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Today’s topics
• Model-based methods: Overview
• Logistic regression: one predictor, multiple 

predictors, fitting
• Visualizing logistic regression
• Effect plots
• Case study: Racial profiling
• Model diagnostics
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Model-based methods: Overview
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Modeling approaches: Overview
Association models
• Loglinear models

(contingency table form)
[Admit][Gender Dept]
[Admit Dept][Gender Dept]
[AdmitDept][AdmitGender][GenderDept]

• Poisson GLMs
(Frequency data frame)
Freq ~ Admit + Gender * Dept
Freq ~ Admit*Dept + Gender*Dept
Freq ~ Admit*(Dept + Gender) + 

Gender*Dept

• Ordinal variables
Freq ~ right + left + Diag(right, left)
Freq ~ right + left + Symm(right, left)

Response models
• Binary response
• Categorical predictors: logit models

logit(Admit) ~ 1
logit(Admit) ~ Dept
logit(Admit) ~ Dept + Gender

• Continuous/mixed predictors
• Logistic regression models

Pr(Admit) ~ Dept + Gender + Age + GRE

• Polytomous response
• Ordinal: proportional odds model

Improve ~ Age + Sex + Treatment
• General multinomial model

WomenWork ~ Kids + HusbandIncome
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loglm() vs. glm()
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> berk.mod1 <- loglm(~ Dept * (Gender + Admit), data=UCBAdmissions)
> berk.mod2 <- loglm(~(Admit + Dept + Gender)^2, data=UCBAdmissions)

> anova(berk.mod2)
Call:
loglm(formula = ~(Admit + Dept + Gender)^2, data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 20.20  5 0.001144
Pearson          18.82  5 0.00207

With loglm() you can only test overall fit (anova()) or difference between 
models (Lrstats() )

What we can say:
Even the model with all pairwise associations fits poorly 
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Comparing models with anova() and LRstats()

> anova(berk.mod1, berk.mod2, test="Chisq")
LR tests for hierarchical log-linear models

Model 1:
~Dept * (Gender + Admit) 
Model 2:
~(Admit + Dept + Gender)^2 

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1      21.74  6                                    
Model 2      20.20  5      1.531         1        0.21593
Saturated     0.00  0     20.204         5        0.00114

> LRstats(berk.mod1, berk.mod2)
Likelihood summary table:

AIC BIC LR Chisq Df Pr(>Chisq)   
berk.mod1 217 238     21.7  6     0.0014 **
berk.mod2 217 240     20.2  5     0.0011 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Q: What can we say from this?

loglm() vs. glm()
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> berkeley <- as.data.frame(UCBAdmissions)
> berk.glm2 <- glm(Freq ~ (Dept+Gender+Admit)^2, data=berkeley,

family="poisson")
> anova(berk.glm2, test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log
Response: Freq

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
NULL                            23       2650             
Dept          5      160        18       2491   <2e-16 ***
Gender        1      163        17       2328   <2e-16 ***
Admit         1      230        16       2098   <2e-16 ***
Dept:Gender 5     1221        11        877   <2e-16 ***
Dept:Admit 5      855         6         22   <2e-16 ***
Gender:Admit 1        2         5         20     0.22    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

With glm() you can test individual terms using anova() or car::Anova()

Q: Can someone help interpret the term for Gender:Admit ?

Dropping & adding terms

8

A useful strategy for model-building is to start with some model, and consider
• The effect of dropping high-order terms, one at a time
• The effect of adding terms w/in the scope of a larger model, one at a time
• MASS:dropterm() and MASS::addterm() do this for both glm() and loglm() models

> MASS::dropterm(berk.glm2, test="Chisq")
Single term deletions

Model:
Freq ~ (Dept + Gender + Admit)^2

Df Deviance     AIC     LRT Pr(Chi)    
<none>             20.20  217.26                    
Dept:Gender 5  1148.90 1335.96 1128.70  <2e-16 ***
Dept:Admit 5   783.61  970.67  763.40  <2e-16 ***
Gender:Admit 1    21.74  216.80    1.53  0.2159    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Fitting & graphing models: Overview
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input 

data

glm()
polr()

multinom()
model 
object

plot(mod)
plot(f(mod))

Object-oriented approach in R: 

Logistic regression
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glm(success ~ …, family=binomial)
glm(cbind(Nsuccess, Nfail) ~ …, family=binomial)

Logistic regression: Extensions
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Extensions of the framework for logistic regression allow us to handle more than two 
discrete outcomes. Explanatory variable remain the same

Logistic regression examples

151



Survival in the Donner Party
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Data on the Donner Party records the fate of 90 people who set out to CA in 1846.
They were trapped in an early winter storm near Reno, NV. Only 48 survived. 

Who survived? Why?

Logistic regression can model the 
probability of the binary (0/1) 
outcome of survival 

The model is linear in log-odds, but 
non-linear on the probability scale.

A quantitative predictor like age gives 
predicted probabilities (& CI)

Other predictors – sex, family, … can 
give a more detailed understanding 

Survival in the Donner Party
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glm(survived ~ age, data=Donner, family=binomial)
glm(survived ~ age + sex + family, data=Donner, family=binomial)
glm(survived ~ age * sex, data=Donner, family=binomial)

Some possible models:

Challenger: A dataviz disaster
• The space shuttle Challenger exploded 73 sec. after takeoff on 

January 28, 1986, killing all 7 crew
Subsequent investigation revealed the proximal cause: Low 
temperature failures of the rubber O-rings joining rocket stages
The anterior cause was a failure of data analysis & visualization 

• Data: 24 previous flights: temperature, # of “incidents”
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Morton-Thiokol engineers 
prepared this bad graph

But, they also excluded all 
flights where there was no 
damage 

Challenger: A better graph
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This graph plots the number of failures out of 6 O-rings in all previous flights, including 
those with 0 failures 
• It fits a simple quadratic regression, nFailures ~ poly(Temperature, 2)
• It should have been a warning that failures increase as temperature gets lower
• But it doesn’t take into account that nFailures ~ Bin(p, n=6)



Challenger: A better analysis
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Logistic regression treats the # failures as a binomial outcome with n = 6 trials
The model provides 
• Predicted probabilities outside the range of the data
• Confidence intervals, to judge model uncertainty

When the challenger 
was launched, the temp 
was 31o F

The CI band is very wide, 
but the predicted value 
is uncomfortably high

This analysis & graph 
might have saved lives!

Example: Arthritis treatment
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Example: Berkeley admissions
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The Logistic 
Regression Model
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Binary response: What’s wrong with OLS?
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Linear regression vs Logistic regression
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y linear with x
constant residual variance

y ~ logit (x)
non-constant residual variance ~ p (1-
p)

Logistic regression 
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Logistic regression: One predictor
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Thinking logistically:
• Model is for the log odds of the marked response, Y = 1
• Can always back transform with logit-1 to get probability of Y = 1



Logistic regression: One predictor
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The coefficients, , of this model have simple interpretations in terms of odds & log 
odds

is the change in log odds for a unit increase in x
The odds of Y=1 are multiplied by e for each unit increase in x

is the log odds when x=0
The odds of Y=1 when x=0 is e

In R, use exp(coef(model)) to get these values

Another interpretation: In terms of probability, the slope of the logistic regression 
curve is (1- )
This has the maximum value /4 when = ½

Logistic regression: Multiple predictors
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Fitting the logistic regression model
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Logistic regression models are the special case of generalized linear models, fit in R 
using glm(..., family=binomial)
For this example, we define Better as any improvement at all

> data(Arthritis, package="vcd")
> Arthritis$Better <- as.numeric(Arthritis$Improved > "None")

Fit and print:

> (arth.logistic <- glm(Better ~ Age, data=Arthritis, family=binomial))

Call:  glm(formula = Better ~ Age, family = binomial, data = Arthritis)

Coefficients:
(Intercept)          Age  

-2.6421       0.0492  

Degrees of Freedom: 83 Total (i.e. Null);  82 Residual
Null Deviance: 116 
Residual Deviance: 109 AIC: 113
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> summary(arth.logistic)

Call:
glm(formula = Better ~ Age, family = binomial, data = Arthritis)

Deviance Residuals: 
Min       1Q   Median       3Q      Max  

-1.5106  -1.1277   0.0794   1.0677   1.7611  

Coefficients:
Estimate Std. Error z value Pr(>|z|)  

(Intercept)  -2.6421     1.0732   -2.46    0.014 *
Age           0.0492     0.0194    2.54    0.011 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 116.45  on 83  degrees of freedom
Residual deviance: 109.16  on 82  degrees of freedom

The summary() method gives details and tests of coefficients

G2 for H0: Age = 0
G2 for H1: Age 0

How much better is this than the null model? G2
(1) = 116.45 – 109.16 = 7.29



Interpreting coefficients
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> coef(arth.logistic)
(Intercept)         Age 

-2.64207     0.04925

> exp(coef(arth.logistic))
(Intercept)         Age 

0.07121     1.05048 
> exp(10*coef(arth.logistic)[2])

Age 
1.636 

Multiple predictors
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Multiple predictors: Fitting
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arth.logistic2 <- glm(Better ~ I(Age - 50) + Sex + Treatment, 
data=Arthritis, family=binomial)

Fit the main effects model.  Use I(Age – 50) to center Age, making interpretable

lmtest::coeftest() gives just the tests of coefficients provided by summary()

> lmtest::coeftest(arth.logistic2)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)   
(Intercept)       -0.5781     0.3674   -1.57    0.116   
I(Age - 50)        0.0487     0.0207    2.36    0.018 * 
SexMale -1.4878     0.5948   -2.50    0.012 * 
TreatmentTreated 1.7598     0.5365    3.28    0.001 **

> broom::glance(arth.logistic2)
# A tibble: 1 x 8
null.deviance df.null logLik AIC   BIC deviance df.residual nobs

<dbl>   <int>  <dbl> <dbl> <dbl>    <dbl>       <int> <int>
1          116.      83  -46.0  100.  110.     92.1          80    84

broom::glance() gives model fit statistics

Interpreting coefficients
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> cbind(coef=coef(arth.logistic2), 
OddsRatio=exp(coef(arth.logistic2)),  
exp(confint(arth.logistic2)))

coef OddsRatio 2.5 % 97.5 %
(Intercept)      -0.5781     0.561 0.2647  1.132
I(Age - 50)       0.0487     1.050 1.0100  1.096
SexMale -1.4878     0.226 0.0652  0.689
TreatmentTreated 1.7598     5.811 2.1187 17.727



Hypothesis testing: Questions
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Maximum likelihood estimation
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In classical linear models using lm(), we fit using ordinary least squares.
All glm() models use maximum likelihood estimation– better properties

Overall model tests
Likelihood ratio test (G2)
• Compare nested models, similar to F tests in OLS
• Let L1 = maximized value for our model

logit( i) = 0 + xT
i w/ k predictors

• Let L0 = maximized likelihood for the null model
logit( i) = 0 under H0: 1 = 2 = … = k       

• Likelihood ratio test statistic:
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Wald tests & confidence intervals
• Analogous to t-tests in OLS
• Test H0 i = 0

• Confidence interval
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> r1 <- lmtest::coeftest(arth.logistic2)
> r2 <- confint(arth.logistic2)
Waiting for profiling to be done...
> cbind(r1, r2)

Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept)        -0.578      0.367    -1.6    0.116 -1.33  0.124
I(Age - 50)         0.049      0.021     2.4    0.018  0.01  0.092
SexMale -1.488      0.595    -2.5    0.012 -2.73 -0.372
TreatmentTreated 1.760      0.536     3.3    0.001  0.75  2.875



LR, Wald & Score tests
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Different ways to measure 
departure from H0: = 0

• LR test: diffce in log L
• Wald test: ( – 0)2

• Score test: slope at = 0

H0: 1 = 2 = 3 = 0

Plotting logistic regression data
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Types of plots
• Conditional plots: Stratified plot of Y or logit(Y) vs. one X, 

conditioned by other predictors--- only that subset is plotted 
for each panel
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Types of plots
• Full-model plots: Plot of fitted response surface, showing all 

effects; usually shown in several panels
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Types of plots
• Effect plots: plots of predicted effects for terms in the model, 

averaged over predictors not shown in a given plot
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Conditional plots with ggplot2
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Plot Arthritis data by Treatment, ignoring Sex; overlay fitted logistic reg. lines

gg <- ggplot(Arthritis, aes(Age, Better, color=Treatment)) +
xlim(15, 85) + 
geom_jitter(height = 0.02, width = 0, size=2) +
stat_smooth(method = "glm", method.args=(family = “binomial”), alpha = 0.2,

aes(fill=Treatment), size=2.5, fullrange=TRUE) +
theme_bw(base_size = 16) + theme(legend.position = c(.85, .2))  

gg   # show the plot

geom_jitter() shows the observations 
more distinctly

Fitted lines use method=“glm”, 
family=binomial

Conditional plots with ggplot2
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Can show the conditional plots for M & F, simply by faceting by Sex

gg + facet_wrap(~ Sex)

Only the data for each 
Sex is used in each plot

Plotting the data points 
shows that the data for 
males is too thin to 
give good estimates of 
separate regression 

Full-model plots
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> arth.fit2 <- cbind(Arthritis,
+                   predict(arth.logistic2, se.fit = TRUE))
> head(arth.fit2[,-9], 4)

ID Treatment  Sex Age Improved Better   fit se.fit
1 57   Treated Male  27     Some      1 -1.43  0.758
2 46   Treated Male  29     None      0 -1.33  0.728
3 77   Treated Male  30     None      0 -1.28  0.713
4 17   Treated Male  32   Marked      1 -1.18  0.684



Plotting with ggplot2
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arth.fit2 <- arth.fit2 |>
mutate(obs = ifelse(Better==0, -4, 4))   # show obs at -4, 4

ggplot( arth.fit2, aes(x=Age, y=fit, color=Treatment)) +               
geom_line(size = 2) +
geom_ribbon(aes(ymin = fit - 1.96 * se.fit,

ymax = fit + 1.96 * se.fit,
fill = Treatment), alpha = 0.2,

color = "transparent") +
labs(x = "Age", y = "Log odds (Better)") +
geom_jitter(aes(y=obs), height=0.25, width=0) +
facet_wrap(~ Sex) + 
theme_bw(base_size = 16)

Plot the fitted log odds, confidence band and observations

Using color=Treatment gives separate points and lines for the two groups

Full-model plot
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Plotting on the logit scale shows the additive effects of age, treatment and sex
NB: easier to compare the treatment groups within the same panel

These plots show model uncertainty (confidence bands)
Jittered points show the data

Full-model plot
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Plotting on the probability scale may be simpler to interpret
Use predict(… type = “response”) to get fitted probabilities

arth.fit2r <- cbind(Arthritis,
predict(arth.logistic2, se.fit = TRUE, type="response"))

Models with interactions
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Is the linear effect of age the same for females, males?
• We can test this by adding an interaction of Sex × Age
• update() makes it easy to add/subtract terms from a model
• car::Anova() gives partial tests of each term after all others

> arth.logistic4 <- update(arth.logistic2, . ~ . + I(Age-50):Sex)
> car::Anova(arth.logistic4)
Analysis of Deviance Table (Type II tests)

Response: Better
LR Chisq Df Pr(>Chisq)    

I(Age - 50)         6.16  1    0.01308 *  
Sex                 6.98  1    0.00823 ** 
Treatment          11.90  1    0.00056 ***
I(Age - 50):Sex     3.42  1    0.06430 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The interaction term Age:Sex is not quite significant, but plot the fitted model anyway



Models with interactions
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Effect plots: Basic ideas
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Show a given marginal effect, controlling / adjusting for other model effects

Effect plots: Details
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Plotting main effects
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library(effects)
arth.eff2 <- allEffects(arth.logistic2)
plot(arth.eff2, rows=1, cols=3, lwd=2)

Averaged Sex                                             Age                                                Age
over:                       Treatment                               Treatment Sex

allEffects() calculates effects for all high-order terms in the model
The response is plotted on the logit scale, but labeled with probabilities



Full-model plot
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The full-model plot is simply the Effect() of the highest-order interaction of factors

arth.full <- Effect(c("Age", "Treatment", "Sex"), arth.logistic2)
plot(arth.full, multiline=TRUE, ci.style="bands",

colors = c("red", "blue"), lwd=3,  . . .)
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Model with interaction of Age × Sex

arth.eff4 <- allEffects(arth.logistic4)
plot(arth.eff4, lwd=2)

Only the high-order terms: Treatment & Age * Sex are shown & need to be interpreted
Q: How would you describe this?

Race & 
Crime

Toronto Star investigation of 
racial disparities in treatment 
by Toronto Police Services

FOI request > ½ M arrests, 
1997—2002

Evidence for racial profiling?

Only look at discretionary 
charges:

Simple marijuana possession
Non-moving auto infractions

Case study: Arrests for marijuana
• In Dec. 2002, the Toronto Star examined the issue of racial 

profiling, by analyzing a data base of 600,000+ arrest records 
from 1997-2002.

• They focused on a subset of arrests for which police action 
was discretionary, e.g., simple possession of small quantities 
of marijuana, where the police could:

Release the arrestee with a summons – like a parking ticket
Bring to police station, hold for bail, … -- harsher treatment

• Response variable: released: “Yes”, “No”
Main predictor of interest: skin-colour of arrestee (black, white)
Other predictors: year, age, sex, …

59



Racial profiling: Presentation graphic

6161

Together, we created this (nearly) self-explaining infographic

Title gives the 
main conclusion

Legend gives a layman’s 
description of shading levels

Bar width ~ charges
Divided by % release

Text description 
gives details

numbers shown in 
the cells

Arrests for marijuana: Data
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> library(car)        # for Anova()
> data(Arrests, package = "carData")
> some(Arrests)

released colour year age  sex employed citizen checks
218       Yes  White 2000  24 Male      Yes     Yes 0
1301       No  Black 1999  17 Male      Yes No      1
1495      Yes  White 1998  23 Male      Yes     Yes 0
1732      Yes  Black 2000  18 Male      Yes     Yes 2
1838      Yes  Black 1997  27 Male       No     Yes      5
2257       No  White 2001  19 Male       No     Yes      2
3100       No  Black 2000  19 Male       No     Yes      4
3843      Yes  White 1999  20 Male      Yes     Yes 0
4580      Yes  Black 1999  26 Male      Yes     Yes 1
4833      Yes  Black 1998  38 Male      Yes     Yes 0

Response variable: released
Control variables:
• year, age, sex
• employed, citizen: Yes, No
• checks: # of police databases (previous arrests, convictions, parole status) where the 

arrestee’s name was found

Arrests for marijuana: Model
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year is numerical. But may be non-linear. Convert to a factor
Fit model with all main effects, but allow interactions of colour:year and colour:age

> Arrests$year <- as.factor(Arrests$year)
> arrests.mod <- glm(released ~ employed + citizen + checks +

colour*year + colour*age,
family=binomial, data=Arrests)

> Anova(arrests.mod)

Analysis of Deviance Table (Type II tests)

Response: released
LR Chisq Df Pr(>Chisq)    

employed        72.7  1    < 2e-16 ***
citizen         25.8  1    3.8e-07 ***
checks         205.2  1    < 2e-16 ***
colour 19.6  1    9.7e-06 ***
year             6.1  5    0.29785    
age              0.5  1    0.49827    
colour:year 21.7  5    0.00059 ***
colour:age 13.9  1    0.00019 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Effect plot: Skin colour
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plot(Effect("colour", arrests.mod), lwd=3, ci.style="bands”, ...)

• Effect plot for colour shows 
average effect controlling
(adjusting) for all other factors 
simultaneously

• (The Star analysis controlled for 
these one at a time.)
Evidence for different treatment 
of blacks & whites

• Even Francis Nunziata could 
understand this.

• However, effect smaller than 
reported by the Star



Effect plots: Interactions
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The story turned out to be more nuanced than reported by the Toronto Star

Up to 2000, strong evidence for 
differential treatment of blacks 
& whites

Also: evidence to support Police 
claim of effect of training to 
reduce racial effects in 
treatment

plot(Effect(c("colour","year"), arrests.mod), multiline=TRUE, ...) 

Effect plots: Interactions
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plot(Effect(c("colour","year"), arrests.mod), multiline=TRUE, ...) 

A more surprising finding …

Opposite age effects for blacks & 
whites:

• Young blacks treated more
harshly than young whites

• Older blacks treated less
harshly than older whites

Effect plots: allEffects
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All high-order terms can be viewed together using plot(allEffects(mod))

arrests.effects <- allEffects(arrests.mod, 
xlevels=list(age=seq(15,45,5)))
plot(arrests.effects, ylab="Probability(released)", …)

Model diagnostics

68



Diagnostic plots in R
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In R, plotting a glm object gives the “regression quartet” – 4 basic diagnostic plots

arth.mod1 <- glm(Better ~ Age + Sex + Treatment, data=Arthritis,
family='binomial')

plot(arth.mod1) 

These plots often look peculiar for logistic regression models
Better versions are available in the car package
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Unusual data: Leverage & Influence
• “Unusual” observations can have dramatic effects on least-squares 

estimates in linear models
• Three archetypal cases:

Typical X (low leverage), bad fit        -- Not much harm
Unusual X (high leverage), good fit   -- Not much harm
Unusual X (high leverage), bad fit     -- BAD, BAD, BAD

• Influential observations: unusual in both X & Y
• Heuristic formula:

Influence = X leverage × Y residual

Influence plots
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Influence (Cook’s D) measures impact of individual obs. on coefficients, fitted values

Influence Residual (y - ) × Hat-value 2(X - X)

Bad fit

Bad fit

High 
leverage

High 
influence

Bubble size ~ influence

influencePlot(mod1)
OK 

Influence plots in R
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library(car)
influencePlot(arth.logistic2, …)

X axis: Leverage (“hat values”)
notable values: > 2k/n, 3k/n

Y axis: Studentized residuals

Bubble size ~ Cook’s D 
(influence on coefficients)

2k/n 3k/n



Which cases are influential?
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Treatment    Sex Age Better StudRes Hat  CookD
1    Treated   Male  27      1    1.92 0.0897 0.1128
4    Treated   Male  32      1    1.79 0.0840 0.0818
15   Treated Female  23      0   -1.18 0.1416 0.0420
16   Treated Female  32      0   -1.36 0.0926 0.0381
39   Treated Female  69      0   -2.17 0.0314 0.0690

case 1: younger male: moderate Hat, 
better than predicted large Cook D

case 15: very young treated female: large 
Hat; did not improve

case 39: older female: small Hat, but did 
not improve with treatment

Looking ahead
• Logistic regression models need not always have 

linear effects– models nonlinear in Xs sometimes 
useful

• Polytomous outcomes can be handled as well
e.g., Improved = {“None”, “Some”, “Marked”}

• If ordinal, 
the proportional odds model is a simple extension
nested dichotomies provides an alternative approach

• Otherwise, multinomial logistic regression is the way
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Summary
• loglm() provides only overall tests of model fit
• Model-based methods, glm(), provide hypothesis 

tests, CIs & tests for individual terms
• Logistic regression: A glm() for a binary response

linear model for the log odds Pr(Y=1)
All similar to classical ANOVA, regression models

• Plotting
Conditional, full-model plots show data and fits 
Effect plots show predicted effects averaged over others

• Model diagnostics
Influence plots are often informative
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