda_j^B = 0$ as in ANOVA

Two-way tables: loglinear approach

Saturated model

Dependence between the table variables is expressed by adding association parameters, λ_{ii}^{AB} , giving the *saturated model*,

$$\log m_{ij} = \mu + \lambda_i^{A} + \lambda_j^{B} + \lambda_{ij}^{AB} \equiv [AB] \equiv \sim A * B .$$
(3)

 The saturated model fits the table perfectly (m
{ij} = n{ij}): there are as many parameters as cell frequencies. Residual df = 0.

• A global test for association tests $H_0: \lambda_{ii}^{AB} = \mathbf{0}$.

- If reject H_0 , which $\lambda_{ij}^{AB} \neq 0$?
- For ordinal variables, the λ_{ij}^{AB} may be structured more simply, giving tests for ordinal association.

Example: Independence

Generate a table of Education by Party preference, strictly independent

Perfect fit:

```
> MASS::loglm(~ Education + Party, table)
Call:
MASS::loglm(formula = ~Education + Party, data = table)
Statistics:
X^2 df P(> X^2)
Likelihood Ratio 0 4 1
Pearson 0 4 1
```

Both sieve diagrams and mosaic plots show what independence "looks like"

> sieve(table, shade=TRUE)

> mosaic(table, shade=TRUE)

Two-way tables: glm approach

In the GLM approach, the vector of cell frequencies, $\mathbf{n} = \{n_{ij}\}$ is specified to have a Poisson distribution with means $\mathbf{m} = \{m_{ij}\}$ given by

 $\log m = X\beta$

- X is a known design (model) matrix, expressing the table factors
- β is a column vector containing the unknown λ parameters.
- This is the same as the familiar matrix formulation of ANOVA/regression, except that
 - The response, log *m* makes multiplicative relations additive
 - The distribution is taken as Poisson rather than Gaussian (normal)

Example: 2 x 2 table

For a 2 \times 2 table, the saturated model (3) with the usual zero-sum constraints can be represented as

• only the linearly independent parameters are represented. $\lambda_2^A = -\lambda_1^A$, because $\lambda_1^A + \lambda_2^A = 0$, and so forth.

- association is represented by the parameter λ_{11}^{AB}
- can show that $\lambda_{11}^{AB} = \frac{1}{4} \log(\theta)$ (log odds ratio)
- Advantages of the GLM formulation: easier to express models with ordinal or quantitative variables, special terms, etc. Can also allow for over-dispersion.

Assessing goodness of fit

Goodness of fit of a specified model may be tested by the likelihood ratio G²,

$$G^{2} = 2\sum_{i} n_{i} \log\left(\frac{n_{i}}{\widehat{m}_{i}}\right) , \qquad (4)$$

or the Pearson X^2 ,

$$X^2 = \sum_i \frac{(n_i - \widehat{m}_i)^2}{\widehat{m}_i} ,$$

with degrees of freedom df = # cells - # estimated parameters.

- E.g., for the model of independence, [A][B], df = *IJ* − [(*I* − 1) + (*J* − 1)] = (*I* − 1)(*J* − 1)
- The terms summed in (4) and (5) are the squared cell residuals
- Other measures of balance goodness of fit against parsimony, e.g., *Akaike's Information Criterion* (smaller is better)

$$AIC = G^2 - 2df$$
 or $AIC = G^2 + 2$ # parameters

(5)

Degrees of freedom

Q: Why do degrees of freedom for an $r \times c$ table = (r-1) * (c-1)?

A: Because the row & column totals are used to calculate expected frequencies

- \rightarrow Only (r-1) independent parameters for each column
- \rightarrow Only (c-1) independent parameters for each row

```
> addmargins(HE) |> knitr::kable()
```

	В	lack	Brown	Red	Blond	Sum
:		•	•	:	:	:
Brown		68	119	26	7	220
Blue		20	84	17	94	215
Hazel		15	54	14	10	93
Green		5	29	14	16	64
:		: ·	:	:	:	:
Sum		108	286	71	127	592

R functions for loglinear models

- vcd::assocstats() only χ² tests for two-way tables; not a model (no parameters; no residuals)
- MASS::loglm() general loglinear models for *n*-way tables loglm(formula, data, subset, na.action, ...)
- glm() all generalized linear models; loglinear with family = poisson

glm(formula, data, weights, subset, ...)

- Model formulas have the form:
 - table form: ~ A + B + ... (independence);
 - A * B + C (allow A*B association)
 - frequency data frame: Freq ~ A * B + C

R functions & methods

 loglm() and glm() return an R object with named components and with a class() - here "loglm"

```
> arth.mod <- loglm(~Treatment+Improved, data=arth.tab, fitted=TRUE)</pre>
> names(arth.mod)
> names(arth.mod)
 [1] "lrt"
                  "pearson"
                               "df"
                                              "margin"
                                                            "fitted"
                                                                          "param"
                  "formula"
                               "frequencies" "deviance"
                                                            "nobs"
                                                                          "terms"
 [7] "call"
class(arth.mod)
 [1] "loglm"
```

- Objects have methods: print(), summary(), coef(), residuals(),plot() and other methods
 - Methods are specific to the class of the object
 - print(arth.mod) → print.loglm(arth.mod)
 - residuals(arth.mod) → residuals.loglm(arth.mod)

Model-based methods: Fitting & graphing

Example: Arthritis treatment

Data on effects of treatment for rheumatoid arthritis (in case form)

```
> data(Arthritis, package="vcd")
> str(Arthritis)
'data.frame': 84 obs. of 5 variables:
  $ ID : int 57 46 77 17 36 23 75 39 33 55 ...
  $ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 2 ...
  $ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
  $ Age : int 27 29 30 32 46 58 59 59 63 63 ...
  $ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...</pre>
```

For now, ignore Age; consider the 2 x 3 table of Treatment x Improved

Arthritis treatment

```
Fit the independence model, ~ Treatment + Improved
```

Some methods: residuals(), deviance(), coef(), ...

```
> round(residuals(arth.mod), 3)
                                     > coef(arth.mod)
        Improved
                                     $`(Intercept)`
Treatment None Some Marked
                                      [1] 2.543
  Placebo 1.535 -0.063 -2.152
  Treated -1.777 0.064 1.837
                                     $Treatment
                                      Placebo Treated
# Likelihood ratio chisquare
                                       0.0238 -0.0238
> deviance(arth.mod)
[1] 13.53
                                     $Improved
                                         None
                                                  Some
                                                         Marked
                                       0.5014 -0.5972
                                                         0.0959
```

Arthritis treatment: Plots

Visualization: mosaic() or plot() the model or table

Splits by the response, Treatment first

Custom scheme for shading levels; normally c(2, 4) for |residual|

Cells can be labeled by freq, residual, ...

Arthritis treatment: glm()

glm() for loglinear models easiest w/ the data as a data.frame in frequency form, family=poisson

```
> arth.df <- as.data.frame(xtabs(~ Treatment + Improved,</pre>
                              data=Arthritis))
> arth.df
 Treatment Improved Freq
 Placebo
              None
                    29
1
   Treated None 13
2
3
 Placebo Some 7
4
 Treated
           Some
                    7
5
 Placebo
           Marked
                    7
   Treated
                    21
6
           Marked
```

> arth.glm <- glm(Freq ~ Treatment + Improved, data = arth.df, family = poisson)

More on glm() models later

Example: Hair color & Eye color

```
> haireye <- margin.table(HairEyeColor, 1:2)</pre>
> (HE.mod <- loglm(~ Hair + Eye, data=haireye))</pre>
Call:
loglm(formula = ~Hair + Eye, data = haireye)
Statistics:
                  X^{2} df P(> X^{2})
Likelihood Ratio 146.4 9
                                ()
Pearson 138.3 9
                                \cap
> round(residuals(HE.mod), 2)
Re-fitting to get frequencies and fitted values
      Eye
Hair Brown Blue Hazel Green
 Black 4.00 -3.39 -0.49 -2.21
 Brown 1.21 -2.02 1.31 -0.35
 Red -0.08 -1.85 0.82 2.04
 Blond -7.33 6.17 -2.47 0.60
```

Mosaic displays: Seeing patterns

- In two-way models, residuals contain the info on lack of independence
 - Equivalently: help to understand the pattern of association
 - Effect ordering: permuting the rows / cols often makes the pattern more apparent
- Correspondence analysis: \rightarrow reorder by scores on Dim 1
 - seriation::permute(order="CA") does this for two-way tables

> haireye					
Eye					
Hair	Brown	Blue	Hazel	Green	
Black	68	20	15	5	
Brown	119	84	54	29	
Red	26	17	14	14	
Blond	7	94	10	16	

> library(seriation)					
> permute(haireye, "CA")					
Eye					
Hair	Brown	Hazel	Green	Blue	
Black	68	15	5	20	
Brown	119	54	29	84	
Red	26	14	14	17	
Blond	7	10	16	94	

Mosaic displays: Seeing patterns

mosaic(haireye, shade=TRUE, labeling=labeling_residuals)
mosaic(permute(haireye, "CA"), shade=TRUE, labeling=labeling_residuals)

Bee abundance data

A study by Taylor Kerekes examined the abundance of bee species in Ontario over three periods of time.

Q: Does relative abundance of species differ over years?

A: Do a chi-square test

chisq.test(bees[,-1]) Pearson's Chi-squared test data: bees[, -1] X-squared = 1981, df = 26, p-value <2e-16

# A t	tibble: 14 x	4		
sp	pecies	`2002`	`2005`	`2021`
<0	chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 At	ffinis	508	0	0
2 B:	imaculatus	362	345	137
3 Bo	orealis	30	6	11
4 Fe	ervidus	634	19	10
5 Gi	riseocollis	35	21	21
6 Ir	mpatiens	638	564	616
7 P€	ensylvanicus	112	0	0
8 Pe	erplexus	160	57	9
9 Ri	ufocinctus	51	46	17
10 Te	ernarius	9	16	9
11 Te	erricola	119	1	4
12 Va	agans	713	82	39
13 As	shtoni (M)	27	0	0
14 C:	itrinus (M)	234	38	5

How to understand the pattern of association?
mosaic(bees.mat, shade=TRUE, ...)

Bees Abundance Data

Alphabetic order of species: No clear pattern

Correspondence analysis finds scores for the row & col categories to account for maximum χ^2

Dimension 1 (91.5%)

mosaic(permute(bees.mat, "CA"), shade=TRUE, ...)

Bees Abundance Data

Three-way tables

Saturated model

For a 3-way table, of size $I \times J \times K$ for variables A, B, C, the saturated loglinear model includes associations between all pairs of variables, as well as a 3-way association term, λ_{iik}^{ABC}

$$\log m_{ijk} = \mu + \lambda_i^{A} + \lambda_j^{B} + \lambda_k^{C} + \lambda_{ijk}^{AB} + \lambda_{ik}^{ABC} + \lambda_{ijk}^{ABC} + \lambda_{ijk}^{ABC}.$$
(6)

- One-way terms (λ^A_i, λ^B_j, λ^C_k): differences in the marginal frequencies of the table variables.
- Two-way terms $(\lambda_{ij}^{AB}, \lambda_{ik}^{AC}, \lambda_{jk}^{BC})$ pertain to the *partial association* for each pair of variables, *controlling* for the remaining variable.
- The three-way term, λ_{ijk}^{ABC} allows the partial association between any pair of variables to vary over the categories of the third variable.
- Fits perfectly, but doesn't *explain* anything, so we hope for a simpler model!

Reduced models

- Goal: fit the smallest model sufficient to explain/describe the observed frequencies
 - Similar to Anova models, e.g., ~(A + B + C)³ with all interactions
 - Do we need all those interaction terms?
- Hierarchical models
 - Most loglinear models are taken to be hierarchical:
 - A high-order term, like $\lambda_{ijk} \xrightarrow{ABC} \rightarrow all \text{ lower order terms included}$
 - Why: principle of marginality-hard to interpret w/o low order relatives
- Thus, a shorthand notation for a loglinear model lists only the high-order terms. For example:
 - $[ABC] \rightarrow A + B + C + AB + AC + BC + ABC$
 - $[AB][AC] \rightarrow A + B + C + AB + AC$

Reduced models

- For a three-way table there is a range of models between mutual independence, [A][B][C], and the saturated model, [ABC]
- Each model has an independence interpretation:

 $[A][B] \equiv A \perp B \equiv A \text{ independent of } B$

• Special names for various submodels

Model	Model symbol	Interpretation
Mutual independence	[A][B][C]	$A \perp B \perp C$
Joint independence	[AB][C]	$(A B) \perp C$
Conditional independence	[AC][BC]	$(A \perp B) \mid C$
All two-way associations	[AB][AC][BC]	homogeneous assoc.
Saturated model	[ABC]	ABC interaction

Table: Log-linear Models for Three-Way Tables

Model types

 Joint independence: (AB) ⊥ C, allows A*B association, but asserts no A*C and B*C associations

$$[AB][C] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB}$$

• **Conditional independence**: $A \perp B$, controlling for C

$$[AC][BC] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ik}^{AC} + \lambda_{jk}^{BC}$$

 Homogeneous association: All two-way, but each two-way is the same over the other factor

$$[AB][AC][BC] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB} + \lambda_{ik}^{AC} + \lambda_{jk}^{BC}$$

Association graphs

- An association graph represents variables in an nway frequency table by an undirected graph
 - Nodes are the variables
 - Edges are first-order (2-way) associations
 - \rightarrow two variables are independent if not joined by an edge

Under-solved problem: Use an association graph to represent strength of conditional associations or as a widget for model fitting

[A B] [**A C**]

Model types & association graphs

Hypothesis	Fitted margins	Model symbol	Independence interpretation	Association graph
H_1	$n_{i++}, n_{+j+}, n_{++k}$	[A][B][C]	$A \perp B \perp C$	C A B
H_2	n_{ij+}, n_{++k}	[AB][C]	$(A, B) \perp C$	C A-B
H_3	n_{i+k}, n_{+jk}	[AC][BC]	$A\perp B C$	C A B
H_4	$n_{ij+}, n_{i+k}, n_{+jk}$	[AB][AC][BC]	NA	C A B

Model types: logIm()

Each of these have simple translations into the model formulae for loglm()

- loglm(~A + B + C)loglm(~A * B + C)loglm(~ A*C + B*C)loglm(~A * B * C)
- # mutual independence [A] [B] [C] # joint independence [AB][C] # conditional independence [AC][BC] loglm(~ (A + B + C)^2) # homogeneous, all 2-way [AB][AC][BC] # saturated model [ABC]

e.g., Berkeley data loglm(~ (Admit + Gender) * Dept) loglm(~Admit*Dept + Gender * Dept) Association graph

 $\rightarrow A \perp G \mid D$ (just put your finger over D)

Collapsibility: Marginal & conditional associations

- Q: When can we legitimately collapse a table, {ABC}, over some variable (C)?
- A: When the marginal association of AB is the same as the conditional association, AB | C
- Recall the Berkeley data
 - Margin of [Admit, Gender] ignoring Dept showed strong association
 - The partial assoc. within Dept were mostly NS
 - Conditional association [Admit, Gender | Dept] ≠ marginal [A, G]
- Three-way tables: The AB marginal and AB | C conditional associations are the same, if either:
 - A & C are conditionally independent, $A \perp C \mid B = [AB][CB]$
 - B & C are conditionally independent, B \(\box) C \) A = [AB][AC]
 - \rightarrow no three-way association

Higher-way tables

DaytonSurvey data: A 2⁵ table

2,276 HS seniors asked if they had ever used cigarettes, alcohol, or marijuana

		cigarette	Yes				No			
		alcohol	Yes		No		Yes		No	
		marijuana	Yes	No	Yes	No	Yes	No	Yes	No
sex	race									
female	white		405	268	1	17	13	218	1	117
	other		23	23	0	1	2	19	0	12
male	white		453	228	1	17	28	201	1	133
	other		30	19	1	8	1	18	0	17

Suppose we wish to fit the model: [A M] [A C] [M C] [A R] [A G] [R G]

The association graph implies:

{race, gender} \perp {marijuana, cigarette} | alcohol

If it fits, we can collapse the table over {race, gender} to study associations among A, M & C.

Response vs. Association models

- In association models, the interest is just on *which* variabels are associated, and *how*
 - Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye Sex]
 - \implies fit the homogeneous association model (or the saturated model)
 - Test the individual terms, delete those which are NS
- In response models, the interest is on which predictors are associated with the response
 - The minimal (null or baseline) model is the model of joint independence of the response (say, A) from all predictors, [A] [B C D ...]
 - Associations among the predictors are fitted exactly (not analyzed)
 - Similar to regression, where predictors can be arbitrarily correlated
 - e.g., Berkeley data: fit the baseline model [Admit] [Gender Dept]
 - lack-of-fit => associations [Admit Gender] and/or [Admit Dept]

Goodness of fit tests

As noted earlier, overall goodness of fit of a specified model may be tested by the likelihood ratio G^2 , or the Pearson X^2 ,

$$G^2 = 2\sum_i n_i \log\left(\frac{n_i}{\widehat{m}_i}\right) \qquad X^2 = \sum_i \frac{(n_i - \widehat{m}_i)^2}{\widehat{m}_i} ,$$

with residual degrees of freedom $\nu = \#$ cells - # estimated parameters.

- \bullet These measure the lack of fit of a given model— a large value \implies a poor model
- Both are distributed as $\chi^2(\nu)$ (in large samples: all $\widehat{m}_i > 5$)
- *E*(χ²(ν)) = ν, so G²/ν (or X²/ν) measures lack of fit per degree of freedom (overdispersion)
- But: how to compare or test competing models?

Nested models & ANOVA-type tests

Two models, M_1 and M_2 are nested when one (say, M_2) is a special case of the other

- Model M₂ (w/ v_2 df) fits a subset of the parameters of M₁ (w/ v_1 df)
- M_2 is more restrictive cannot fit better than $M_1: G^2(M_2) \ge G^2(M_1)$
- The least restrictive model is the saturated model [ABC ...], w/ $G^2 = 0$

Therefore, we can test the difference in G^2 as a specific test of the added restrictions in M_2 compared to M_1 .

• This test has a χ^2 distribution with df = $v_2 - v_1$

$$\Delta G^{2} \equiv G^{2}(M_{2} | M_{1}) = G^{2}(M_{2}) - G^{2}(M_{1})$$

$$= 2 \sum n_{i} \log(\widehat{m}_{i1}/\widehat{m}_{i2})$$
(7)

Example: Berkeley admissions

For the UC Berkeley data, with table variables [A]dmit, [D]ept and [G]ender the following models form a nested chain

```
[A][D][G] \subset [A][DG] \subset [AD][AG][DG] \subset [ADG]
```

Table: Hierarchical G^2 tests for loglinear models fit to the UC Berkeley data

Туре	LLM terms	G^2	df	$\Delta(G^2)$	$\Delta(df)$	$\Pr(>\Delta(G^2))$
Mutual ind	[A][D][G]	2097.67	16			
Joint	[A][DG]	877.06	11	1220.62	5	0.0000
All 2-way	[AD][AG][DG]	20.20	5	1128.70	5	0.0000
Saturated	[ADG]	0.0	0	20.20	5	0.0011

- Only testing the decrease in G² from one model to the next
- Here, each model is significantly better than the previous
- Joint vs. all two-way: Does Admit depend on Dept and/or Gender?
- Absolute fit of all 2-way model is not terrible. Investigate this further!

Fitting these in R

loglm() - data in contingency table form (MASS package)

```
1 data(UCBAdmissions)
2 ## conditional independence (AD, DG) in Berkeley data
3 mod.1 <- loglm(~ (Admit + Gender) * Dept, data=UCBAdmissions)
4 ## all two-way model (AD, DG, AG)
5 mod.2 <- loglm(~ (Admit + Gender + Dept)^2, data=UCBAdmissions)</pre>
```

glm() - data in frequency form

```
berkeley <- as.data.frame(UCBAdmissions)
mod.3 <- glm(Freq ~ (Admit + Gender) * Dept, data=berkeley,
family='poisson')</pre>
```

- loglm() simpler for nominal variables
- glm() allows a wider class of models and quantitative predictors (covariates)
- gnm() fits models for structured association and generalized non-linear models
- vcdExtra package provides visualizations for all.

Example: Berkeley admissions

Fit the model of mutual independence, using logIm()

Conditional independence [AD] [AG]

Conditional independence, [AD] [AG]

All two-way model, [AD] [AG] [DG]

ANOVA tests

These are nested. Compare with anova ()

```
> aov1 <- anova(berk.loglm0, berk.loglm1, berk.loglm3, test="Chisg")</pre>
> aov1
LR tests for hierarchical log-linear models
Model 1:
~Admit + Dept + Gender
Model 2:
 ~Admit * (Dept + Gender)
Model 3:
 ~ (Admit + Dept + Gender) ^2
         Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 2097.671 16
Model 2 1148.901 10 948.770
                                                 0.00000
                                        6
Model 3 20.204 5 1128.697
                                        5
                                                 0.00000
Saturated 0.000 0 20.204
                                        5
                                                 0.00114
```

These are tests of relative fit, $\Delta G^2 = G^2 (M_i | M_{i-1})$

LRstats: AIC & BIC

vcdExtra::LRstats() gives one-line summaries of a collection of models These are tests of absolute goodness of fit

<pre>> LRstats(berk.loglm0, berk.loglm1, berk.loglm2, berk.loglm3)</pre>												
Likelihood summary table:												
	AIC	BIC	LR	Chisq	Df	Pr(>Chi	isq)					
berk.loglm0	2273	2282		2098	16	<2€	e-16	* * *				
berk.loglm1	1336	1352		1149	10	<2€	e-16	***				
berk.loglm2	1062	1077		877	11	<2€	e-16	* * *				
berk.loglm3	217	240		20	5	0.0	0011	* *				
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1												

- AIC and BIC are GOF measures adjusted for model parsimony
- Not not significance tests, but smaller is better
- Also apply to non-nested models

$$AIC = G^2 + 2 \times \#$$
 parameters
 $BIC = G^2 + 2\log(n) \times \#$ parameters

Mosaic displays: Visual fitting

- Each mosaic shows:
 - The DATA size of tiles
 - (some) marginal frequencies initial splits (visual grouping)
 - RESIDUALS (shading) what associations have been omitted?
- Visual fitting
 - Start with a simple model: mutual independence or joint independence for response models
 - Pattern of residuals: suggest a better model \rightarrow smaller residuals
 - Add terms: \rightarrow smaller residuals, less shading: "cleaning the mosaic"
 - Good fitting model will have mostly unshaded tiles

Mosaic displays: Predictor variables

Berkeley data: Departments × Gender (ignoring Admit):

- Did departments differ in the total number of applicants?
- Did men and women apply differentially to departments?

Model: (Dept)(Gender)

In response models, the mosaic of the predictors gives a graphic summary of background variables

- Model [Dept] [Gender]: G²₍₅₎ = 1220.6.
- Note: Departments ordered A–F by overall rate of admission.
- Men more likely to apply to departments A,B; women more likely in depts C–F

Baseline response model

For the Berkeley data, start with the model of joint independence, [A][DG] Fits badly: $G^{2}_{(11)} = 877.1$

ш Ш υ ۵ ∢ Admitted Rejected Male Female

Model: (DeptGender)(Admit)

This is the null, or baseline model when Admit is the response variable.

Allows/fits assoc. of [Dept Gender], not shown in shading

Remaining shading suggests: [AD] : Admit varies w/ Dept [AG] : Admit varies w/ Gender

Add an association term...

61

- E.g., Add [Admit Dept] association → Conditional independence:
 - Fits poorly: $(G_{(6)}^2 = 21.74)$
 - But, only in Department A!
- GLM approach allows fitting a special term for Dept. A
- Note: These displays use standardized residuals: better statistical properties.

Double decker plots

Visualize dependence of one response variable (typically binary) on combinations of predictors Formally: mosaic plots with vertical splits for all predictors, highlighting the response by shading

doubledecker(Admit ~ Dept + Gender, data = UCBAdmissions[2:1, ,])

Survival on the *Titanic*

An epic data set, revealed with loglinear models

4-way tables: Survival on the *Titanic*

Data on the fate of passengers & crew on the HMS *Titanic*: a $4 \times 2 \times 2 \times 2$ table

```
> data(Titanic, package="datasets")
> str(Titanic)
'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
- attr(*, "dimnames")=List of 4
   ..$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"
   ..$ Sex : chr [1:2] "Male" "Female"
   ..$ Age : chr [1:2] "Child" "Adult"
   ..$ Survived: chr [1:2] "No" "Yes"
```

What proportion survived? Ans: 711/2201 = 32.3%

```
> addmargins(margin.table(Titanic, 4))
Survived
   No Yes Sum
1490 711 2201
> margin.table(Titanic, 4) / sum(Titanic)
Survived
   No Yes
0.677 0.323
```

Zero cells

> structable(Titanic)									
		Sex	Male		Female				
		Survived	No	Yes	No	Yes			
Class	Age			_					
1st	Child		0	5	0	1			
	Adult		118	57	4	140			
2nd	Child		0	11	0	13			
	Adult		154	14	13	80			
3rd	Child		35	13	17	14			
	Adult	_	387	75	89	76			
Crew	Child		0	0	0	0			
	Adult		670	192	3	20			

Two types of zero cells:

- Structural zeros: could not occur (children in crew)
- Sampling zeros: did not happen to occur (children in 1st & 2nd who died)
- Beware: zeros can cause problems:
 - Loss of df
 - $0/0 \rightarrow NaN$ in $\chi 2$ tests

Exploratory plots

One-way doubledecker plots against survival show what might be expected:

```
doubledecker(Survived ~ Sex, data=Titanic)
doubledecker(Survived ~ Class, data=Titanic)
```


Exploratory plots

Two-way doubledecker plot against survival shows different effects of Class for men and women:

doubledecker(Survived ~ Sex + Class, data=Titanic)

Fitting & visualizing models

mod0 <- loglm(~ 1 + 2 + 3 + 4, data=Titanic)
mosaic(mod0, main="Titanic: Model [C][G][A][S]")</pre>

Titanic: Model [C][G][A][S]

In the model formulas, I'm using variable numbers 1-4 for *C*lass, *G*ender, *A*ge and *S*urvived

The independence model serves only as a background for the total associations in the table

Let's clean this mosaic!!

Note the scale of residuals: +26 -- -11

Baseline model for Survived

mod1 <- loglm(~ 1*2*3 + 4, data=Titanic)
mosaic(mod1, main="Titanic: Model [CGA][S]")</pre>

Titanic: Model [CGA][S]

With *S* as response, the baseline model includes all associations among [CGA]

But this model asserts survival is independent of all of these

 $G^{2}_{(15)}$ = 671.96, a very poor fit

Adding associations: Main effects

4.0

2.0

0.0

-2.0

-34

mod2 <- loglm(~ 1*2*3 + (1+2+3)*4, data=Titanic)mosaic(mod2, main="Titanic: Model [CGA] [CS][GS][AS]")

Sex Male Female AdulChild AdultChild Pearson 1st residuals: 2nd Child Class ^{3rd} Adult Age Child Crew Adult p-value = <2e-16 Yes Noes No Survived

Titanic: Model [CGA][CS][GS][AS]

- This model allows associations of each of C, G, A with Survived
- $G^2(10) = 112.57$, still not good
- Pattern of residuals suggests 2-way interactions (3-way terms):
- Women & children first": suggests a term [GAS]
- Allow interactions of Class with Gender [CGS] and Class with Age [CAS]

Final model

mod3 <- loglm(~ 1*2*3 + (1*2)*4 + (1*3)*4, data=Titanic) mosaic(mod3, main="Titanic: Model [CGA] **[CGS][CAS]")**

Sex Male Female AdulChild AdultChild Pearson 1st residuals: 0.75 2nd Child Class 3rd Adult Age 0.00 Child Crew Adult -0.60 p-value = 0.8 No Yes Nkoes Survived

Titanic: Model [CGA][CGS][CAS]

Nice & clean!

$$G^{2}_{(4)}$$
 = 1.69, p=0.79

Before accepting this, should compare models, and consider

- parsimony
- model explanations

Comparing models

As usual, **anova** () give compact relative comparisons of a set of nested models

```
> anova(mod0, mod1, mod2, mod3)
LR tests for hierarchical log-linear models
Model 1:
\sim 1 + 2 + 3 + 4
Model 2:
~1 * 2 * 3 + 4
Model 3:
~1 * 2 * 3 + (1 + 2 + 3) * 4
Model 4:
~1 * 2 * 3 + (1 * 2) * 4 + (1 * 3) * 4
        Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 1243.66 25
Model 2 671.96 15 571.70 10
                                              0.000
Model 3 112.57 10 559.40
                                   5
                                              0.000
Model 4 1.69 4 110.88
                                    6
                                              0.000
Saturated 0.00 0 1.69
                                              0.793
                                    4
```

Q: Please help me interpret these results 🙂
Comparing models

LRstats () gives absolute GOF tests; also provides AIC, BIC stats: model parsimony

> LRstats(mod0, mod1, mod2, mod3)											
Likel	ihood	d sumr	mary table	∋:							
	AIC	BIC	LR Chisq	Df	Pr(>Chisq)						
mod0	1385	1395	1244	25	<2e-16	* * *					
mod1	833	858	672	15	<2e-16	* * *					
mod2	284	316	113	10	<2e-16	* * *					
mod3	185	226	2	4	0.79						
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1											

mod3 [CGA] [CGS] [CAS] wins!

- Acceptable *G*²
- Looks best by AIC & BIC

Model interpretation

Recall that the goal of analysis is to tell a story

- Greatest impact: lower class → decreased survival, regardless of Gender & Age
- Differences in survival by Class were moderated by both Gender & Age
 - Term [CGS]: Women in 3rd class did not have an advantage, while men in 1st class did vs. other classes
 - Term [CAS]: No children in 1st or 2nd class died, but nearly 2/3 in 3rd class did
- Summary:
 - Not so much "women & children first", rather
 - Women & children, ordered by class, and 1st class men!

Historical note

The Titanic sank on Apr. 15, 1912

On May 4, the technical illustrator, G. Bron published this graph in *The Sphere*, a popular magazine.

He used a remarkably modern graph to show the differences in survival by class, gender & age

Read the story: Friendly, Symanzik, Onder, <u>Visualizing the Titanic</u> Disaster, *Significance*, Feb., 2019

- Mosaic for an n-way table \rightarrow hierarchical decomposition of association
- Joint cell probabilities are decomposed as:

$$p_{ijk\ell\cdots} = \underbrace{\underbrace{p_i \times p_{j|i} \times p_{k|ij}}_{\{v_1v_2v_3\}} \times p_{\ell|ijk} \times \cdots \times p_{n|ijk\cdots}}_{\{v_1v_2v_3\}}$$

- First 2 terms: \rightarrow mosaic for {v₁, v₂}
- First 3 terms: \rightarrow mosaic for {v₁, v₂, v₃}
- ... and so on
- Roughly analogous to sequential fitting in regression: X_1 ; $X_2|X_1$; $X_3|X_1,X_2$
- Order of variables matters for interpretation
 - Mosaics: 1st split: easiest to see the marginal proportions
 - Mosaics: 2nd variable seen as conditional proportions, given the 1st

- Sequential models of joint independence
 - Give an additive decomposition of total association mutual independence [v₁][v₂] ... [v_p]

$$G^{2}_{[v_{1}][v_{2}]\dots[v_{p}]} = G^{2}_{[v_{1}][v_{2}]} + G^{2}_{[v_{1}v_{2}][v_{3}]} + G^{2}_{[v_{1}v_{2}v_{3}][v_{4}]} + \dots + G^{2}_{[v_{1}\dots v_{p-1}][v_{p}]}$$

• E.g., for Hair Eye color data

Model	Model symbol	df	G^2
Marginal	[Hair] [Eye]	9	146.44
Joint	[Hair, Eye] [Sex]	15	19.86
Mutual	[Hair] [Eye] [Sex]	24	166.30

Hair color × Eye color marginal table (ignoring Sex)

(Hair)(Eye), G2 (9) = 146.44

3-way table, Joint independence model [Hair Eye][Sex]

(HairEye)(Sex), G2 (15) = 19.86

3-way table, Mutual independence [Hair] [Eye][Sex]

(Hair)(Eye)(Sex), G2 (24) = 166.30

Putting these together:

TIP: vcdExtra::seq_loglm() generates a variety of sequential models

Sequential models: Applications

Response models

- When one variable, *R*, is a response and *E*₁, *E*₂,... are explantory, the baseline model is the model of joint independence, [*E*₁, *E*₂,...][*R*]
- Sequential mosaics then show the associations among the predictors
- The last mosaic shows all associations with R
- Better-fitting models will need to add associations of the form
 [E_iR], [E_iE_jR] ...

Causal models

Sometimes there is an assumed causal ordering of variables:

$$A \rightarrow B \rightarrow C \rightarrow D$$

- Each path of arrows: A → B, A → B → C is a sequential model of joint independence: [A][B], [AB] [C], [ABC] [D].
- Testing these decomposes all joint probabilities

Example: Marital status, pre- & extra-marital sex

Thornes and Collard (1979) studied divorce patterns in relation to premarital and extramarital sex, a 2^4 table, **PreSex** in vcd (G × P × E × M)

```
> data("PreSex", package="vcd")
```

	Gender	Women				Men			
	PremaritalSex	Yes		No		Yes		No	
	ExtramaritalSex	Yes	No	Yes	No	Yes	No	Yes	No
MaritalStatus									
Divorced		17	54	36	214	28	60	17	68
Married		4	25	4	322	11	42	4	130

Submodels:

- G][P]: Do men & women differ by pre-marital sex?
- GP][E]: Given G & P, are there differences in extra-marital sex?
- [GPE][M]: Are there differences in divorce among the G, P, E groups?

Example: Marital status, pre- & extra-marital sex

Order the table variables as $G \rightarrow P \rightarrow E \rightarrow M$

```
> names(dimnames(PreSex))  # table variable names
[1] "MaritalStatus" "ExtramaritalSex" "PremaritalSex" "Gender"
> PreSex <- aperm(PreSex, 4:1)  # order variables G, P, E, M</pre>
```

Fit each sequential model to the marginal sub-table. vcdExtra::seq_loglm() generates these models of joint independence

LRstats(PreSex.mods)

Model	df	G^2
[G] [P]	1	75.259
[GP] [E]	3	48.929
[GPE] [M]	7	107.956
[G] [P] [E] [M]	11	232.142

Mosaic plots

Gender and Premarital Sex

Twice as many women in this sample

Men far more likely to report premarital sex than women (odds ratio = 3.7)

Mosaic plots

Gender*Pre + ExtramaritalSex

Men & women who reported Prefar more likely to report Extra- sex

Odds ratio of Extra- given Preabout the same for men & women (3.61 vs. 3.56)

Mosaic plots: Full table

```
mosaic(PreSex,
    expected = ~Gender * PremaritalSex * ExtramaritalSex
    + MaritalStatus,
    main = "Gender*Pre*Extra + MaritalStatus")
# (GPE)(PEM)
mosaic(PreSex,
    expected = ~ Gender * PremaritalSex * ExtramaritalSex
    + MaritalStatus * PremaritalSex * ExtramaritalSex,
    main = "G*P*E + P*E*M")
```

Gender*Pre*Extra + MaritalStatus

G*P*E + P*E*M

Mosaic plots: Full table

```
mosaic(PreSex,
    expected = ~Gender * PremaritalSex * ExtramaritalSex
    + MaritalStatus,
    main = "Gender*Pre*Extra + MaritalStatus")
```

Gender*Pre*Extra + MaritalStatus

In the model [GPE][M], marital status depends in a complex way

Among women, those reporting Premore likely to be divorced

Among men, those reporting Preonly more likely to be divorced if Extra-

This suggests adding associations of M with P and E: [PEM] term

Mosaic plots: Full table

expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus * PremaritalSex * ExtramaritalSex,
main = "G*P*E + P*E*M")

G*P*E + P*E*M

This model fits well, G²(4) = 5.26, p=0.26

Loglinear thinking: once we take GPE into account, are there simpler models for association with M?

Looking forward: logit models for MaritalStatus often provide an easier path

Partial association, partial mosaics

Sometimes useful to do a stratified analysis

- How does association between two (or more) variables vary over levels of other variables?
- Mosaic plots for main variables show partial association at each level of others
- E.g., Hair color, Eye color, subset by Sex

Partial association, partial mosaics

Stratified analysis: conditional decomposition of G²

- Fit models of partial (conditional) independence, A ⊥ B | C_k at each level of (controlling for) C.
- \Rightarrow partial G^2 s add to the overall G^2 for conditional independence, $A \perp B \mid C$

$$G_{A\perp B\mid C}^2 = \sum_k G_{A\perp B\mid C(k)}^2$$

Table: Partial and Overall conditional tests, $Hair \perp Eye | Sex$

Model	df	G^2	<i>p</i> -value
[<i>Hair</i>][<i>Eye</i>] Male	9	44.445	0.000
[<i>Hair</i>][<i>Eye</i>] Female	9	112.233	0.000
[<i>Hair</i>][<i>Eye</i>] Sex	18	156.668	0.000

Partial association: Summary

- Overall, there is a strong association of hair color and eye color, controlling for sex, G²₍₁₈₎ = 156.67
 - For F, G²₍₉₎ = 112.23 accounts for 72% of this association
- The pattern of association is similar for M & F
 - The largest difference is for blue-eyed blonds, much more prevalent among F than M. Is there a hair dye effect?

Summary: What we've learned

- Mosaic plots use sequential splits to show marginal and conditional frequencies in an *n*-way table
 - Shading: sign and magnitude of residuals \rightarrow contributions to χ^2
 - Shows the pattern of association not accounted for
 - Permuting rows/cols often helps
- Loglinear models
 - Express associations with ANOVA-like interaction terms: A*B, A*C
 - Joint independence: [AB][C] ≡ A * B + C
 - Conditional independence: [AC][BC] \equiv A \perp B | C
 - Fitting models ≅ "cleaning the mosaic"
 - Response models: include all associations among predictors
- Sequential / partial plots & models
 - Sequential: Decompose all associations: V₁; V₂|V₁; V₃|{V₁, V₂}, ...
 - Partial: Decompose conditional associations: [V₁, V₂] | V₃= {a, b, ...}