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Correspondence analysis: Basic ideas
Analog of PCA for frequency data
• Account for maximum % of 2 in few (2-3) dimensions
• Finds scores for row (xim) and col (yjm) categories on these dimensions
• Uses Singular Value Decomposition of residuals from independence, 

• Optimal scaling: each pair of scores for rows (xim) and col (yjm)  have 
highest possible correlation (= m)

• Plots of the row and column scores show associations
Row point (xim)  near col point (yjm)  positive association dij > 0
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Correspondence analysis: History
• Mathematical foundations: 

“Geometric data analysis”, J. P. 
Benzecri, ~ 1960s

The French school: L’ Analyse des Donnes
Popularized in European social science

• Multidimensional EDA
More descriptive than inferential
“models should follow the data, not vice 
versa”
High-D phenomena Low-D 
approximations

• CARME conferences: every 4 years
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CA software for R
• ca package

ca() – two-way tables; plot(ca() ) for graphs
mjca() – multiple & joint CA; vcdExtra::mcaplot() for plots

• FactoMineR & factoextra packages
CA() – many options for graphical displays
fviz_ca() – uses ggplot2; can ggrepel point labels

• ade4 package
dudi.coa() – very nice graphics, but somewhat quirky
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Example: Hair color, eye color
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> library(ca)
> haireye <- margin.table(HairEyeColor, 1:2)
> (haireye.ca <- ca(haireye))
Principal inertias (eigenvalues):

1        2        3       
Value      0.208773 0.022227 0.002598
Percentage 89.37%   9.52%    1.11%   

Rows:
Black   Brown     Red Blond

Mass     0.1824  0.4831  0.1199 0.215
ChiDist 0.5512  0.1595  0.3548 0.838
Inertia  0.0554  0.0123  0.0151 0.151
Dim. 1  -1.1043 -0.3245 -0.2835 1.828
Dim. 2   1.4409 -0.2191 -2.1440 0.467

Columns:
Brown  Blue   Hazel   Green

Mass     0.3716 0.363  0.1571  0.1081
ChiDist 0.5005 0.554  0.2887  0.3857
Inertia  0.0931 0.111  0.0131  0.0161
Dim. 1  -1.0771 1.198 -0.4653  0.3540
Dim. 2   0.5924 0.556 -1.1228 -2.2741

Hair category scores, Dim1-2

Eye category scores, Dim1-2

2 % for dimensions
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plot(haireye.ca, lines=TRUE)

• Rough interpretation: row/col points “near” each other are positively 
associated (independence residuals dij >> 0)

• Dim 1: 89.4% of 2 (dark light)
• Dim 2: 9.5% of 2 (Red/Green vs. others)
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Row & column profiles
• For a two-way table, row profiles & column profiles give relative

proportions of the categories
• An association is present to the extent that the row/col profiles differ
• Profiles add to 1.0 (100%), and can be visualized in profile space
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• Row profiles pertain to the differences among brand preference
• Column profiles pertain to the differences among regions

There is clearly an association: the row (& column) profiles differ

> chisq.test(toothpaste)

Pearson's Chi-squared test

data:  toothpaste
X-squared = 79.6, df = 6, p-value = 4.3e-15

Region
Brand        R1    R2    R3

Brand A  12.5  12.5  75.0
Brand B  12.5  62.5  12.5
Brand C  37.5  12.5  12.5
Brand D  37.5  12.5   0.0
Sum     100.0 100.0 100.0

Region
Brand       R1   R2   R3 Sum

Brand A 12.5 12.5 75.0 100
Brand B 14.3 71.4 14.3 100
Brand C 60.0 20.0 20.0 100
Brand D 75.0 25.0  0.0 100

Plotting profiles
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Plotting profiles
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CA solution
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The CA solution has at most min(r – 1, c – 1) dimensions
The 2D solution here is exact, i.e., accounts for 100% of Pearson 2

> tp.ca <- ca(toothpaste)
> summary(tp.ca, rows=FALSE, columns=FALSE)

Principal inertias (eigenvalues):

dim    value      %   cum%   scree plot               
1      0.410259  61.8  61.8  ***************          
2      0.253134  38.2 100.0  **********               

-------- -----
Total: 0.663393 100.0 

Pearson 2  2

> # reproduce chi-square
> sum(tp.ca$sv^2) * sum(toothpaste)
[1] 79.607



CA solution
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Brand A: most in R3
Brand B: most in R2
Brands C, D: most in R1

Profiles & inertia
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Singular value decomposition
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The singular value decomposition (SVD) is a basic technique for factoring a matrix and 
for matrix approximation
For an m x n matrix X of rank r m, n) the SVD of X is:

data Row scores Col scoresSingular 
values

Properties of the SVD
• U: columns are eigenvectors of XXT and form an orthonormal 

basis for observation profiles such that UTU = I
• : diagonal, r singular values = sqrt eigenvalues of both XXT  

and XTX
• V: columns are eigenvectors of XTX, orthonormal: VTV = I
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SVD: Matrix approximation
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SVD song: It had to be U …
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Michael Greenacre, It had to be U - the SVD song, https://www.youtube.com/watch?v=JEYLfIVvR9I

CA notation & terminology
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Principal & standard coordinates
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Two types of coordinates are used in CA, based on re-scalings of A and B.
Principal coordinates are most commonly used in plotting CA solutions.



Standard coordinates
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Geometric & statistical properties
• Nested solutions: CA solutions are nested, meaning that the first two 

dimensions of a 3D solution will be identical to the 2D solution (similar to 
PCA)

• Centroids at origin: In both principal coordinates and standard 
coordinates the points representing the row and column profiles have 
their centroids (weighted averages) at the origin. 

The origin represents the (weighted) average row profile and column profile.

• Chi-square distances: In principal coordinates, distances between two row 
profiles, ri and ri’ are 2 distances

The squared difference (rij – ri’j )2 between two row profiles is inversely 
weighted by the column frequency, to account for the different relative 
frequency of the column categories.

• Plotting: For distances to be interpretable, it’s crucial to scale the axes 
equally, so 1cm is the same on both axes (aspect ratio = 1). This is standard 
in most packages. 
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The ca package in R
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ca() calculates CA solutions, returning a “ca” object with all the details

> names(haireye.ca)
[1] "sv"         "nd"         "rownames"   "rowmass"    "rowdist"   
[6] "rowinertia" "rowcoord"   "rowsup"     "colnames"   "colmass"   
[11] "coldist"    "colinertia" "colcoord"   "colsup"     "N"         
[16] "call" 

The result contains the standard row coordinates (rowcoord: ) and column 
coordinates (colcoord: ) used in plotting

> haireye.ca$rowcoord
Dim1   Dim2   Dim3

Black -1.104  1.441 -1.089
Brown -0.324 -0.219  0.957
Red   -0.283 -2.144 -1.631
Blond  1.828  0.467 -0.318

> haireye.ca$colcoord
Dim1   Dim2    Dim3

Brown -1.077  0.592 -0.4240
Blue   1.198  0.556  0.0924
Hazel -0.465 -1.123  1.9719
Green  0.354 -2.274 -1.7184

ca plots
The plot() method provides a wide variety of scalings (map= ), 
with different interpretative properties. Some of these:
• “symmetric” – both rows & cols in principal coordinates (default)
• “rowprincipal” or “colprincipal” – asymmetric maps with rows in 

principal coordinates and cols in std coordinates, or vice versa
• “symbiplot” – scales both rows and cols to have variances equal to the 

singular value

The mjca() function is used for multiple correspondence analysis (MCA) 
for 3+ way tables.  Has analogous print(), summary() and plot() methods
• vcdExtra::mcaplot() does a nicer job of plotting MCA solutions
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Asymmetric row/col principal plots are biplots – can interpret the projection of points 
on vectors for the other variable

Optimal category scores
• CA has a close relation to canonical correlation analysis, 

applied to dummy variables representing the categories
• The singular values, i , are the correlations between the 

category scores
Assign Dim 1 scores, X1 and Y1 to the row/column categories: Max. 
possible correlation, 1

Assign Dim 2 scores, X2 and Y2 to the row/column categories: Max. 
possible correlation, 2, but uncorrelated with X1, Y1
All association between row/col categories is captured by the scores

• This optimal scaling interpretation can be used to quantify 
categorical variables, particularly if Dim 1 is large

• Mosaics: Permute rows / cols by Dim 1 scores
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Optimal category scores
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> haireye.ca <- ca(haireye)
> round(haireye.ca$sv, 3)
[1] 0.457 0.149 0.051

To demonstrate category scores, extract row/col coordinates to a data frame

HE.df <- as.data.frame(haireye)

RC <- haireye.ca$rowcoord # row coordinates
CC <- haireye.ca$colcoord # col coordinates

Y1 <- RC[match(HE.df$Hair, haireye.ca$rownames), 1]   # Dim 1
X1 <- CC[match(HE.df$Eye,  haireye.ca$colnames), 1]
Y2 <- RC[match(HE.df$Hair, haireye.ca$rownames), 2]   # Dim 2
X2 <- CC[match(HE.df$Eye,  haireye.ca$colnames), 2]

HE.df <- cbind(HE.df, X1, Y1, X2, Y2)

The singular values i = canonical 
correlations

Optimal category scores
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> HE.df <- cbind(HE.df, X1, Y1, X2, Y2)
> print(HE.df, digits=3)

Hair   Eye Freq     X1     Y1     X2     Y2
1  Black Brown   68 -1.077 -1.104  0.592  1.441
2  Brown Brown 119 -1.077 -0.324  0.592 -0.219
3    Red Brown   26 -1.077 -0.283  0.592 -2.144
4 Blond Brown    7 -1.077  1.828  0.592  0.467
. . .
13 Black Green    5  0.354 -1.104 -2.274  1.441
14 Brown Green   29  0.354 -0.324 -2.274 -0.219
15   Red Green   14  0.354 -0.283 -2.274 -2.144
16 Blond Green   16  0.354  1.828 -2.274  0.467

Calculate Freq-weighted correlations. All are zero except r(X1, Y1) = 1 & r(X2, Y2) = 2

> corr <- cov.wt(HE.df[,4:7], wt=HE.df$Freq, cor=TRUE)$cor
> round(zapsmall(corr), 3)

X1    Y1    X2    Y2
X1 1.000 0.457 0.000 0.000
Y1 0.457 1.000 0.000 0.000
X2 0.000 0.000 1.000 0.149
Y2 0.000 0.000 0.149 1.000



Permuting for a mosaic
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data(housetasks, package="factoextra")
res.ca <- FactoMiner::CA(housetasks, graph=FALSE)
fviz_ca(res.ca, repel = TRUE,   

geom.col = c("point", "text", "arrow"))  +    
theme_minimal()

Dim1: H vs Wife

Dim2: single vs 
jointly

Permuting for a mosaic
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library(seriation)
order <- seriate(housetasks, method = "CA")
ht <- permute(housetasks, order, margin=1)
mosaic(ht, shade = TRUE, ...)

The seriate package has a CA method to 
permute rows/cols of a df or matrix

Alpha ordered
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CA ordered

Simultaneous linear regression
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Assign linear scores (1-4) X1 to eye color and Y1 to hair color

Simultaneous linear regressions
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Example: Mental impairment & parent’ SES
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Data on mental health status of 1660 young NYC residents, by parents’ SES, a 6 x 4 
table.  Is higher SES associated with better kids’ mental health?

> data("Mental", package="vcdExtra")
> str(Mental)
'data.frame': 24 obs. of  3 variables:
$ ses : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 1 1 1 1 2 2 2 2 3 3 ...
$ mental: Ord.factor w/ 4 levels "Well"<"Mild"<..: 1 2 3 4 1 2 3 4 1 2 ...
$ Freq  : int  64 94 58 46 57 94 54 40 57 105 ...

Both ses and mental are ordered factors in a frequency data frame
• For ca(), convert this to a table using xtabs()

> (mental.tab <- xtabs(Freq ~ ses + mental, data=Mental))
mental

ses Well Mild Moderate Impaired
1   64   94       58       46
2   57   94       54       40
3   57  105       65       60
4   72  141       77       94
5   36   97       54       78
6   21   71       54       71

Mental data: CA solution
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> mental.ca <- ca(mental.tab)
> summary(mental.ca, rows=FALSE, columns=FALSE)

Principal inertias (eigenvalues):

dim    value      %   cum%   scree plot               
1      0.026025  93.9  93.9  ***********************  
2      0.001379   5.0  98.9  *                        
3      0.000298   1.1 100.0                           

-------- -----
Total: 0.027702 100.0 

• The exact CA solution requires min(r-1, c-1) = 3 dimensions
• Total Pearson 2 is n i

2 = 1660 x 0.0277 = 45.98 with 15 df
• Of this, 93.9% is accounted for by the 1st dimension

Mental data: CA plot
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plot(mental.ca, lines = TRUE)

Category spacing:

SES: perhaps collapse 
categories (1,2) ??

Mental: Smaller diff 
betw. Mild, Moderate ??

Looking ahead
• CA is largely an exploratory method — row/column scores are 

not parameters of a statistical model; no confidence intervals
• Only rough tests for the number of CA dimensions
• Can’t test a hypothesis that the row/column scores are have 

some particular spacing (e.g., are mental and ses equally 
spaced?)

• These questions can be answered with specialized loglinear 
models

• Nevertheless, plot(ca(table)) gives an excellent quick 
view of associations
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Multi-way tables
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Multi-way tables: Stacking
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A 3-way table of size I × J × K can be sliced and stacked as a two-way table in 
several ways

Interactive coding in R

• Data in table or array form: use 
as.matrix(structable(rows ~ cols))

• Data as frequency data frame: use interaction() or 
paste() followed by xtabs() 
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mat1 <- as.matrix(structable(A + B ~ C, data=mytable))     # [A B][C]
mat2 <- as.matrix(structable(A + C ~ B + D, data=mytable)) # [A C][B D]
ca(mat2)

mydf$AB <- interaction(mydf$A, mydf$B, sep='.’)     # levels: A.B
mydf$AB <- paste(mydf$A, mydf$B, sep=':')           # levels: A:B
...
mytab <- xtabs(Freq ~ AB + C, data=mydf)            # [A B] [C]

Example: suicide rates in Germany
• vcd::Suicide gives a 2 x 5 x 8 table of sex by age.group by 

method for 53,158 suicides in Germany, in a frequency data frame
• Use paste() to join age.group and sex age_sex in the form 

’10-20 M’
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> Suicide <- within(Suicide, {
age_sex <- paste(age.group, toupper(substr(sex,1,1)))

})
> head(Suicide)
Freq  sex   method age age.group method2 age_sex

1    4 male   poison  10     10-20  poison 10-20 M
2    0 male  cookgas 10     10-20     gas 10-20 M
3    0 male toxicgas 10     10-20     gas 10-20 M
4 247 male     hang  10     10-20    hang 10-20 M
5    1 male    drown  10     10-20   drown 10-20 M
6   17 male      gun  10     10-20     gun 10-20 M



Suicide rates in Germany
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> suicide.tab <- xtabs(Freq ~ age_sex + method2, data=Suicide)
> suicide.tab

method2
age_sex poison  gas hang drown  gun knife jump other
10-20 F    921   40  212    30   25    11  131   100
10-20 M   1160  335 1524    67  512    47  189   464
25-35 F   1672  113  575   139   64    41  276   263
25-35 M   2823  883 2751   213  852   139  366   775
40-50 F   2224   91 1481   354   52    80  327   305
40-50 M   2465  625 3936   247  875   183  244   534
55-65 F   2283   45 2014   679   29   103  388   296
55-65 M   1531  201 3581   207  477   154  273   294
70-90 F   1548   29 1355   501    3    74  383   106
70-90 M    938   45 2948   212  229   105  268   147

• The CA analysis will be that of the loglinear model [Age Sex] [Method]
• It will show associations between the age–sex combinations and method of 

suicide
• Associations between age and sex will not be shown in this analysis

Suicide rates in Germany
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> suicide.ca <- ca(suicide.tab)
> summary(suicide.ca, rows=FALSE, columns = FALSE)

Principal inertias (eigenvalues):

dim    value      %   cum%   scree plot               
1      0.096151  57.2  57.2  **************           
2      0.059692  35.5  92.6  *********                
3      0.008183   4.9  97.5  *                        
4      0.002158   1.3  98.8                           
5      0.001399   0.8  99.6                           
6      0.000557   0.3 100.0                           
7      6.7e-050   0.0 100.0                           

-------- -----
Total: 0.168207 100.0 

For this table 2 (63) = 8946. Of this, 92.6% is accounted for in the first two dimensions 
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> plot(suicide.ca)

• Dim 1: Sex
• Dim 2: Age
• Can interpret method use 

by age-sex combination
• young M: gas, gun,
• young F: poisonSex

Ag
e
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Compare with a mosaic plot, also fitting the model [Age Sex][Method]

suicide.tab3 <- xtabs(Freq ~ sex + age.group + method2, data=Suicide)
mosaic(suicide.tab3, shade=TRUE, legend=FALSE,

expected=~age.group*sex + method2, ... )      

DDAR Fig 6.7, p 238

(I permuted methods 
by CA Dim1 & deleted 
“Other”)



Marginal tables & supplementary variables
• Supplementary variables provide a way to include more info in CA

An n-way table is collapsed to a marginal table by ignoring factors
Omitted variables can be included by treating them as supplementary
These are projected into the space of the marginal CA

• E.g., age by method, ignoring sex as the main analysis
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> suicide.tab2 <- xtabs(Freq ~ age.group + method2, data=Suicide)
> suicide.tab2

method2
age.group poison  gas hang drown  gun knife jump other

10-20   2081  375 1736    97  537    58  320   564
25-35   4495  996 3326   352  916   180  642  1038
40-50   4689  716 5417   601  927   263  571   839
55-65   3814  246 5595   886  506   257  661   590
70-90   2486   74 4303   713  232   179  651   253
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Also have data on relation of sex and method

> (suicide.sup <- xtabs(Freq ~ sex + method2, data=Suicide))
method2

sex      poison   gas  hang drown   gun knife  jump other
male     8917  2089 14740   946  2945   628  1340  2214
female   8648   318  5637  1703   173   309  1505  1070

> suicide.tab2s <- rbind(suicide.tab2, suicide.sup)

Main analysis table

Supplementary rows

Supplementary variables
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> suicide.ca2s <- ca(suicide.tab2s, suprow=6:7)
> summary(suicide.ca2s, rows=FALSE, columns = FALSE)

Principal inertias (eigenvalues):

dim    value      %   cum%   scree plot               
1      0.060429  93.9  93.9  ***********************  
2      0.002090   3.2  97.1  *                        
3      0.001479   2.3  99.4  *                        
4      0.000356   0.6 100.0                           

-------- -----
Total: 0.064354 100.0 

Call ca(table, suprow = ) to treat some rows as supplementary variables

The relation of age and method is now essentially 1 dimensional
The inertia of Dim 1 here (0.604) is nearly the same as that of Dim 2 (0.596) for age 
in the stacked table
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res <- plot(suicide.ca2s, 
pch=c(16, 15, 17, 24), 
lines = c(FALSE, TRUE))

lines(res$rows[1:5,], col = "blue", lty=2)

lines(res$rows[6:7,], col = "black", lwd=3)

Ignoring Sex has collapsed Sim 1 (Sex) of the [Age Sex][Method] analysis
Supp. points for Sex show the association of Method with Sex in this space

Plotting the solution 
shows points for row, col 
& supplementary rows



Multiple correspondence analysis 
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Example: Titanic data
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Plot of MCA for the Titanic 
data

All 4 variables represented 
in a single plot

Dim 1: Sex
Dim 2: Class & Age

Distance from origin = 
inertia ~ 1/category freq

CA MCA: Indicator & Burt
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Indicator matrix: Hair Eye color
• For the hair-eye data, the indicator matrix Z has n=592 rows 

(observations) and 4 + 4 = 8 columns (categories).
Shown below in frequency form: h1 — h4 indicators for hair color, e1—e4 for 
eye color
E.g., 1st row represents 68 observations with black hair and brown eyes
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Hair   Eye Freq h1 h2 h3 h4 e1 e2 e3 e4
1  Black Brown   68  1  0  0  0  1  0  0  0
2  Brown Brown 119  0  1  0  0  1  0  0  0
3    Red Brown   26  0  0  1  0  1  0  0  0
4  Blond Brown    7  0  0  0  1  1  0  0  0
5  Black  Blue   20  1  0  0  0  0  1  0  0
6  Brown  Blue   84  0  1  0  0  0  1  0  0
7    Red  Blue   17  0  0  1  0  0  1  0  0
8 Blond  Blue   94  0  0  0  1  0  1  0  0
. . .
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Expand this to case form to get Z (592 x 8)

> Z <- expand.dft(haireye.df)[,-(1:2)]
> vnames <- c(levels(haireye.df$Hair), levels(haireye.df$Eye))
> colnames(Z) <- vnames
> dim(Z)
[1] 592   8

If the indicator matrix is partitioned as Z = [Z1; Z2], corresponding to the hair, eye 
categories, then the contingency table is given by N = ZT

1 Z2.

> Z1 <- as.matrix(Z[,1:4])
> Z2 <- as.matrix(Z[,5:8])
> (N <- t(Z1) %*% Z2)

Brown Blue Hazel Green
Black    68   20    15     5
Brown   119   84    54    29
Red      26   17    14    14
Blond     7   94    10    16
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Z.ca <- ca(Z)
res <- plot(Z.ca, what=c("none", "all")) # plus customization

The Burt matrix
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Multivariate MCA
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MCA properties
• The inertia contributed by a given variable increases with the 

number of response categories: 
inertia (Zq) = Jq – 1

• The centroid of the categories for each variable is at the origin
of the display.

• For a given variable, the inertia contributed by a given 
category increases as the marginal frequency in that category 
decreases.

Low frequency points therefore appear further from the origin.

• The category points for a binary variable lie on a line through 
the origin.
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MCA example: pre- and extramarital sex
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data("PreSex", package="vcd")
PreSex <- aperm(PreSex, 4:1)            # order variables G, P, E, M
presex.mca <- mjca(PreSex, lambda="Burt")
summary(presex.mca, rows=FALSE, columns = FALSE)

Principal inertias (eigenvalues):

dim    value      %   cum%   scree plot               
1      0.149930  53.6  53.6  *************            
2      0.067201  24.0  77.6  ******                   
3      0.035396  12.6  90.2  ***                      
4      0.027365   9.8 100.0  **                       

-------- -----
Total: 0.279892 100.0 

MCA example: pre- and extramarital sex
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vcdExtra::mcaplot(presex.mca, 
legend=TRUE, legend.pos = "bottomright")

Accounts for 76% of total 
inertia

Women less likely to report 
pre- and/or extra-marital sex

Divorced associated with pre-
and extra- sex

Gender Marital

NB: This only analyzes 
bivariate associations, i.e., no 
3-way associations

Inertia in MCA
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Inertia in MCA: Details
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NB: JCA solutions aren’t nested. I generally use adjusted inertia

MCA example: Survival on the Titanic
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Analyse the Titanic data using ca::mcja()
• The default inertia method is lambda = “adjusted”
• Other methods: “indicator”, “Burt”, “JCA”

data(Titanic)
titanic.mca <- mjca(Titanic)  
summary(titanic.mca, columns = FALSE)

Principal inertias (eigenvalues):

dim    value      %   cum%   scree plot               
1      0.067655  76.8  76.8  ***********************  
2      0.005386   6.1  82.9  **                       
3      00000000   0.0  82.9                           

-------- -----
Total: 0.088118 

Using adjusted inertia, the 2D solution accounts for ~ 83% of total, bivariate 
association.
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Plot the solution with vcdExtra::mcaplot()
mcaplot(titanic.mca, legend=TRUE, legend.pos = "topleft")

Dim 1 perfectly aligned with Sex
Also strongly aligned w/ survival 
& class

Dim 2: reflects class & age

Survival associated with 
Female, 1st vs 3rd class, child

Biplots for contingency tables
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The biplot is a related visualization that also uses the SVD to give a low-rank (2D) 
approximation.
• 2 distances between row (column) points reflect the differences among 

row (column) profiles
• In the biplot, rows (columns) are represented by vectors from the origin, with an inner-

product (projection) interpretation – row point ai is fit by projection on col point bj



Example: Suicide rates
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There are different scalings for CA biplots.  Here I use the ‘contribution’ biplot
I find the plot less messy to plot arrows for only rows or cols and imagine the projection

plot(suicide.ca, map="colgreen", arrows=c(FALSE, TRUE), lwd=2)

Associations between age-sex 
categories and suicide methods can 
be read as projections of the points 
on the vectors

Lengths of vectors for suicide 
reflect their contributions to this 
2D plot

Summary
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Given a new 2-way table, my first thought is nearly always: plot(ca(mytable))


