

### **Correspondence analysis**



Michael Friendly Psych 6136

http://friendly.github.io/psy613



## Correspondence analysis: Basic ideas

#### Analog of PCA for frequency data

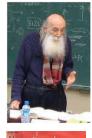
- Account for maximum % of  $\chi^2$  in few (2-3) dimensions
- Finds scores for row (x<sub>im</sub>) and col (y<sub>im</sub>) categories on these dimensions
- Uses Singular Value Decomposition of residuals from independence,

$$d_{ij} = (n_{ij} - \widehat{m}_{ij}) / \sqrt{\widehat{m}_{ij}} \implies d_{ij} = \sqrt{n} \sum_{m=1}^{M} \lambda_m x_{im} y_{jm} \quad \leftrightarrow \quad \boldsymbol{D} = \boldsymbol{X} \boldsymbol{\Lambda} \boldsymbol{Y}^{\mathsf{T}}$$

- Optimal scaling: each pair of scores for rows  $(x_{im})$  and col  $(y_{jm})$  have highest possible correlation (=  $\lambda_m$ )
- Plots of the row and column scores show associations
  - Row point ( $x_{im})$  near col point ( $\gamma_{jm})$   $\rightarrow$  positive association  $d_{ij}$  > 0

# Correspondence analysis: History

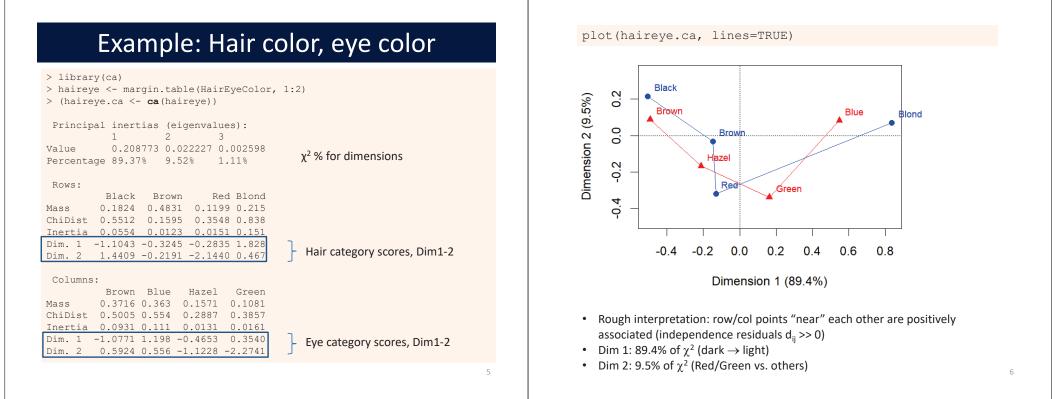
- Mathematical foundations:
   "Geometric data analysis", J. P.
   Benzecri, ~ 1960s
  - The French school: L' Analyse des Donnes
  - Popularized in European social science
- Multidimensional EDA
  - More descriptive than inferential
  - "models should follow the data, not vice versa"
  - High-D phenomena → Low-D approximations
- CARME conferences: every 4 years



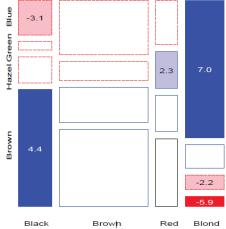


# CA software for R

- ca package
  - ca() two-way tables; plot(ca()) for graphs
  - mjca() multiple & joint CA; vcdExtra::mcaplot() for plots
- FactoMineR & factoextra packages
  - CA() many options for graphical displays
  - fviz\_ca() uses ggplot2; can ggrepel point labels
- ade4 package
  - dudi.coa() very nice graphics, but somewhat quirky



#### Hair color, Eye color data: Compare with mosaic display



- The main dark–light dimension is reflected in the opposite-corner pattern of residuals
  - The 2nd dimension is reflected in deviations from this pattern (e.g., Red hair–Green eyes)
  - CA is "accounting for" residuals (deviations) from independence

### Row & column profiles

- For a two-way table, row profiles & column profiles give relative proportions of the categories
- An association is present to the extent that the row/col profiles differ
- Profiles add to 1.0 (100%), and can be visualized in profile space

#### Example: Toothpaste purchases by region

120 people in three regions where asked which of four brands of toothpaste, A–D, they had most recently purchased. Is there a difference among regions?

#### toothpaste

 ##
 Region

 ##
 Brand
 R1
 R2
 R3

 ##
 Brand
 A
 5
 5
 30

 ##
 Brand
 B
 5
 25
 5

 ##
 Brand
 C
 15
 5

 ##
 Brand
 D
 15
 5

- Row profiles pertain to the differences among brand preference
- Column profiles pertain to the differences among regions

| Region  |      |      |      | •   | Region |   |       |       |       |
|---------|------|------|------|-----|--------|---|-------|-------|-------|
| Brand   | R1   | R2   | R3   | Sum | Brand  |   | R1    | R2    | R3    |
| Brand A | 12.5 | 12.5 | 75.0 | 100 | Brand  | A | 12.5  | 12.5  | 75.0  |
| Brand B | 14.3 | 71.4 | 14.3 | 100 | Brand  | В | 12.5  | 62.5  | 12.5  |
| Brand C | 60.0 | 20.0 | 20.0 | 100 | Brand  | С | 37.5  | 12.5  | 12.5  |
| Brand D | 75.0 | 25.0 | 0.0  | 100 | Brand  | D | 37.5  | 12.5  | 0.0   |
|         |      |      |      |     | Sum    |   | 100.0 | 100.0 | 100.0 |

There is clearly an association:  $\rightarrow$  the row (& column) profiles differ

> chisq.test(toothpaste)

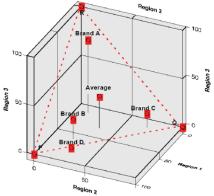
Pearson's Chi-squared test

data: toothpaste X-squared = 79.6, df = 6, p-value = 4.3e-15

# **Plotting profiles**

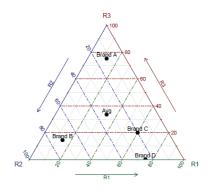
In this simple example we can plot the row profiles as points in 3D space, with axes corresponding to regions, R1, R2, R3

- Each brand is positioned in this space according to its proportions for the regions
- Because proportions sum to 100%, all points lie in the dashed plane PQR
- The Average profile is at the (weighted) centroid
- If no association, all brands would appear at the centroid



# Plotting profiles

Analogous 2D plot is a trilinear plot that automatically scales the R1-R3 values so they sum to 100%



• The Avg profile has coordinates of 33.3% for each region

9

- Brand preferences by region can be seen by their positions wrt the R1-R3 axes
- This suggests that differences among brands can be measured by their (squared) distances from the centroid, weighted by their row margins (mass)
- Physical analogy suggests the term inertia for this weighted variation

### CA solution

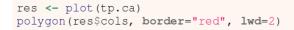
The CA solution has at most min(r-1, c-1) dimensions The 2D solution here is exact, i.e., accounts for 100% of Pearson  $\chi^2$ 

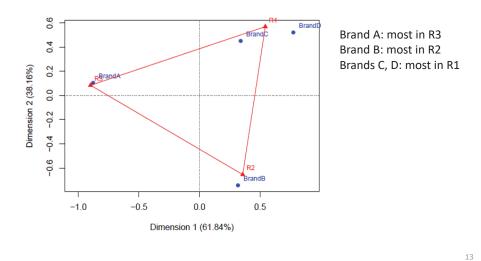
```
> tp.ca <- ca(toothpaste)
> summary(tp.ca, rows=FALSE, columns=FALSE)
Principal inertias (eigenvalues):
dim
       value
                 % cum% scree plot
 1
       0.410259 61.8 61.8 ***************
 2
       0.253134 38.2 100.0 *********
       _____ _
 Total: 0.663393 100.0
```

#### Pearson $\chi^2 = N \sum \lambda^2$

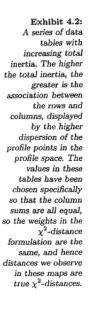
```
> # reproduce chi-square
> sum(tp.ca$sv^2) * sum(toothpaste)
[1] 79.607
```

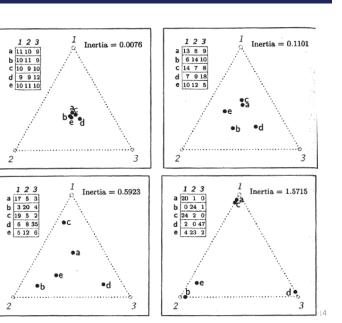
# CA solution





## Profiles & inertia

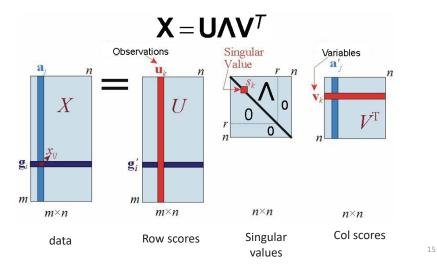




# Singular value decomposition

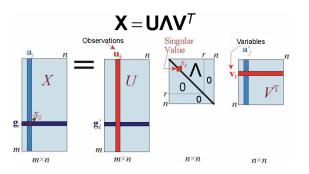
The singular value decomposition (SVD) is a basic technique for factoring a matrix and for matrix approximation

For an  $m \ge n$  matrix **X** of rank  $r \le \min(m, n)$  the SVD of **X** is:



# Properties of the SVD

- U: columns are eigenvectors of XX<sup>T</sup> and form an orthonormal basis for observation profiles such that U<sup>T</sup>U = I
- Λ: diagonal, r singular values = sqrt eigenvalues of both XX<sup>T</sup> and X<sup>T</sup>X
- V: columns are eigenvectors of X<sup>T</sup>X, orthonormal: V<sup>T</sup>V = I



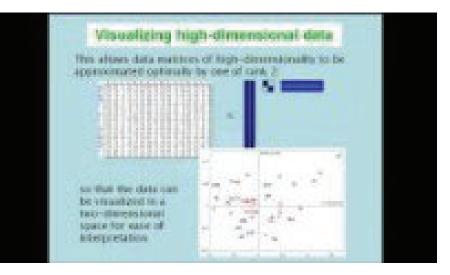
### SVD: Matrix approximation

- Let X be an m x n matrix such that rank(X) = r
- If  $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_r$  are the singular values of **X**, then  $\hat{\mathbf{X}}$ , the rank q approximation of X that minimizes  $||\mathbf{X} - \hat{\mathbf{X}}||$ , is

$$\hat{\mathbf{X}}_{m \times n} = \sum_{i=1}^{q} \lambda_i \begin{pmatrix} u_{i1} \\ \vdots \\ u_{im} \end{pmatrix} \begin{pmatrix} v_{i1} & \cdots & v_{in} \end{pmatrix} = \lambda_1 u_1 v_1^T + \cdots + \lambda_q u_q v_q^T$$
row scores

a sum of q rank=1 (outer) products. The variance in **X** accounted for each term is  $\lambda_1^2$ 

# SVD song: It had to be U ...



Michael Greenacre, It had to be U - the SVD song, https://www.youtube.com/watch?v=JEYLfIVvR9I

## CA notation & terminology

Notation:

- Contingency table:  $\mathbf{N} = \{n_{ii}\}$
- Correspondence matrix (cell probabilities):  $\mathbf{P} = \{p_{ij}\} = \mathbf{N}/n$
- Row/column masses (marginal probabilities):  $\mathbf{r} = \sum_{i} p_{ij}$  and  $\mathbf{c} = \sum_{i} p_{ij}$
- Diagonal weight matrices:  $D_r = \text{diag}(r)$  and  $D_c = \overline{\text{diag}}(c)$

The SVD is then applied to the correspondence matrix of cell probabilities as:

$$m{P}=m{A}m{D}_{\lambda}m{B}^{\intercal}$$

#### where

- Singular values:  $D_{\lambda} = \operatorname{diag}(\lambda)$  is the diagonal matrix of singular values  $\lambda_1 > \lambda_2 > \cdots > \lambda_M$
- Row scores:  $A_{I \times M}$ , normalized so that  $AD_r^{-1}A^T = I$  Column scores:  $B_{J \times M}$ , normalized so that  $BD_c^{-1}B^T = I$

## Principal & standard coordinates

Two types of coordinates are used in CA, based on re-scalings of A and B. Principal coordinates are most commonly used in plotting CA solutions.

#### Principal coordinates

Coordinates of the row (F) and column (G) profiles wrt their own principal axes

$$F = D_r^{-1}AD_{\lambda} \text{ scaled so that } F^{\mathsf{T}}D_rF = D_{\lambda}$$
  

$$G = D_c^{-1}BD_{\lambda} \text{ scaled so that } G^{\mathsf{T}}D_cG = D_{\lambda}$$

- Defined so that the inertia along each axis is the corresponding singular value,  $\lambda_i$ ,
- i.e., weighted average of squared principal coordinates =  $\lambda_i$  on dim. *i*
- The joint plot in principal coordinates, **F** and **G**, is called the symmetric map because both row and column profiles are overlaid in the same coordinate system.

17

### Standard coordinates

#### Standard coordinates

0

The standard coordinates  $(\Phi,\Gamma)$  are a rescaling of the principal coordinates to unit inertia along each axis,

$$\Phi = \mathbf{D}_r^{-1}\mathbf{A} \text{ scaled so that } \Phi^{\mathsf{T}}\mathbf{D}_r\Phi = \mathbf{I}$$
  

$$\Gamma = \mathbf{D}_c^{-1}\mathbf{B} \text{ scaled so that } \Gamma^{\mathsf{T}}\mathbf{D}_c\Gamma = \mathbf{I}$$

- The weighted average of squared standard coordinates = 1 on each dimension
- An asymmetric map shows one set of points (say, the rows) in principal coordinates and the other set in standard coordinates.

Geometric & statistical properties

- Nested solutions: CA solutions are nested, meaning that the first two dimensions of a 3D solution will be identical to the 2D solution (similar to PCA)
- Centroids at origin: In both principal coordinates and standard coordinates the points representing the row and column profiles have their centroids (weighted averages) at the origin.
  - The origin represents the (weighted) average row profile and column profile.
- **Chi-square distances:** In principal coordinates, distances between two row profiles,  $r_i$  and  $r_{i'}$  are  $\chi^2$  distances
  - The squared difference (r<sub>ij</sub> r<sub>i'j</sub>)<sup>2</sup> between two row profiles is inversely weighted by the column frequency, to account for the different relative frequency of the column categories.
- **Plotting:** For distances to be interpretable, it's crucial to scale the axes equally, so 1<sup>cm</sup> is the same on both axes (aspect ratio = 1). This is standard in most packages.

22

# The **ca** package in R

ca ( ) calculates CA solutions, returning a "ca" object with all the details

| > nar | mes(haireye.ca | a)           |            |            |           |
|-------|----------------|--------------|------------|------------|-----------|
| [1]   | "sv"           | "nd"         | "rownames" | "rowmass"  | "rowdist" |
| [6]   | "rowinertia"   | "rowcoord"   | "rowsup"   | "colnames" | "colmass" |
| [11]  | "coldist"      | "colinertia" | "colcoord" | "colsup"   | "N"       |
| [16]  | "call"         |              |            |            |           |

# The result contains the standard row coordinates (rowcoord: $\Phi$ ) and column coordinates (colcoord: $\Gamma$ ) used in plotting

| > haireye.ca\$rowcoord    | > haireye.ca\$colcoord     |  |  |  |  |  |
|---------------------------|----------------------------|--|--|--|--|--|
| Dim1 Dim2 Dim3            | Dim1 Dim2 Dim3             |  |  |  |  |  |
| Black -1.104 1.441 -1.089 | Brown -1.077 0.592 -0.4240 |  |  |  |  |  |
| Brown -0.324 -0.219 0.957 | Blue 1.198 0.556 0.0924    |  |  |  |  |  |
| Red -0.283 -2.144 -1.631  | Hazel -0.465 -1.123 1.9719 |  |  |  |  |  |
| Blond 1.828 0.467 -0.318  | Green 0.354 -2.274 -1.7184 |  |  |  |  |  |

### **ca** plots

The **plot()** method provides a wide variety of scalings (map= ), with different interpretative properties. Some of these:

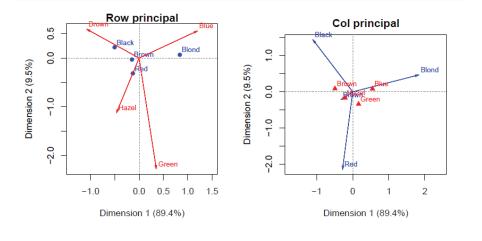
- "symmetric" both rows & cols in principal coordinates (default)
- "rowprincipal" or "colprincipal" asymmetric maps with rows in principal coordinates and cols in std coordinates, or vice versa
- "symbiplot" scales both rows and cols to have variances equal to the singular value

The **mjca()** function is used for multiple correspondence analysis (MCA) for 3+ way tables. Has analogous print(), summary() and plot() methods

• vcdExtra::mcaplot() does a nicer job of plotting MCA solutions

Asymmetric row/col principal plots are biplots – can interpret the projection of points on vectors for the other variable

plot(haireye.ca, map="rowprincipal", arrows=c(FALSE,TRUE))
plot(haireye.ca, map="colprincipal", arrows=c(TRUE,FALSE))



## Optimal category scores

- CA has a close relation to canonical correlation analysis, applied to dummy variables representing the categories
- The singular values,  $\lambda_{\text{i}}$  , are the correlations between the category scores
  - Assign Dim 1 scores, X1 and Y1 to the row/column categories:  $\rightarrow$  Max. possible correlation,  $\lambda_1$
  - Assign Dim 2 scores, X2 and Y2 to the row/column categories: → Max. possible correlation, λ<sub>2</sub>, but uncorrelated with X1, Y1
  - All association between row/col categories is captured by the scores
- This optimal scaling interpretation can be used to quantify categorical variables, particularly if Dim 1 is large
- Mosaics: Permute rows / cols by Dim 1 scores

### Optimal category scores

> haireye.ca <- ca(haireye)
> round(haireye.ca\$sv, 3)
[1] 0.457 0.149 0.051

The singular values  $\lambda_{i}$  = canonical correlations

To demonstrate category scores, extract row/col coordinates to a data frame

```
HE.df <- as.data.frame(haireye)</pre>
```

```
RC <- haireye.ca$rowcoord # row coordinates
CC <- haireye.ca$colcoord # col coordinates
Y1 <- RC[match(HE.df$Hair, haireye.ca$rownames), 1] # Dim 1
X1 <- CC[match(HE.df$Eye, haireye.ca$colnames), 1]
Y2 <- RC[match(HE.df$Hair, haireye.ca$rownames), 2] # Dim 2
X2 <- CC[match(HE.df$Eye, haireye.ca$colnames), 2]
HE.df <- cbind(HE.df, X1, Y1, X2, Y2)</pre>
```

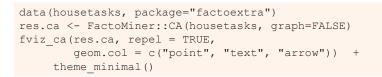
# Optimal category scores

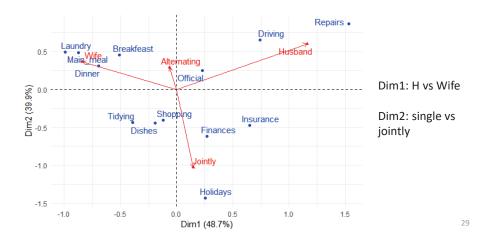
```
> HE.df <- cbind(HE.df, X1, Y1, X2, Y2)
> print(HE.df, digits=3)
   Hair Eve Freq
                       Х1
                              Υ1
                                    Х2
                                           v2
  Black Brown
                68 -1.077 -1.104 0.592 1.441
   Brown Brown 119 -1.077 -0.324 0.592 -0.219
                26 -1.077 -0.283 0.592 -2.144
     Red Brown
                7 -1.077 1.828 0.592 0.467
4
  Blond Brown
. . .
                 5 0.354 -1.104 -2.274 1.441
13 Black Green
14 Brown Green
                29 0.354 -0.324 -2.274 -0.219
15
   Red Green
                14 0.354 -0.283 -2.274 -2.144
16 Blond Green
                16 0.354 1.828 -2.274 0.467
```

Calculate Freq-weighted correlations. All are zero except r(X1, Y1) =  $\lambda_1 \& r(X2, Y2) = \lambda_2$ 

25

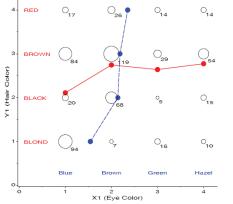
## Permuting for a mosaic



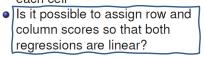


# Simultaneous linear regression

Assign linear scores (1-4) X1 to eye color and Y1 to hair color



Lines connecting the weighted (conditional) means of Y1 | X1 and X1 | Y1 are not-linear
The scatterplot uses bubble symbols showing frequency in each cell

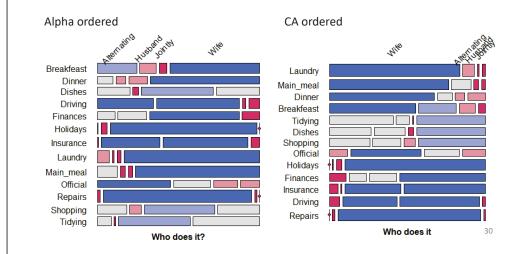


# Permuting for a mosaic

The seriate package has a CA method to permute rows/cols of a df or matrix

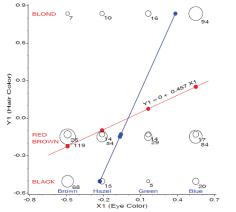
library(seriation)

order <- **seriate(**housetasks, method = "CA") ht <- permute(housetasks, order, margin=1) mosaic(ht, shade = TRUE, ...)



# Simultaneous linear regressions

Yes, use CA scores on the first dimension



- The regression of Y1 on X1 is linear, with slope  $\lambda_1$
- The regression of X1 on Y1 is linear, with slope  $1/\lambda_1$
- λ<sub>1</sub> is the (canonical) correlation between X1 and Y1
- The angle between the two lines would be 0 if perfect correlation
- The conditional means (dots) are the principal coordinates

### Example: Mental impairment & parent' SES

Data on mental health status of 1660 young NYC residents, by parents' SES, a 6 x 4 table. Is higher SES associated with better kids' mental health?

```
> data("Mental", package="vcdExtra")
> str(Mental)
'data.frame': 24 obs. of 3 variables:
$ ses : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<...: 1 1 1 1 2 2 2 2 3 3 ...
$ mental: Ord.factor w/ 4 levels "Well"<"Mild"<...: 1 2 3 4 1 2 3 4 1 2 ...
$ Freq : int 64 94 58 46 57 94 54 40 57 105 ...</pre>
```

#### Both ses and mental are ordered factors in a frequency data frame

For ca(), convert this to a table using xtabs()

```
> (mental.tab <- xtabs(Freq ~ ses + mental, data=Mental))
mental
ses Well Mild Moderate Impaired
1 64 94 58 46</pre>
```

| Ŧ | 64 | 94  | 00 | 40 |
|---|----|-----|----|----|
| 2 | 57 | 94  | 54 | 40 |
| 3 | 57 | 105 | 65 | 60 |
| 4 | 72 | 141 | 77 | 94 |
| 5 | 36 | 97  | 54 | 78 |
| 6 | 21 | 71  | 54 | 71 |

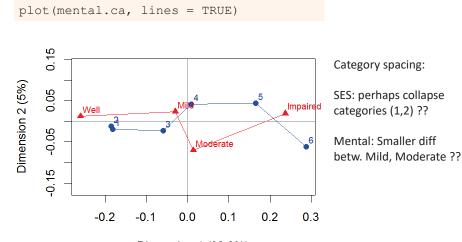
## Mental data: CA solution

```
> mental.ca <- ca(mental.tab)</pre>
> summary(mental.ca, rows=FALSE, columns=FALSE)
Principal inertias (eigenvalues):
        value
 dim
                   010
                       Cum%
                               scree plot
 1
        0.026025
                  93.9 93.9
 2
                  5.0 98.9
        0.001379
 3
        0.000298
                  1.1 100.0
```

Total: 0.027702 100.0

- The exact CA solution requires min(r-1, c-1) = 3 dimensions
- Total Pearson  $\chi^2$  is n $\Sigma \lambda_i^2$  = 1660 x 0.0277 = 45.98 with 15 df
- Of this, 93.9% is accounted for by the 1<sup>st</sup> dimension

Mental data: CA plot



Dimension 1 (93.9%)

### Looking ahead

- CA is largely an exploratory method row/column scores are not parameters of a statistical model; no confidence intervals
- Only rough tests for the number of CA dimensions
- Can't test a hypothesis that the row/column scores are have some particular spacing (e.g., are mental and ses equally spaced?)
- These questions can be answered with specialized loglinear models
- Nevertheless, plot(ca(table)) gives an excellent quick view of associations

35

33

## Multi-way tables

Correspondence analysis can be extended to *n*-way tables in several ways:

#### Stacking approach

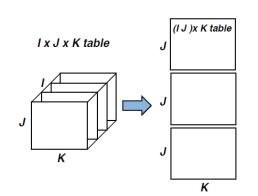
- n-way table flattened to a 2-way table, combining several variables "interactively"
- Each way of stacking corresponds to a loglinear model
- $\bullet\,$  Ordinary CA of the flattened table  $\rightarrow$  visualization of that model
- Associations among stacked variables are not visualized

#### Multiple correspondence analysis (MCA)

- Extends CA to n-way tables
- Analyzes all pairwise bivariate associations
- Can plot all factors in a single plot
- An extension, joint correspondence analysis, gives a better account of inertia for each dimension

# Multi-way tables: Stacking

A 3-way table of size  $I \times J \times K$  can be sliced and stacked as a two-way table in several ways



- The variables combined are treated "interactively"
- Each way of stacking corresponds to a loglinear model
  - $(I \times J) \times K \rightarrow [AB][C]$

• 
$$I \times (J \times K) \rightarrow [A][BC]$$

• 
$$J \times (I \times K) \rightarrow [B][AC]$$

- Only the associations in separate

   terms are analyzed and
   displayed
- The stacked table is analyzed with ordinary CA of the two-way stacked table

38

# Interactive coding in R

• Data in table or array form: use as.matrix(structable(rows ~ cols))

mat1 <- as.matrix(structable(A + B ~ C, data=mytable))</pre>

mat1 <- as.matrix(structable(A + B ~ C, data=mytable)) # [A B][C] mat2 <- as.matrix(structable(A + C ~ B + D, data=mytable)) # [A C][B D] ca(mat2)

• Data as frequency data frame: use interaction() Or paste() followed by xtabs()

| <pre>mydf\$AB &lt;- interaction(mydf\$A, mydf\$B, sep='.') mydf\$AB &lt;- paste(mydf\$A, mydf\$B, sep=':')</pre> | <pre># levels: A.B # levels: A:B</pre> |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| <pre>mytab &lt;- xtabs(Freq ~ AB + C, data=mydf)</pre>                                                           | # [A B] [C]                            |

# Example: suicide rates in Germany

- vcd::Suicide gives a 2 x 5 x 8 table of sex by age.group by method for 53,158 suicides in Germany, in a frequency data frame
- Use <code>paste()</code> to join <code>age.group</code> and <code>sex</code>  $\rightarrow$  <code>age\_sex</code> in the form '10-20 M'

> Suicide <- within (Suicide, { age sex <- paste(age.group, toupper(substr(sex,1,1)))</pre> }) > head(Suicide) Freq sex method age age.group method2 age sex 4 male poison 10 10-20 poison 10-20 M 0 male cookgas 10 10-20 gas 10-20 M 0 male toxicgas 10 10-20 gas 10-20 M hang 10 10-20 hang 10-20 M 247 male 1 male drown 10 10-20 drown 10-20 M

10-20

gun 10-20 M

gun 10

17 male

### Suicide rates in Germany



Suicide rates in Germany

43

### Marginal tables & supplementary variables

- Supplementary variables provide a way to include more info in CA
  - An *n*-way table is collapsed to a marginal table by ignoring factors
  - Omitted variables can be included by treating them as supplementary
  - These are projected into the space of the marginal CA
- E.g., age by method, ignoring sex as the main analysis

| > suicide | .tab2 <- | xtak | os(Fre | eq ~ ag | e.gro | oup + n | nethod | d2, dat | a=Suicide) |
|-----------|----------|------|--------|---------|-------|---------|--------|---------|------------|
| > suicide | .tab2    |      |        |         |       |         |        |         |            |
| r         | nethod2  |      |        |         |       |         |        |         |            |
| age.group | poison   | gas  | hang   | drown   | gun   | knife   | jump   | other   |            |
| 10-20     | 2081     | 375  | 1736   | 97      | 537   | 58      | 320    | 564     |            |
| 25-35     | 4495     | 996  | 3326   | 352     | 916   | 180     | 642    | 1038    |            |
| 40-50     | 4689     | 716  | 5417   | 601     | 927   | 263     | 571    | 839     |            |
| 55-65     | 3814     | 246  | 5595   | 886     | 506   | 257     | 661    | 590     |            |
| 70-90     | 2486     | 74   | 4303   | 713     | 232   | 179     | 651    | 253     |            |
|           |          |      |        |         |       |         |        |         |            |

#### Also have data on relation of sex and method

| 1         | method2 |      |       |       |      |       |      |       |   |                                         |
|-----------|---------|------|-------|-------|------|-------|------|-------|---|-----------------------------------------|
| age.group | poison  | gas  | hang  | drown | gun  | knife | jump | other |   |                                         |
| 10-20     | 2081    | 375  | 1736  | 97    | 537  | 58    | 320  | 564   |   |                                         |
| 25-35     | 4495    | 996  | 3326  | 352   | 916  | 180   | 642  | 1038  |   |                                         |
| 40-50     | 4689    | 716  | 5417  | 601   | 927  | 263   | 571  | 839   |   | Main analysis table                     |
| 55-65     | 3814    | 246  | 5595  | 886   | 506  | 257   | 661  | 590   |   |                                         |
| 70-90     | 2486    | 74   | 4303  | 713   | 232  | 179   | 651  | 253   |   |                                         |
| sex       | poison  | gas  | hang  | drown | gun  | knife | jump | other | 1 |                                         |
| male      | 8917    | 2089 | 14740 | 946   | 2945 | 628   | 1340 | 2214  |   | Supplementary rows                      |
| female    | 8648    | 318  | 5637  | 1703  | 173  | 309   | 1505 | 1070  |   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

45

### Supplementary variables

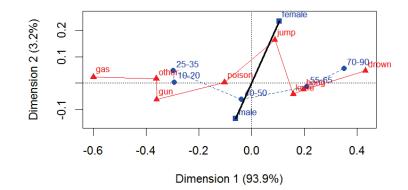
Call ca(table, suprow = ) to treat some rows as supplementary variables

```
> suicide.ca2s <- ca(suicide.tab2s, suprow=6:7)</pre>
> summary(suicide.ca2s, rows=FALSE, columns = FALSE)
Principal inertias (eigenvalues):
dim
       value
                  % cum%
                             scree plot
1
       0.060429 93.9 93.9
                             ***********************
 2
       0.002090 3.2 97.1
 3
       0.001479 2.3 99.4
 4
       0.000356 0.6 100.0
        _____ ___
 Total: 0.064354 100.0
```

The relation of age and method is now essentially 1 dimensional

The inertia of Dim 1 here (0.604) is nearly the same as that of Dim 2 (0.596) for age in the stacked table

Plotting the solution shows points for row, col & supplementary rows

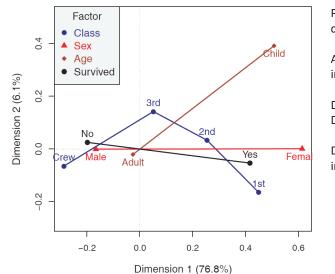


Ignoring Sex has collapsed Sim 1 (Sex) of the [Age Sex][Method] analysis Supp. points for Sex show the association of Method with Sex in this space

### Multiple correspondence analysis

- Extends CA to n-way tables
- Useful when simpler stacking approach doesn't work well, e.g., 10 categorical attitude items
- Analyzes all pairwise bivariate associations. Analogous to:
  - Correlation matrix (numbers)
  - Scatterplot matrix (graphs)
  - All pairwise  $\chi^2$  tests (numbers)
  - Mosaic matrix (graphs)
- Provides an optimal scaling of the category scores for each variable
- Can plot all factors in a single plot
- An extension, joint correspondence analysis, gives a better account of inertia for each dimension

## Example: Titanic data



Plot of MCA for the Titanic data

All 4 variables represented in a single plot

Dim 1: Sex Dim 2: Class & Age

Distance from origin = inertia ~ 1/category freq

# $\mathrm{CA} \rightarrow \mathrm{MCA}:$ Indicator & Burt

Two ways to think about MCA:

#### Indicator matrix (dummy variables)

- A given categorical variable, q, can be represented by an indicator matrix  $Z(n \times J_q)$  of dummy variables,  $z_{ii} = 1$  if case *i* is in category *j*
- Let  $Z_1, Z_2, \ldots, Z_Q$  be the indicator matrices for Q variables
- MCA is then a simple CA applied to the partitioned matrix  $\pmb{Z} = [\pmb{Z}_1, \pmb{Z}_2, \dots, \pmb{Z}_Q]$

#### **Burt matrix**

• The Bert matrix is the product of the indicator matrix Z and its transpose

 $\boldsymbol{B} = \boldsymbol{Z}^{\mathsf{T}} \boldsymbol{Z}$ 

 MCA can be defined using the SVD of *B*, giving category scores for all variables accounting for the largest proportion of all bivariate associations.

## Indicator matrix: Hair Eye color

- For the hair-eye data, the indicator matrix **Z** has n=592 rows (observations) and 4 + 4 = 8 columns (categories).
  - Shown below in frequency form: h1 h4 indicators for hair color, e1—e4 for eye color
  - E.g., 1<sup>st</sup> row represents 68 observations with black hair and brown eyes

|   | Hair  | Eye   | Freq | h1 | h2 | h3 | h4 | e1 | e2 | e3 | e4 |
|---|-------|-------|------|----|----|----|----|----|----|----|----|
| 1 | Black | Brown | 68   | 1  | 0  | 0  | 0  | 1  | 0  | 0  | 0  |
| 2 | Brown | Brown | 119  | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 0  |
| 3 | Red   | Brown | 26   | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  |
| 4 | Blond | Brown | 7    | 0  | 0  | 0  | 1  | 1  | 0  | 0  | 0  |
| 5 | Black | Blue  | 20   | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| 6 | Brown | Blue  | 84   | 0  | 1  | 0  | 0  | 0  | 1  | 0  | 0  |
| 7 | Red   | Blue  | 17   | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 0  |
| 8 | Blond | Blue  | 94   | 0  | 0  | 0  | 1  | 0  | 1  | 0  | 0  |
|   |       |       |      |    |    |    |    |    |    |    |    |

#### Expand this to case form to get Z (592 x 8)

```
> Z <- expand.dft(haireye.df)[,-(1:2)]
> vnames <- c(levels(haireye.df$Hair), levels(haireye.df$Eye))
> colnames(Z) <- vnames
> dim(Z)
[1] 592 8
```

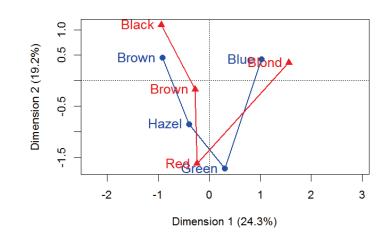
If the indicator matrix is partitioned as  $Z = [Z_1; Z_2]$ , corresponding to the hair, eye categories, then the contingency table is given by  $N = Z_1^T Z_2$ .

| > Zl <- | as.ma  | trix( | Z[,1:4 | [])   |
|---------|--------|-------|--------|-------|
| > Z2 <- | as.ma  | trix( | Z[,5:8 | 3])   |
| > (N <- | t(Z1)  | 응*응   | Z2)    |       |
| Bi      | rown B | lue H | azel G | Green |
| Black   | 68     | 20    | 15     | 5     |
| Brown   | 119    | 84    | 54     | 29    |
| Red     | 26     | 17    | 14     | 14    |
| Blond   | 7      | 94    | 10     | 16    |
|         |        |       |        |       |

- We can then use ordinary CA on the indicator matrix, Z
- Except for scaling, this is the same as the CA of **N**
- The inertia contributions differ, and this is handled better by MCA

#### Z.ca <- ca(Z)

res <- plot(Z.ca, what=c("none", "all")) # plus customization</pre>



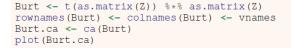
## The Burt matrix

For two categorical variables, the Burt matrix is

$$\boldsymbol{B} = \boldsymbol{Z}^{\mathsf{T}} \boldsymbol{Z} = \left[ \begin{array}{cc} \boldsymbol{N}_1 & \boldsymbol{N} \\ \boldsymbol{N}^{\mathsf{T}} & \boldsymbol{N}_2 \end{array} \right]$$

- *N*<sub>1</sub> and *N*<sub>2</sub> are diagonal matrices containing the marginal frequencies of the two variables
- The contingency table, **N** appears in the off-diagonal block

A similar analysis to that of the indicator matrix **Z** is produced by:



- Standard coords are the same
- Singular values of **B** are the squares of those of **Z**

## Multivariate MCA

For Q categorical variables, the Burt matrix is

$$\boldsymbol{B} = \boldsymbol{Z}^{\mathsf{T}} \boldsymbol{Z} = \begin{bmatrix} \boldsymbol{N}_{1} & \boldsymbol{N}_{[12]} & \cdots & \boldsymbol{N}_{[1Q]} \\ \boldsymbol{N}_{[21]} & \boldsymbol{N}_{2} & \cdots & \boldsymbol{N}_{[2Q]} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{N}_{[Q1]} & \boldsymbol{N}_{[Q2]} & \cdots & \boldsymbol{N}_{Q} \end{bmatrix} .$$

- The diagonal blocks N<sub>i</sub> contain the one-way marginal frequencies
- The off-diagonal blocks **N**<sub>[jj]</sub> contain the bivariate contingency tables for each pair (*i*, *j*) of variables.
- Classical MCA can be defined as a SVD of the matrix B
- It produces scores for the categories of *all* variables accounting for the greatest proportion of the bivariate associations in off-diagonal blocks in a small number of dimensions.

53

## MCA properties

- The inertia contributed by a given variable increases with the number of response categories:
  - inertia  $(Z_q) = J_q 1$
- The centroid of the categories for each variable is at the origin of the display.
- For a given variable, the inertia contributed by a given category increases as the marginal frequency in that category decreases.
  - Low frequency points therefore appear further from the origin.
- The category points for a binary variable lie on a line through the origin.

### MCA example: pre- and extramarital sex

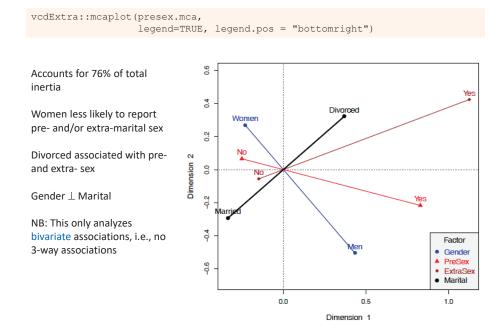
- Presex data: the 2 × 2 × 2 × 2 table of gender, premarital sex, extramatrial sex and marital status (divorced, still married)
- The function mjca() provides several scalings for the singular values
- Here | use lambda="Burt"

```
data("PreSex", package="vcd")
PreSex <- aperm(PreSex, 4:1)  # order variables G, P, E, M
presex.mca <- mjca(PreSex, lambda="Burt")
summary(presex.mca, rows=FALSE, columns = FALSE)</pre>
```

Principal inertias (eigenvalues):

| dim    | value    | 8     | cum%  | scree plot  |
|--------|----------|-------|-------|-------------|
| 1      | 0.149930 | 53.6  | 53.6  | *******     |
| 2      | 0.067201 | 24.0  | 77.6  | * * * * * * |
| 3      | 0.035396 | 12.6  | 90.2  | * * *       |
| 4      | 0.027365 | 9.8   | 100.0 | * *         |
|        |          |       |       |             |
| Total: | 0.279892 | 100.0 |       |             |

MCA example: pre- and extramarital sex



### Inertia in MCA

- In simple CA, total inertia =  $\Sigma \lambda_i^2 = \chi^2/n$
- ullet  $\Rightarrow$  sensible to consider % inertia for each dimension

Not so straight-forward in MCA:

- For a given indicator matrix,  $Z_q$ , the inertia is  $J_q 1$
- For all variables, with  $J = \sum J_q$  categories, the total inertia of  $Z = [Z_1, \dots, Z_Q]$  is the average of the inertias of the sub-tables

inertia(
$$\mathbf{Z}$$
) =  $\frac{1}{Q}\sum_{q}$  inertia( $\mathbf{Z}_{q}$ ) =  $\frac{1}{Q}\sum_{q}(J_{q}-1) = \frac{J-Q}{Q}$ 

- The average inertia per dimension is therefore 1/Q
- $\implies$  Interpret dimensions with inertia > 1/Q (as in PCA:  $\lambda > 1$ )
- In analysis of the Burt matrix, average inertia is inflated by the diagonal blocks

### Inertia in MCA: Details

Two solutions:

#### **Adjusted inertia**

- Ignores the diagonal blocks in the Burt matrix
- Calculates adjusted inertia as

$$(\lambda_i^{\star})^2 = \left[\frac{Q}{Q-1}(\lambda_i^Z - \frac{1}{Q})\right]$$

2

• Express contributions of dimensions as  $(\lambda_i^*)^2 / \sum (\lambda_i^*)^2$ , with summation over only dimensions with  $(\lambda^Z)^2 > 1/Q$ .

#### Joint correspondence analysis

- Start with MCA analysis of the Burt matrix
- Replace diagonal blocks with values estimated from that solution
- Repeat until solution converges, improving the fit to off-diagonal blocks

NB: JCA solutions aren't nested. I generally use adjusted inertia

# MCA example: Survival on the *Titanic*

Analyse the Titanic data using ca::mcja()

- The default inertia method is lambda = "adjusted"
- Other methods: "indicator", "Burt", "JCA" •

```
data(Titanic)
titanic.mca <- mjca(Titanic)</pre>
summary(titanic.mca, columns = FALSE)
```

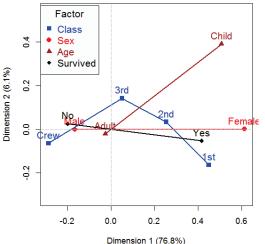
Principal inertias (eigenvalues):

| dim    | value    | 00   | cum% | scree plot |
|--------|----------|------|------|------------|
| 1      | 0.067655 | 76.8 | 76.8 | ******     |
| 2      | 0.005386 | 6.1  | 82.9 | * *        |
| 3      | 00000000 | 0.0  | 82.9 |            |
|        |          |      |      |            |
| Total: | 0.088118 |      |      |            |

Using adjusted inertia, the 2D solution accounts for ~ 83% of total, bivariate association.

#### Plot the solution with vcdExtra::mcaplot()

mcaplot(titanic.mca, legend=TRUE, legend.pos = "topleft")



Dim 1 perfectly aligned with Sex Also strongly aligned w/ survival & class

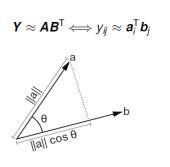
Dim 2: reflects class & age

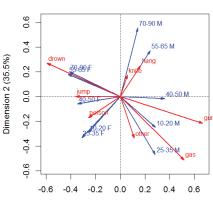
 $\rightarrow$  Survival associated with Female, 1<sup>st</sup> vs 3<sup>rd</sup> class, child

# **Biplots for contingency tables**

The biplot is a related visualization that also uses the SVD to give a low-rank (2D) approximation.

- In CA, the weighted  $\chi^2$  distances between row (column) points reflect the differences among row (column) profiles
- In the biplot, rows (columns) are represented by vectors from the origin, with an innerproduct (projection) interpretation – row point  $\mathbf{a}_i$  is fit by projection on col point  $\mathbf{b}_i$



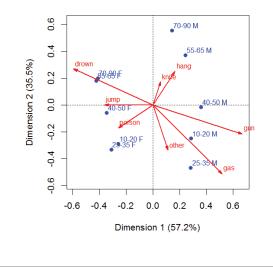


61

# Example: Suicide rates

There are different scalings for CA biplots. Here I use the 'contribution' biplot I find the plot less messy to plot arrows for only rows or cols and imagine the projection

plot(suicide.ca, map="colgreen", arrows=c(FALSE, TRUE), lwd=2)



Associations between age-sex categories and suicide methods can be read as projections of the points on the vectors

Lengths of vectors for suicide reflect their contributions to this 2D plot

65

#### Summary

- CA is an exploratory method designed to account for association (Pearson  $\chi^2$ ) in a small number of dimensions
  - Row and column scores provide an optimal scaling of the category levels
  - Plots of these can suggest an explanation for association
- CA uses the singular value decomposition to approximate the matrix of residuals from independence
- Standard and principal coordinates have different geometric properties, but are essentially re-scalings of each other
- Multi-way tables can be handled by:
  - Stacking approach— collapse some dimensions interactively to a 2-way table
  - Each way of stacking  $\rightarrow$  a loglinear model
  - MCA analyzes the full n way table using an indicator matrix or the Burt matrix

Given a new 2-way table, my first thought is nearly always: plot(ca(mytable))