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Today’s topics
• Mosaic displays: basic ideas
• Models for count data
 Fitting loglinear models

• Two-way tables
• Fitting & graphing LLMs
• Three-way tables: different kinds of independence
• Sequential plots & models
• Marginal & partial displays
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Mosaic displays
• Similar to sieve plot, tile plot, using area ~ frequency
• Mosaic plots generalize more readily to n-way tables 

(subject to resolution of the display)
• Intimately connected to loglinear & generalized 

linear models
 Can fit sequential models as variables are entered
 Show the pattern of association not accounted for in a 

given model
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Mosaic displays: basic ideas
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UCB Admissions: Gender frequencies

Mosaic displays theory: Hartigan & Kleiner (1981); Friendly (1994, 1999)

Area proportional display for an n-way 
table

Tiles: recursive splits of a unit square, 
alternating H, V

V1: width ~ marginal frequencies, n i++
V2: height ~ cond freq:  V2| V1 = nij / ni++
V3: width ~ cond freq: V3 | V1, V2 = nikj / nij+

→ Area ~ cell frequency, nijk



Mosaic displays: basic ideas
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UCB Admissions: Gender x Admit

Area proportional display for an n-way 
table

Tiles: recursive splits of a unit square, 
alternating H, V

V1: width ~ marginal frequencies, n i++
V2: height ~ cond freq:  V2| V1 = nij / ni++
V3: width ~ cond freq: V3 | V1, V2 = nikj / nij+

→ Area ~ cell frequency, nijk



Mosaic displays: basic ideas
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Gender  x Admit x Dept frequencies

Area proportional display for an n-way 
table

Tiles: recursive splits of a unit square, 
alternating H, V

V1: width ~ marginal frequencies, n i++
V2: height ~ cond freq:  V2| V1 = nij / ni++
V3: width ~ cond freq: V3 | V1, V2 = nikj / nij+

→ Area ~ cell frequency, nijk



Mosaic displays: Independence
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Expected frequencies if Admit ⊥ Gender

Expected frequencies under 
independence are products of the row 
/ col margins

→ Row and col tiles align when 
variables are independent



Mosaic displays: Residuals & shading
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History corner: von Mayr
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Georg von Mayr (1877) was the first to suggest an area-proportional display for two 
categorical variables

Total count = 1000

Divided into (cows, pigs, 
sheep?)
A = 600, B= 300, C= 100)

Each of these sub-divided by a  
2nd variable (region: a, b, c)

The name: “bottle diagram with 
double divisions” suggests 
further splits 

See: Friendly (2002), “A Brief History of the Mosaic 
Display”, JCGS, 11:1,89-107, 
http://dx.doi.org/10.1198/106186002317375631

http://dx.doi.org/10.1198/106186002317375631


History corner: Minard
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Charles Joseph Minard used an early form of an area-proportional plot to show the  
value of transport of goods along the Canal du Centre, from Chalon to Dijon.
• Width ~ distance
• Height ~ amount of goods

→ Value = distance × amount



History corner: Francis Walker
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In the 1870 Statistical Album of the US Census, Francis Walker wanted to show the 
populations of the states as comprised of {foreign,  native colored, native white}
and born {within, outside} their state of residence.

NYPennOhioIll.

VATenn

CT

Ark

CAMiss

NJ

States are ordered by 
total pop, shown by area

For each state, a small 
mosaic, supplemented 
by a marginal one (w/in, 
outside)



Mosaic cartograms
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US map provides a 
spatial framework for 
showing the 
distribution of 
categorical data

Each mosaic is 
positioned as in a 
schematic US map



Loglinear models: Perspectives
Loglinear models grew up and developed from three 
different ideas and ways of thinking about notions of 
independence in frequency data
• Loglinear approach: analog of ANOVA; associations are ~ 

interactions
• glm() approach: analog of general regression model, for 

log(Freq), with Poisson distn of errors
• Logit models: Loglinear, simplified for a binary response
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Loglinear approach
First developed as analog of classical ANOVA models, where 
multiplicative relations are re-expressed in additive form as models for 
log(Freq)

• This expresses the independence model for a 2-way table as no A*B 
association

• Short-hand notations: [A][B] = A ⊥ B = ~ A + B
• Fit by simple iterative proportional scaling: MASS::loglm()

 Parameters aren’t estimated; only fitted frequencies.
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loglm(Freq ~ A + B + C)       # [A][B][C]
loglm(Freq ~ A * B + C )      # [A B][C]
loglm(Freq ~ A * B * C)       # [A B C]



glm() approach
Extension of classical linear models recognized loglinear models as a 
model for log(Freq), with Poisson distn for cell counts

log𝒎𝒎 = 𝑿𝑿 𝛽𝛽

• Looks like std ANOVA/regression model, but for log(Freq)
• This allows quantitative predictors and special ways to treat ordinal

factors
• Fit by maximum likelihood using glm(…, family=poisson)
 Can estimate parameters; do structured tests

• Standard diagnostic methods available
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glm( Freq ~ A + B + C, family = poisson # [A] [B] [C]
glm( Freq ~ A * B + C, family = poisson)     # [A B] [C]
glm( Freq ~ A * (B+C), family = poisson # [A B] [A C]



Logit models
When one variable is a binary response, a logit model is a 
simpler way to specify a loglinear model

• log(m1jk/m2jk) is the log odds of response A1 vs A2
• The model only includes terms for the effect of A on B & C
• Equivalent loglinear model: [AB][AC] [BC]
• The logit models assumes the [BC] association; 

[AB] →βj
B [AC] →βk

C

• Fit using family=binomial
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glm(outcome==“survived” ~ B + C, family = binomial)



Two-way tables: loglinear approach
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Two-way tables: loglinear approach
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Two-way tables: loglinear approach
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Example: Independence
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> educ <- c(50, 100, 50)                       # marginal frequencies
> names(educ) <- c("Low", "Med", "High")
> party <- c(20, 50, 30)                       # marginal frequencies
> names(party) <- c("NDP", "Liberal", "Cons")
> table <- outer(educ, party) / sum(party)     # cell = row * col / n
> names(dimnames(table)) <- c("Education", "Party")
> table

Party
Education NDP Liberal Cons

Low   10      25   15
Med   20      50   30
High  10      25   15

Generate a table of Education by Party preference, strictly independent

> MASS::loglm(~ Education + Party, table)
Call:
MASS::loglm(formula = ~Education + Party, data = table)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio   0  4        1
Pearson            0  4        1

Perfect fit:


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> sieve(table, shade=TRUE) > mosaic(table, shade=TRUE)

Both sieve diagrams and mosaic plots show what independence “looks like”



Two-way tables: glm approach
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total n
margin A
margin B
association

X β



Assessing goodness of fit
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Degrees of freedom
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> addmargins(HE) |> knitr::kable()

|      | Black| Brown| Red| Blond| Sum|
|:-----|-----:|-----:|---:|-----:|---:|
|Brown |    68|   119|  26|     7| 220|
|Blue  |    20|    84|  17|    94| 215|
|Hazel |    15|    54|  14|    10|  93|
|Green |     5|    29|  14|    16|  64|
|:-----|-----:|-----:|---:|-----:|---:|
|Sum |   108|   286|  71|   127| 592|

Q: Why do degrees of freedom for an r × c table = (r-1) * (c-1)?
A: Because the row & column totals are used to calculate expected frequencies
→ Only (r-1) independent parameters for each column
→ Only (c-1) independent parameters for each row



R functions for loglinear models
• vcd::assocstats() – only χ2 tests for two-way tables; not a 

model (no parameters; no residuals)
• MASS::loglm() – general loglinear models for n-way tables

loglm(formula, data, subset, na.action, …)

• glm() – all generalized linear models; loglinear with family = 
poisson

glm(formula, data, weights, subset, …)

• Model formulas have the form: 
 table form: ~ A + B + … (independence); 
 ~ A * B + C  (allow A*B association)
 frequency data frame: Freq ~ A * B + C

26



R functions & methods
• loglm() and glm() return an R object with named 

components and with a class()– here “loglm”

• Objects have methods: print(), summary(), coef(), 
residuals(), plot() and other methods
 Methods are specific to the class of the object

• print(arth.mod) → print.loglm(arth.mod)

• residuals(arth.mod) → residuals.loglm(arth.mod)
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> arth.mod <- loglm(~Treatment+Improved, data=arth.tab, fitted=TRUE)
> names(arth.mod)
> names(arth.mod)
[1] "lrt"         "pearson"     "df"          "margin"      "fitted"      "param"      
[7] "call"        "formula"     "frequencies" "deviance"    "nobs"        "terms“

class(arth.mod)
[1] "loglm" 



Model-based methods: Fitting & graphing
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input 

data

glm()
polr()

multinom()
model 
object

plot(mod)
plot(f(mod))

residuals(mod)

coef(mod)
confint(mod)

data model 
function method outputobject



Example: Arthritis treatment
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Data on effects of treatment for rheumatoid arthritis (in case form)

> data(Arthritis, package="vcd")
> str(Arthritis)
'data.frame': 84 obs. of  5 variables:
$ ID       : int  57 46 77 17 36 23 75 39 33 55 ...
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex      : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ Age      : int  27 29 30 32 46 58 59 59 63 63 ...
$ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...

For now, ignore Age; consider the 2 x 3 table of Treatment x Improved

> arth.tab <- with(Arthritis, table(Treatment, Improved))
> arth.tab

Improved
Treatment None Some Marked
Placebo   29    7      7
Treated   13    7     21

arth.tab is a “table” object 
print.table() gives this output



Arthritis treatment
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Fit the independence model, ~ Treatment + Improved

> (arth.mod <- loglm(~Treatment + Improved, data = arth.tab, fitted=TRUE))
Call:
loglm(formula = ~Treatment + Improved, data = arth.tab, fitted = TRUE)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 13.53  2 0.001154
Pearson          13.06  2 0.001463

> round(residuals(arth.mod), 3)
Improved

Treatment   None   Some Marked
Placebo  1.535 -0.063 -2.152
Treated -1.777  0.064  1.837

# Likelihood ratio chisquare
> deviance(arth.mod)
[1] 13.53

> coef(arth.mod)
$`(Intercept)`
[1] 2.543

$Treatment
Placebo  Treated 
0.0238  -0.0238 

$Improved
None     Some   Marked 

0.5014  -0.5972   0.0959 

Some methods: residuals(), deviance(), coef(), …

The method print.loglm() gives 
this output



Arthritis treatment: Plots
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Visualization: mosaic() or plot() the model or table

> mosaic(arth.mod, shade=TRUE, gp_args=list(interpolate=1:4),
labeling = labeling_values)

Splits by the response, 
Treatment first

Custom scheme for 
shading levels; normally
c(2, 4) for |residual|

Cells can be labeled by 
freq, residual, … 



Arthritis treatment: glm()
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glm() for loglinear models easiest w/ the data as a data.frame in frequency
form, family=poisson

> arth.df <- as.data.frame(xtabs(~ Treatment + Improved,  
data=Arthritis))

> arth.df
Treatment Improved Freq

1   Placebo     None   29
2   Treated     None   13
3   Placebo     Some    7
4   Treated     Some    7
5   Placebo   Marked    7
6   Treated   Marked   21

> arth.glm <- glm(Freq ~ Treatment + Improved, data = arth.df,
family = poisson)

More on glm() models later



Example: Hair color & Eye color
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> haireye <- margin.table(HairEyeColor, 1:2)
> (HE.mod <- loglm(~ Hair + Eye, data=haireye))
Call:
loglm(formula = ~Hair + Eye, data = haireye)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 146.4  9        0
Pearson          138.3  9        0

> round(residuals(HE.mod), 2)
Re-fitting to get frequencies and fitted values

Eye
Hair    Brown  Blue Hazel Green
Black  4.00 -3.39 -0.49 -2.21
Brown  1.21 -2.02  1.31 -0.35
Red   -0.08 -1.85  0.82  2.04
Blond -7.33  6.17 -2.47  0.60



Mosaic displays: Seeing patterns
• In two-way models, residuals contain the info on lack of 

independence
 Equivalently: help to understand the pattern of association
 Effect ordering: permuting the rows / cols often makes the pattern 

more apparent

• Correspondence analysis: → reorder by scores on Dim 1
 seriation::permute(order=“CA”) does this for two-way tables
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> haireye
Eye

Hair    Brown Blue Hazel Green
Black    68   20    15     5
Brown   119   84    54    29
Red      26   17    14    14
Blond     7   94    10    16

> library(seriation)
> permute(haireye, "CA")

Eye
Hair    Brown Hazel Green Blue

Black    68    15     5   20
Brown   119    54    29   84
Red      26    14    14   17
Blond     7    10    16   94



Mosaic displays: Seeing patterns
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mosaic(haireye,                shade=TRUE, labeling=labeling_residuals)
mosaic(permute(haireye, "CA"), shade=TRUE, labeling=labeling_residuals)



Bee abundance data
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A study by Taylor Kerekes 
examined the abundance of bee 
species in Ontario over three 
periods of time.  

Q: Does relative abundance of 
species differ over years?

A: Do a chi-square test

# A tibble: 14 x 4
species       `2002` `2005` `2021`
<chr>          <dbl>  <dbl>  <dbl>

1 Affinis 508      0      0
2 Bimaculatus 362    345    137
3 Borealis          30      6     11
4 Fervidus 634     19     10
5 Griseocollis 35     21     21
6 Impatiens        638    564    616
7 Pensylvanicus 112      0      0
8 Perplexus 160     57      9
9 Rufocinctus 51     46     17

10 Ternarius 9     16      9
11 Terricola 119      1      4
12 Vagans 713     82     39
13 Ashtoni (M)       27      0      0
14 Citrinus (M)     234     38      5

chisq.test(bees[,-1])
Pearson's Chi-squared test

data:  bees[, -1]
X-squared = 1981, df = 26, p-value <2e-16

How to understand the pattern of association?


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Alphabetic order of 
species:
No clear pattern

mosaic(bees.mat, shade=TRUE, …) 
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bees.ca <- ca(bees.mat)
plot(bees.ca, 

lines=c(FALSE,TRUE),    # join years with lines
mass = c(TRUE, TRUE))   # symbol size ~ marginal frequency

Correspondence analysis finds scores for the row & col categories to account 
for maximum χ2
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mosaic(permute(bees.mat, “CA”), shade=TRUE, …) 

One main cluster was 
very prevalent in 2002

A few species 
became prominent 
in later years



Three-way tables
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Reduced models
• Goal: fit the smallest model sufficient to explain/describe the 

observed frequencies
 Similar to Anova models, e.g., ~(A + B + C)3 with all interactions
 Do we need all those interaction terms?

• Hierarchical models
 Most loglinear models are taken to be hierarchical:
 A high-order term, like λijk

ABC → all lower order terms included
• Why: principle of marginality– hard to interpret w/o low order relatives

• Thus, a shorthand notation for a loglinear model lists only the 
high-order terms. For example:
 [ABC] → A + B + C + AB + AC + BC + ABC
 [AB][AC] → A + B + C + AB + AC
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Reduced models
• For a three-way table there is a range of models between mutual 

independence, [A][B][C], and the saturated model, [ABC]
• Each model has an independence interpretation: 

[A][B]   ≡ A ⊥ B   ≡ A independent of B
• Special names for various submodels
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Model types
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Association graphs
• An association graph represents variables in an n-

way frequency table by an undirected graph
• Nodes are the variables
• Edges are first-order (2-way) associations
• → two variables are independent if not joined by an edge
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A B

[A] [B]

A B

[A B]

A B

C

[A B] [A C]Under-solved problem: Use an association graph to 
represent strength of conditional associations or as 
a widget for model fitting



Model types & association graphs
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Model types: loglm()

46

loglm(~ A + B + C)       # mutual independence      [A][B][C]
loglm(~ A * B + C)       # joint independence       [AB][C]
loglm(~ A*C + B*C)       # conditional independence [AC][BC]
loglm(~ (A + B + C)^2)   # homogeneous, all 2-way   [AB][AC][BC]
loglm(~ A * B * C)       # saturated model          [ABC]

Each of these have simple translations into the model formulae 
for loglm()

e.g., Berkeley data
loglm(~ (Admit + Gender) * Dept)
loglm(~Admit*Dept + Gender * Dept)

A D G

Association graph

→A ⊥ G | D
(just put your finger over D)



Collapsibility: Marginal & conditional associations

• Q: When can we legitimately collapse a table, {ABC}, over 
some variable (C)?

• A: When the marginal association of AB is the same as the 
conditional association, AB | C

• Recall the Berkeley data
 Margin of [Admit, Gender] ignoring Dept showed strong association
 The partial assoc. within Dept were mostly NS
 Conditional association [Admit, Gender | Dept] ≠ marginal [A, G]

• Three-way tables: The AB marginal and AB | C conditional 
associations are the same, if either:
 A & C are conditionally independent, A ⊥ C| B = [AB][CB]
 B & C are conditionally independent, B ⊥ C | A = [AB][AC]
 → no three-way association
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Higher-way tables
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DaytonSurvey data: A 25 table
2,276 HS seniors asked if they had ever used cigarettes, alcohol, or marijuana 

cigarette Yes              No            
alcohol Yes      No     Yes      No    
marijuana Yes  No Yes  No Yes  No Yes  No

sex race
female white           405 268   1  17  13 218   1 117

other            23  23   0   1   2  19   0  12
male   white           453 228   1  17  28 201   1 133

other            30  19   1   8   1  18   0  17

Suppose we wish to fit the model:
[A M] [A C] [M C]   [A R] [A G] [R G]

The association graph implies:

{race, gender} ⊥ {marijuana, cigarette} | alcohol

If it fits, we can collapse the table over {race, 
gender} to study associations among A, M & C. 



Response vs. Association models

49



Goodness of fit tests
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Nested models & ANOVA-type tests
Two models, M1 and M2 are nested when one (say, M2) is a special case of the 
other
• Model M2 (w/ ν2 df) fits a subset of the parameters  of M1 (w/ ν1 df)
• M2 is more restrictive – cannot fit better than M1: G2(M2) ≥ G2(M1)
• The least restrictive model is the saturated model [ABC …], w/ G2 = 0

Therefore, we can test the difference in G2 as a specific test of the added 
restrictions in M2 compared to M1.
• This test has a χ2 distribution with df = ν2 - ν1
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Example: Berkeley admissions
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• Only testing the decrease in G2 from one model to the next
• Here, each model is significantly better than the previous
• Joint vs. all two-way: Does Admit depend on Dept and/or Gender?
• Absolute fit of all 2-way model is not terrible.  Investigate this further!



Fitting these in R
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Example: Berkeley admissions
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Fit the model of mutual independence, using loglm()
> berk.loglm0 <- loglm(~ Admit + Dept + Gender, data=UCBAdmissions)
> berk.loglm0
Call:
loglm(formula = ~Admit + Dept + Gender, data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 2097.7 16        0
Pearson          2000.3 16        0

Conditional independence [AD] [AG]
> berk.loglm1 <- loglm(~ Admit * (Dept + Gender), data=UCBAdmissions)
> berk.loglm1
Call:
loglm(formula = ~Admit * (Dept + Gender), data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 1148.9 10        0
Pearson          1015.7 10        0
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> berk.loglm2 <- loglm(~ Admit + (Dept * Gender), data=UCBAdmissions)
> berk.loglm2
Call:
loglm(formula = ~Admit + (Dept * Gender), data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 877.06 11        0
Pearson          797.70 11        0

> berk.loglm3 <-loglm(~(Admit+Dept+Gender)^2, data=UCBAdmissions)
> berk.loglm3
Call:
loglm(formula = ~(Admit + Dept + Gender)^2, data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 20.204  5 0.0011441
Pearson          18.823  5 0.0020740

Conditional independence, [AD] [AG]

All two-way model, [AD] [AG] [DG]



ANOVA tests
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> aov1 <- anova(berk.loglm0, berk.loglm1, berk.loglm3, test="Chisq")
> aov1
LR tests for hierarchical log-linear models

Model 1:
~Admit + Dept + Gender 

Model 2:
~Admit * (Dept + Gender) 

Model 3:
~(Admit + Dept + Gender)^2 

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1   2097.671 16                                    
Model 2   1148.901 10    948.770         6        0.00000
Model 3     20.204  5   1128.697         5        0.00000
Saturated    0.000  0     20.204         5        0.00114

These are nested. Compare with anova()

These are tests of relative fit, ∆G2 = G2 (Mi | Mi-1 ) 



LRstats: AIC & BIC
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vcdExtra::LRstats() gives one-line summaries of a collection of models
These are tests of absolute goodness of fit

> LRstats(berk.loglm0, berk.loglm1, berk.loglm2, berk.loglm3)
Likelihood summary table:

AIC  BIC LR Chisq Df Pr(>Chisq)    
berk.loglm0 2273 2282     2098 16     <2e-16 ***
berk.loglm1 1336 1352     1149 10     <2e-16 ***
berk.loglm2 1062 1077      877 11     <2e-16 ***
berk.loglm3  217  240       20  5     0.0011 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Mosaic displays: Visual fitting
• Each mosaic shows:
 The DATA – size of tiles
 (some) marginal frequencies – initial splits (visual grouping)
 RESIDUALS (shading) – what associations have been omitted?

• Visual fitting
 Start with a simple model: mutual independence or joint 

independence for response models
 Pattern of residuals: suggest a better model → smaller residuals
 Add terms: → smaller residuals, less shading: “cleaning the mosaic”
 Good fitting model will have mostly unshaded tiles
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Mosaic displays: Predictor variables
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In response models, the mosaic of 
the predictors gives a graphic 
summary of background variables



Baseline response model
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For the Berkeley data, start with the model of joint independence, [A][DG]
Fits badly: G2

(11) = 877.1

This is the null, or baseline 
model when Admit is the 
response variable.

Allows/fits assoc. of [Dept 
Gender], not shown in shading

Remaining shading suggests:
[AD] : Admit varies w/ Dept
[AG] : Admit varies w/ Gender



Add an association term…
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Double decker plots
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Visualize dependence of one response variable (typically binary) on combinations of predictors
Formally: mosaic plots with vertical splits for all predictors, highlighting the response by shading

doubledecker(Admit ~ Dept + Gender, data = UCBAdmissions[2:1, ,])

DDAR Fig 5.34, p 211

An exploratory plot

Highlights the M-F 
diffce in Admit for 
Dept A



Survival on the Titanic
An epic data set, revealed with loglinear models



4-way tables: Survival on the Titanic
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Data on the fate of passengers & crew on the HMS Titanic: a 4 × 2 × 2 × 2 
table
> data(Titanic, package=“datasets”)
> str(Titanic)
'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
- attr(*, "dimnames")=List of 4
..$ Class   : chr [1:4] "1st" "2nd" "3rd" "Crew"
..$ Sex     : chr [1:2] "Male" "Female"
..$ Age     : chr [1:2] "Child" "Adult"
..$ Survived: chr [1:2] "No" "Yes"

What proportion survived?  Ans: 711/2201 = 32.3%

> addmargins(margin.table(Titanic, 4))
Survived

No  Yes  Sum 
1490  711 2201 
> margin.table(Titanic, 4) / sum(Titanic)
Survived

No   Yes 
0.677 0.323 



Zero cells
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> structable(Titanic)
Sex      Male     Female    
Survived   No Yes     No Yes

Class Age                               
1st   Child             0   5      0   1

Adult           118  57      4 140
2nd   Child             0  11      0  13

Adult           154  14     13  80
3rd   Child            35  13     17  14

Adult           387  75     89  76
Crew  Child             0   0      0   0

Adult           670 192      3  20

Two types of zero cells:
• Structural zeros: could not occur (children in crew)
• Sampling zeros: did not happen to occur (children in 1st & 2nd who died)
• Beware: zeros can cause problems:

• Loss of df
• 0/0 → NaN in χ2 tests



Exploratory plots
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Exploratory plots
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Fitting & visualizing models
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mod0 <- loglm(~ 1 + 2 + 3 + 4, data=Titanic)
mosaic(mod0, main="Titanic: Model [C][G][A][S]")

In the model formulas, I’m 
using variable numbers 1-4 
for Class, Gender, Age and 
Survived

The independence model 
serves only as a 
background for the total 
associations in the table

Let’s clean this mosaic!!

Note the scale of residuals: 
+26 -- -11



Baseline model for Survived
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mod1 <- loglm(~ 1*2*3 + 4, data=Titanic)
mosaic(mod1, main="Titanic: Model [CGA][S]")

With S as response, the 
baseline model includes all 
associations among [CGA]

But this model asserts 
survival is independent of 
all of these

G2
(15) = 671.96, a very poor 

fit



Adding associations: Main effects
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mod2 <- loglm(~ 1*2*3 + (1+2+3)*4, data=Titanic)
mosaic(mod2, main="Titanic: Model [CGA] [CS][GS][AS]")



Final model

71

mod3 <- loglm(~ 1*2*3 + (1*2)*4 + (1*3)*4, data=Titanic)
mosaic(mod3, main="Titanic: Model [CGA] [CGS][CAS]")

Nice & clean!

G2 
(4) = 1.69, p=0.79

Before accepting this, 
should compare models, 
and consider 
• parsimony
• model explanations



Comparing models
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As usual, anova() give compact relative comparisons of a set of nested models

> anova(mod0, mod1, mod2, mod3)
LR tests for hierarchical log-linear models

Model 1:
~1 + 2 + 3 + 4 

Model 2:
~1 * 2 * 3 + 4 

Model 3:
~1 * 2 * 3 + (1 + 2 + 3) * 4 

Model 4:
~1 * 2 * 3 + (1 * 2) * 4 + (1 * 3) * 4 

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1    1243.66 25                                    
Model 2     671.96 15     571.70        10          0.000
Model 3     112.57 10     559.40         5          0.000
Model 4       1.69  4     110.88         6          0.000
Saturated     0.00  0       1.69         4          0.793

Q: Please help me interpret these results 



Comparing models
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LRstats() gives absolute GOF tests; also provides AIC, BIC stats: model parsimony

> LRstats(mod0, mod1, mod2, mod3)
Likelihood summary table:

AIC  BIC LR Chisq Df Pr(>Chisq)    
mod0 1385 1395     1244 25     <2e-16 ***
mod1  833  858      672 15     <2e-16 ***
mod2  284  316      113 10     <2e-16 ***
mod3  185  226        2  4       0.79    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

mod3 [CGA] [CGS] [CAS] wins!
• Acceptable G2

• Looks best by AIC & BIC



Model interpretation
Recall that the goal of analysis is to tell a story
• Greatest impact: lower class → decreased survival, regardless 

of Gender & Age
• Differences in survival by Class were moderated by both 

Gender & Age
 Term [CGS]: Women in 3rd class did not have an advantage, while men 

in 1st class did vs. other classes
 Term [CAS]: No children in 1st or 2nd class died, but nearly 2/3 in 3rd

class did

• Summary:
 Not so much “women & children first”, rather
 Women & children, ordered by class, and 1st class men!
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Historical note
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The Titanic sank on Apr. 15, 1912

On May 4, the technical illustrator, G. 
Bron published this graph in The 
Sphere, a popular magazine.

He used a remarkably modern graph 
to show the differences in survival by 
class, gender & age

Read the story:
Friendly, Symanzik, Onder, Visualizing the Titanic 
Disaster, Significance, Feb., 2019

died survived

https://www.datavis.ca/papers/significance_Friendly_Titanic.pdf


Sequential plots & models
• Mosaic for an n-way table → hierarchical decomposition of association
• Joint cell probabilities are decomposed as:

 First 2 terms: → mosaic for {v1, v2}
 First 3 terms: → mosaic for {v1, v2, v3}
 … and so on

• Roughly analogous to sequential fitting in regression: X1 ; X2|X1 ; X3|X1,X2

• Order of variables matters for interpretation 
 Mosaics: 1st split: easiest to see the marginal proportions
 Mosaics: 2nd variable seen as conditional proportions, given the 1st
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Friendly (1999), Extending Mosaic Displays: Marginal, Conditional, and Partial Views of Categorical Data, 
JCGS, 8:3, 373-395, DOI: 10.1080/10618600.1999.10474820 

https://www.datavis.ca/papers/jcgs-extending.pdf


Sequential plots & models
• Sequential models of joint independence
 Give an additive decomposition of total association – mutual 

independence [v1][v2] … [vp]

• E.g., for Hair Eye color data
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Sequential plots & models
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Hair color × Eye color marginal table (ignoring Sex)



Sequential plots & models
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3-way table, Joint independence model [Hair Eye][Sex]



Sequential plots & models
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3-way table, Mutual independence [Hair] [Eye][Sex]



Sequential plots & models
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Putting these together:

TIP: vcdExtra::seq_loglm() generates a variety of sequential models



Sequential models: Applications
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Example: Marital status, pre- & extra-marital sex
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Thornes and Collard (1979) studied divorce patterns in relation to premarital
and extramarital sex, a 24 table, PreSex in vcd ( G × P × E × M )

> data("PreSex", package="vcd")
> structable(Gender + PremaritalSex + ExtramaritalSex ~ 

MaritalStatus, data = PreSex)

Gender          Women             Men            
PremaritalSex Yes      No     Yes      No    
ExtramaritalSex Yes  No Yes  No Yes  No Yes  No

MaritalStatus
Divorced                         17  54  36 214  28  60  17  68
Married                           4  25   4 322  11  42   4 130

Submodels:

 [G][P] :       Do men & women differ by pre-marital sex?
 [GP][E]:      Given G & P, are there differences in extra-marital sex?
 [GPE][M]:  Are there differences in divorce among the G, P, E groups?



Example: Marital status, pre- & extra-marital sex
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Order the table variables as G  → P → E  → M

> names(dimnames(PreSex))        # table variable names
[1] "MaritalStatus"   "ExtramaritalSex" "PremaritalSex"   "Gender“

> PreSex <- aperm(PreSex, 4:1)   # order variables G, P, E, M

Fit each sequential model to the marginal sub-table. vcdExtra::seq_loglm() 
generates these models of joint independence

PreSex.mods <- seq_loglm(PreSex, 
type="joint", 
marginals = 2:4) 

LRstats(PreSex.mods)
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Mosaic plots
# (Gender Pre)
mosaic(margin.table(PreSex, 1:2), shade=TRUE,

main = "Gender and Premarital Sex")

Twice as many women in this sample

Men far more likely to report pre-
marital sex than women (odds ratio = 
3.7)



87

Mosaic plots
# (Gender Pre)(Extra)
mosaic(margin.table(PreSex, 1:3),

expected = ~Gender * PremaritalSex + ExtramaritalSex,
main = "Gender*Pre + ExtramaritalSex")

Men & women who reported Pre-
far more likely to report Extra- sex

Odds ratio of Extra- given Pre-
about the same for men  & women
(3.61 vs. 3.56)
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Mosaic plots: Full table
mosaic(PreSex,

expected = ~Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus,
main = "Gender*Pre*Extra + MaritalStatus")

# (GPE)(PEM)
mosaic(PreSex,

expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus * PremaritalSex * ExtramaritalSex,
main = "G*P*E + P*E*M")
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Mosaic plots: Full table
mosaic(PreSex,

expected = ~Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus,
main = "Gender*Pre*Extra + MaritalStatus")

In the model [GPE][M], marital 
status depends in a complex way

Among women, those reporting Pre-
more likely to be divorced

Among men, those reporting Pre-
only more likely to be divorced if 
Extra-

This suggests adding associations of 
M with P and E: [PEM] term
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Mosaic plots: Full table
# (GPE)(PEM)
mosaic(PreSex,

expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus * PremaritalSex * ExtramaritalSex,
main = "G*P*E + P*E*M")

This model fits well, G2(4) = 5.26, 
p=0.26

Loglinear thinking: once we take 
GPE into account, are there simpler 
models for association with M?

Looking forward: logit models for 
MaritalStatus often provide an 
easier path



Partial association, partial mosaics
Sometimes useful to do a stratified analysis
• How does association between two (or more) variables vary over levels of other 

variables?
• Mosaic plots for main variables show partial association at each level of others
• E.g., Hair color, Eye color, subset by Sex
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Partial association, partial mosaics
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Partial association: Summary
• Overall, there is a strong association of hair color and eye 

color, controlling for sex, G2
(18) = 156.67

 For F, G2
(9) = 112.23 accounts for 72% of this association

• The pattern of association is similar for M & F
 The largest difference is for blue-eyed blonds, much more prevalent 

among F than M. Is there a hair dye effect?
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Summary: What we’ve learned
• Mosaic plots use sequential splits to show marginal and 

conditional frequencies in an n-way table
 Shading: sign and magnitude of residuals → contributions to χ2

 Shows the pattern of association not accounted for
 Permuting rows/cols often helps

• Loglinear models 
 Express associations with ANOVA-like interaction terms: A*B, A*C

• Joint independence: [AB][C] ≡ A * B + C
• Conditional independence: [AC][BC] ≡ A ⊥ B | C

 Fitting models ≅ “cleaning the mosaic”
 Response models: include all associations among predictors

• Sequential / partial plots & models
 Sequential: Decompose all associations: V1;  V2|V1;   V3|{V1, V2}, …
 Partial: Decompose conditional associations: [V1, V2 ]| V3= {a, b, …}
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