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Today’s topics

Model-based methods: Overview

Logistic regression: one predictor, multiple

predictors, fitting

Visualizing logistic regression

Effect plots

Case study: Racial profiling

Model diagnostics

Model-based methods: Overview

@ Explicitly assume some probability distribution for the data, e.g., binomial,
Poisson, ...

@ Distinguish between the systematic component— explained by the
model— and a random component, which is not

@ Allow a compact summary of the data in terms of a (hopefully) small
number of parameters

Advantages

@ Inferences: hypothesis tests and confidence intervals

@ Can test individual model terms (anova ())

@ Methods for model selection: adjust balance between goodness-of-fit and
parsimony

@ Predicted values give model-smoothed summaries for plotting

@ — Interpret the fitted model graphically

Loglinear models
(contingency table form)
[Admit][Gender Dept]
[Admit Dept][Gender Dept]
[AdmitDept][AdmitGender][GenderDept]

Poisson GLMs
(Frequency data frame)
Freq ~ Admit + Gender * Dept
Freq ~ Admit*Dept + Gender*Dept
Freq ~ Admit*(Dept + Gender) +
Gender*Dept

Ordinal variables
Freq ~ right + left + Diag(right, left)
Freq ~ right + left + Symm(right, left)

Modeling approaches: Overview

Association models Response models

Binary response

Categorical predictors: logit models
logit(Admit) ~ 1
logit(Admit) ~ Dept
logit(Admit) ~ Dept + Gender

Continuous/mixed predictors
Logistic regression models
Pr(Admit) ~ Dept + Gender + Age + GRE

Polytomous response

Ordinal: proportional odds model
Improve ~ Age + Sex + Treatment

General multinomial model
WomenWork ~ Kids + Husbandincome




loglm() vs. glm()

With Lloglm () you can only test overall fit (anova () ) or difference between
models (Lrstats () )

> berk.modl <- loglm(~ Dept * (Gender + Admit), data=UCBAdmissions)
> berk.mod2 <- loglm(~(Admit + Dept + Gender) "2, data=UCBAdmissions)

> anova (berk.mod2)
Call:
loglm(formula = ~(Admit + Dept + Gender) "2, data = UCBAdmissions)

Statistics:

X~2 df P(> X*2)
Likelihood Ratio 20.20 5 0.001144
Pearson 18.82 5 0.00207

What we can say:
Even the model with all pairwise associations fits poorly @

Comparing models with anova () and LRstats ()

> anova (berk.modl, berk.mod2, test="Chisqg")
LR tests for hierarchical log-linear models

Model 1:

~Dept * (Gender + Admit)
Model 2:

~(Admit + Dept + Gender)"2

Deviance df Delta (Dev) Delta(df) P (> Delta (Dev)

Model 1 21.74 6
Model 2 20.20 5 1.531 1 0.21593
Saturated 0.00 O 20.204 5 0.00114

> LRstats (berk.modl, berk.mod2)
Likelihood summary table:

AIC BIC LR Chisqg Df Pr(>Chisq)
berk.modl 217 238 21.7 6 0.0014 *~*
berk.mod2 217 240 20.2 5 Q.0011L =

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 '’ 1

Q: What can we say from this?

loglm() vs. glm()

With glm () you can test individual terms using anova () orcar: :Anova ()

> berkeley <- as.data.frame (UCBAdmissions)

> berk.glm2 <- glm(Freq ~ (Dept+Gender+Admit) "2, data=berkeley,
family="poisson")

> anova (berk.glm2, test="Chisqg")

Analysis of Deviance Table

Model: poisson, link: log
Response: Freq

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr (>Chi)

NULL 23 2650

Dept 5 160 18 2491 Le=1lE S
Gender 1 163 17 2328 =16 wu
Admit 1 230 16 2098 Le=16 #w
Dept:Gender 5 1221 11 8717 <2e-16 ***
Dept :Admit 5 855 6 22 <2e-16 ***
Gender:Admit 1 2 5 20 0.22

Signif. codes: 0 “***’/ (0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ' 1

Q: Can someone help interpret the term for Gender:Admit ?

Dropping & adding terms

A useful strategy for model-building is to start with some model, and consider

* The effect of dropping high-order terms, one at a time

* The effect of adding terms w/in the scope of a larger model, one at a time

*  MASS:dropterm() and MASS::addterm() do this for both glm() and loglm() models

> MASS::dropterm(berk.glm2, test="Chisqg")
Single term deletions

Model:
Freq ~ (Dept + Gender + Admit) "2

Df Deviance AIC LRT Pr (Chi)
<none> 20.20 217.26

Dept:Gender 5 1148.90 1335.96 1128.70 <2e-16 ***
Dept :Admit 5 783.61 970.67 763.40 <2e-16 ***
Gender:Admit 1 21.74 216.80 1.53 0.2159

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 '.” 0.1 '’ 1




Fitting & graphing models: Overview

Object-oriented approach in R:

i dlm) f lot(mod
input | polr() ek plot( ) |

. g plot(f(mod)) o
data multinom() object (=

@ Fitmodel (obj <- glm(...)) — a model object

@ print (obj) and summary (ob7j) — numerical results

@ anova (obj) and Anova (cbj) — tests for model terms

@ update (obj), addl (ocbj), dropl (obj) for model selection

Plot methods:
@ plot (ob7j) often giveLs diagnostic plots
@ Other plot methods:
e Mosaic plots: mosaic (obd) for "loglm™ and "glm" objects

o Effect plots: plot (Effect (cbd)) for nearly all linear models
@ Influence plots (car): influencePlot (obj) for "glm" objects

Logistic regression

@ Binary response: success/failure, vote: yes/no
@ Binomial data: x successes in n trials (grouped data)

glm(success ~ ..., family=binomial)
glm(cbind(Nsuccess, Nfail) ~ ..., family=binomial)

Explanatory variables

@ Quantitative regressors: age, dose

@ Transformed regressors: ,/age, log(dose)

@ Polynomial regressors: age?, age®, - -- (or better: splines)

@ Categorical predictors: treatment, sex (dummy variables, contrasts)
o Interaction regessors: treatment x age, sex x age

This is exactly the same as in classical ANOVA, regression models

Logistic regression: Extensions

Response variable

@ Binary response: success/failure, vote: yes/no
@ Binomial data: x successes in n trials (grouped data)

@ Ordinal response: none < some < severe depression
@ Polytomous response: vote Liberal, Tory, NDP, Green

Extensions of the framework for logistic regression allow us to handle more than two
discrete outcomes. Explanatory variable remain the same

Explanatory variables

@ Quantitative regressors: age, dose

@ Transformed regressors: ,/age, log(dose)

@ Polynomial regressors: age?, age®, - -- (or better: splines)

@ Categorical predictors: treatment, sex (dummy variables, contrasts)
@ Interaction regessors: treatment x age, sex x age

This is exactly the same as in classical ANOVA, regression models

Logistic regression examples

A
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SAD

Combination of the day’s activity (Z)




Survival in the Donner Party

Data on the Donner Party records the fate of 90 people who set out to CA in 1846.
They were trapped in an early winter storm near Reno, NV. Only 48 survived.

1001 oM o T% %0t ¢ ° Who survived? Why?

Logistic regression can model the
0.75 probability of the binary (0/1)
outcome of survival

o

(7]

% 0501 The model is linear in log-odds, but

a non-linear on the probability scale.
0251 A quantitative predictor like age gives

predicted probabilities (& Cl)

Other predictors — sex, family, ... can
give a more detailed understanding
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Survival in the Donner Party
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@ Binary response: survived survived I\.I 'J: R
@ Categorical predictors: sex, R
family D D I

@ Quantitative predictor: age

@ Q: Is the effect of age linear?

@ Q: Are there interactions among
predictors?

@ This is a generalized pairs plot,
with different plots for each pair

Some possible models:

glm(survived ~ age, data=Donner, family=binomial)
glm(survived ~ age + sex + family, data=Donner, family=binomial)
glm(survived ~ age * sex, data=Donner, family=binomial)

Challenger: A dataviz disaster

* The space shuttle Challenger exploded 73 sec. after takeoff on
January 28, 1986, killing all 7 crew

= Subsequent investigation revealed the proximal cause: Low
temperature — failures of the rubber O-rings joining rocket stages

= The anterior cause was a failure of data analysis & visualization

* Data: 24 previous flights: temperature, # of “incidents”

51 C

= W
2 Morton-Thiokol engineers
g - s 1A prepared this bad graph
:
- o But, they also excluded all
M 43?0 e $ flights where there was no
3 i damage
E
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Calculated Joint Tempeorature (F)

Challenger: A better graph

This graph plots the number of failures out of 6 O-rings in all previous flights, including
those with 0 failures

* It fits a simple quadratic regression, nFailures ~ poly(Temperature, 2)

* It should have been a warning that failures increase as temperature gets lower

* But it doesn’t take into account that nFailures ~ Bin(p, n=6)
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Challenger: A better analysis Example: Arthritis treatment

Logistic regression treats the # failures as a binomial outcome with n = 6 trials
The model provides

* Predicted probabilities outside the range of the data

* Confidence intervals, to judge model uncertainty

@ The response variable, Tmproved
is ordinal: "None" < "Some" <

1.00 . :‘ ., se .:._‘,:: . "Marked"

@ A binary logistic model can
consider just Better =

NASA Space Shuttle O-Ring Failures When the challenger 0751 (Improved>"None")

e was launched, the temp @ Other important predictors: Sex,
s o | B was 31°F Som Treatment
£ . The Cl band is very wide : @ Main Q: how does treatment affect
e ° . ’ outcome?
2 but the predicted value 025 i i
g . : @ How does this vary with Age and
3 is uncomfortably high Sex?
L . .
g 8 This analysis & graph ool L SMIR @ This plot shows the binary

S phall might have saved lives! observations, with several

30 ) 50 60 70 80 . = Age 75 model-based smoothings
Temperature (degrees F)
20 21

Example: Berkeley admissions

® Admit/Reject can be considered a

Modet: logit(Admit) = Dept Gender binomial response for each Dept ° °
2 The Logistic
° @ Logistic regression here is
e 17° analogous to an ANOVA model,

Lj o Saeriogesospamy Regression Model

are often called logit models)

Log Odds (Admitted)

@ Every such model has an
equivalent loglinear model form.

@ This plot shows fitted logits for the

108 main effects model, Dept +

~ s S o = " Gender

Department

(PauMIPY) ANNGEa0d ol

110
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Binary response: What’s wrong with OLS?

@ For a binary response, Y € (0,1),
want to predict # = Pr(Y = 1] x)

@ A linear probability model uses
classical linear regression (OLS)

@ Problems:

e Gives predicted values and Cls
outside0 <7 < 1

@ Homogeneity of variance is
violated: V(#) = #(1 — #) #
constant

e Inferences, hypothesis tests are
wrong!

0.0+

-0.5+

o™t e SRV,

R R T

Linear regression vs Logistic regression

OLS regression: Logistic regression:
» Assume y|x ~ N(0, a2) + Assume Pr(y=1|x) ~ binomial(p)
C——T
Fig. 2.1. Graphical representation of a simple linear normal regression. Fig. 2.2. Graphical representation of a simple linear logistic regression.
y linear with x y ~ logit (x)
constant residual variance non-constant residual variance ~ p (1-
p)

Logistic regression

@ Logistic regression avoids these
problems

@ Models logit(w;) = log[w/(1 — 7)]

@ logit is interpretable as “log odds”
that Y =1

@ A related probit model gives very
similar results, but is less
interpretable

@ For 0.2 < 7 < 0.8 fitted values are
close to those from linear
regression.

D75+
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75

EY
Age

Logistic regression: One predictor

For a single quantitative predictor, x, the simple linear logistic regression
model posits a linear relation between the log odds (or logit) of Pr(Y = 1)
and x,

logit[m(x)] = log (%) =a+3x .

@ When 3 > 0, 7(x) and the log odds increase as x increases; when 5 < 0
they decrease with x.
@ This model can also be expressed as a model for the probabilities 7(x)

1

() = logit” "7 ()] = g ]

Thinking logistically:
* Model is for the log odds of the marked response, Y =1
* Can always back transform with logit! to get probability of Y =1




Logistic regression: One predictor

Logistic regression: Multiple predictors

The coefficients, a, B of this model have simple interpretations in terms of odds & log
odds

m(x)
1—7(x)

logit[r(x)] = log ( ™x) ) =a+ 8x odds(Y =1)= = exp(a + fx) = e*(e®)*

1—7(x)

B is the change in log odds for a unit increase in x

—The odds of Y=1 are multiplied by eP for each unit increase in x
o is the log odds when x=0

—The odds of Y=1 when x=0 is e
In R, use exp (coef (model)) to getthese values

Another interpretation: In terms of probability, the slope of the logistic regression
curve is Br(1-m)
This has the maximum value /4 when =%

@ For a binary response, Y < (0, 1), let X be a vector of p regressors, and
7; be the probability, Pr(Y = 1] X).

@ The logistic regression model is a linear model for the log odds, or logit
that Y = 1, given the values in x,

Iogit(m}zlog( it ) = a+Xxp

1—m;

= o+ BiXn + BaXig + -+ BpXip

@ An equivalent (non-linear) form of the model may be specified for the
probability, 7;, itself,

mi = {1 +exp(—[a + X B])}

@ The logistic model is also a multiplicative model for the odds of “success,”

i

1—m;

=exp(a + X' B) = exp(a)exp(x] 3)

Increasing x; by 1 increases logit(7;) by 3;, and multiplies the odds by e

Fitting the logistic regression model

Logistic regression models are the special case of generalized linear models, fit in R
usingglm(..., family=binomial)
For this example, we define Better as any improvement at all

> data (Arthritis, package="vcd")
> Arthritis$Better <- as.numeric (Arthritis$Improved > "None")

Fit and print:

> (arth.logistic <- glm(Better ~ Age, data=Arthritis, family=binomial))

Call: glm(formula = Better ~ Age, family = binomial, data = Arthritis)

Coefficients:
(Intercept) Age
-2.6421 0.0492
Degrees of Freedom: 83 Total (i.e. Null); 82 Residual
Null Deviance: 116
Residual Deviance: 109 AIC: 113

The summary() method gives details and tests of coefficients

> summary (arth.logistic)

Call:
glm(formula = Better ~ Age, family = binomial, data = Arthritis)

Deviance Residuals:
Min 10 Median 30 Max
-1.5106 -1.1277 0.0794 1.0677 1.7611

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) -2.6421 1.0732 -2.46 0.014 *
Age 0.0492 0.0194 2.54 0.011 *

Signif. codes: 0 ‘***/ 0.001 ‘**’ 0.01 *’ 0.05 *.” 0.1 '’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 116.45 on 83 degrees of freedom szorHO:BA$==O
Residual deviance: 109.16 on 82 degrees of freedom G2 for Hy: Bpge # 0

How much better is this than the null model? AG?;)=116.45-109.16 = 7.29




Interpreting coefficients

> coef(arth.logistic) > exp(coef(arth.logistic))

(Intercept) Age (Intercept) Age
-2.64207 0.04925 0.07121 1.05048
> exp(10*coef(arth.logistic)[2])
Age
1.636
Interpretations:

@ log odds(Better) increase by 5 = 0.0492 for each year of age

@ odds(Better) multiplied by ¢® = 1.05 for each year of age— a 5%
increase

@ over 10 years, odds(Better) are multiplied by exp(10 x 0.0492) = 1.64, a
64% increase.

@ Pr(Better) increases by /3/4 = 0.0123 for each year (near 7 = %)

Multiple predictors

The main interest here is the effect of Treatment. Sex and Age are control
variables. Fit the main effects model (no interactions):

IOglt(’pT,) = a + 51X + PaXio + PeXjo

where x; is Age and x; and x3 are the factors representing Sex and
Treatment, respectively. R uses dummy (0/1) variables for factors.

o 0 if Female | O if Placebo
271 1 ifMale 571 1 if Treatment

@ o doesn't have a sensible interpretation here. Why?

@ [31: increment in log odds(Better) for each year of age.

@ [3,: difference in log odds for male as compared to female.
@ [13: difference in log odds for treated vs. the placebo group

Multiple predictors: Fitting

Fit the main effects model. Use I(Age — 50) to center Age, making a interpretable

arth.logistic2 <- glm(Better ~ I(Age - 50) + Sex + Treatment,
data=Arthritis, family=binomial)

lmtest: :coeftest () gives justthe tests of coefficients provided by summary()
> Imtest::coeftest (arth.logistic2)
z test of coefficients:

Estimate Std. Error z value Pr(>]|z|)

(Intercept) -0.5781 0.3674 =1 .57 0.116

I(Age - 50) 0.0487 0.0207 2.36 0.018 *
SexMale -1.4878 0.5948 -2.50 0.012 *
TreatmentTreated 1.7598 0.5365 3.28 0.001 *x*

broom: :glance () gives model fit statistics

> broom: :glance (arth.logistic2)
# A tibble: 1 x 8
null.deviance df.null logLik AIC BIC deviance df.residual nobs

1 116. 83 -46.0 100. 110. 92.1 80 84

Interpreting coefficients

> cbind(coef=coef (arth.logistic2),
OddsRatio=exp (coef (arth.logistic2)),
exp (confint (arth.logistic2)))
coef OddsRatio 2.5 % 97.5 %

(Intercept) -0.5781 0.561 0.2647 1.132
I(Age - 50) 0.0487 1.050 1.0100 1.096
SexMale -1.4878 0.226 0.0652 0.689
TreatmentTreated 1.7598 5.811 2.1187 17.727

@ o = —0.578: At age 50, females given placebo have odds(Better) of
e~ 0-578 _ 0 56.

@ (3; = 0.0487: Each year of age multiplies odds(Better) by €947 = 1,05,
a 5% increase.

@ [ = —1.49: Males e~ 14° = 0.26 x less likely to show improvement as
females. (Or, females e'*° = 4.437 x more likely than males.)

@ (3 = 1.76: Treated e'76=5.81 x more likely Better than Placebo




Hypothesis testing: Questions

@ Overall test: How does my model, logit(7) = a + X' 3 compare with the
null model, logit(7) = a?

Ho:PB1=Ba=-=P=0

@ One predictor: Does x, significantly improve my model? Can it be
dropped?
Ho : Sk = 0 given other predictors retained

@ Lack of fit: How does my model compare with a perfect model (saturated
model)?

For ANOVA, regression, these tests are carried out using F-tests and {-tests.
In logistic regression (fit by maximum likelihood) we use

@ F-tests — likelihood ratio G? tests
@ t-tests — Wald z or 2 tests

Maximum likelihood estimation

In classical linear models using 1m (), we fit using ordinary least squares.
Allglm() models use maximum likelihood estimation— better properties

@ Likelihood, £ = Pr(data| model), as function of model parameters
@ Forcase/,
_j p, ifY=1

Y Y _
i 11—p,. fy—o P (1-p,")  where p; =1/ (1+exp(x;B))

@ Under independence, joint likelihood is the product over all cases
n
L= HP;Y’U - Piy')
i

@ — Find estimates J@ that maximize log £. lterative, but this solves the
“estimating equations”
X'y =Xp

Overall model tests

Likelihood ratio test (G?)
* Compare nested models, similar to F tests in OLS
* Let L, = maximized value for our model
logit(rt) = B, + x", B
* Let L, =maximized likelihood for the null model
logit(rt) = By under Hy: B, =B, = ... = B,
Likelihood ratio test statistic:

w/ k predictors

L
G’ =-2log (?‘)] =2(log L, —log L,) ~ z;

1

Wald tests & confidence intervals

* Analogous to t-tests in OLS

® TestHo: B=0 2=l N@O,21) or P~y
s(b)

* Confidence interval
bz - Zl—a/2 S(bi)

> rl <- lmtest::coeftest (arth.logistic2)
> r2 <- confint(arth.logistic2)
Waiting for profiling to be done...
> cbind(rl, r2)
Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %

(Intercept) -0.578 0.367 -1.6 0.116 -1.33 0.124
I(Age - 50) 0.049 0.021 2.4 0.018 0.01 0.092
SexMale -1.488 0.595 -2.5 0.012 -2.73 -0.372
TreatmentTreated 1.760 0.536 3.3 0.001 0.75 2.875




LR, Wald & Score tests

Testing Global Null Hypothesis: BETA=0 HO: Bl = BZ = B3 =0

Test Chi-Sgquare DF Pr > Chigg
Likelihood Ratio 24 .3859 3 <.0001
Score 22,0051 3 <.0001
Wald 17.5147 3 0.0006

Different ways to measure
departure fromH,: =0

* LR test: diff*in logL
*  Wald test: (B - B,)?
* Score test: slopeatB =0

-100
I

log Likellhood

-150
I

Plotting logistic regression data

Plotting a binary response together with a fitted logistic model can be difficult
because the 0/1 response leads to much overplotiting.

@ Need to jitter the points

@ Useful to show the fitted logistic E R e cae
curve

@ Confidence band gives a sense of
uncertainty

@ Adding a non-parametric (loess)
smooth shows possible
nonlinearity

@ NB: Can plot either on the
response scale (probability) or the

92 g e e Al

link scale (logit) where effects are 1 3 teems AAMT
linear 20 331 40 50 60 70 80

08

06
I

Probability (Better)

02
I

Types of plots

* Conditional plots: Stratified plot of Y or logit(Y) vs. one X,
conditioned by other predictors--- only that subset is plotted
for each panel

Female Male

1.00 4 Tt . WALy

0.75+
= Treatment
% 0.50 Placebo
m e Treated

0.25+

0.00 e Pyt e v .

T T T T T T
s 50 75 P 50 75
Age

Types of plots

* Full-model plots: Plot of fitted response surface, showing all
effects; usually shown in several panels

Female Male

1.00+ e T & L X 2 aa .. . w
=075
@
=
8 Treatment
gD,SD - Placebo
= mm Treated
8
[
0025+

000 & . . ¥ " . L £ a .

T T T T T T T T T T
30 40 50 60 0 30 40 50 60 70




Types of plots

Conditional plots with ggplot2

* Effect plots: plots of predicted effects for terms in the model,
averaged over predictors not shown in a given plot

Age effect plot Sex effect plot Treatment effect plot
| | | |
0.8 0.7 o - 08 L
g; 056 - 07 4 L
. O . 05+ - =
oD 05 o 04 4 B 5 0.6 o
T 04 T T 05+
@ s @ 03 - m gy
0.2 0.2 - 0.3 u
01 T T 21 T |7
30 35 40 45 50 55 60 65 70 Female Male Placebo Treated
Age Sex Treatment

Plot Arthritis data by Treatment, ignoring Sex; overlay fitted logistic reg. lines

gg <- ggplot (Arthritis, aes(Age, Better, color=Treatment)) +
x1im (15, 85) +
geom_jitter (height = 0.02, width = 0, size=2) +
stat_smooth (method = "glm", method.args=(family = “binomial”), alpha = 0.2,

aes (fill=Treatment), size=2.5, fullrange=TRUE) +
theme_bw(base_size = 16) + theme(legend.position = c(.85, .2))
gg # show the plot
1.001 . %o o o+ o . ",. PogSets o
geom_jitter() shows the observations
0754 more distinctly
5 Fitted lines use method="glm”,
& 0407 family=binomial
025 Treatment
Placebo
== Treated
0.004 s % o oy ohroX B
20 40 60 80

Age

Full-model plots

Can show the conditional plots for M & F, simply by faceting by Sex

gg + facet wrap(~ Sex)

Female Male Only the data for each

Sex is used in each plot

1.004 R | % o ¢ . * s

Plotting the data points
0757 shows that the data for
males is too thin to

give good estimates of
050 separate regression

Better

02519 Treatment
Placebo
== Treated
0.00 1 A ¢S s . > -
20 40 60 80 20 40 60 80

Age

Full-model plots show the fitted values on the logit scale or on the response
scale (probability), usually with confidence bands. This often requires a bit of
custom programming.
Steps:

@ Obtain fitted values with predict (model, se.fit=TRUE)—

type="1ink" (logit) is the default

@ Canuse type="response" for probability scale

@ Join this to your data (cbind())

@ Plot as you like: plot (), ggplot (), - -

> arth.fit2 <- cbind (Arthritis,

+ predict(arth.logistic2, se.fit = TRUE))
> head(arth.fit2[,-9], 4)
ID Treatment Sex Age Improved Better fit se.fit
1 57 Treated Male 27 Some 1 -1.43 0.758
2 46 Treated Male 29 None 0 -1.33 0.728
3 77 Treated Male 30 None 0 -1.28 0.713
4 17 Treated Male 32 Marked 1 -1.18 0.684




Plotting with ggplot2

Plot the fitted log odds, confidence band and observations

arth.fit2 <- arth.fit2 |>
mutate (obs = ifelse (Better==0, -4, 4)) # show obs at -4, 4

ggplot ( arth.fit2, aes(x=Age, y=fit, color=Treatment)) +
geom line(size = 2) +
geom ribbon(aes(ymin = fit - 1.96 * se.fit,
ymax = fit + 1.96 * se.fit,
fill = Treatment), alpha = 0.2,

color = "transparent") +
labs(x = "Age", y = "Log odds (Better)") +
geom jitter (aes(y=obs), height=0.25, width=0) +
facet wrap(~ Sex) +
theme bw(base size = 16)

Using color=Treatment gives separate points and lines for the two groups

Full-model plot

Plotting on the logit scale shows the additive effects of age, treatment and sex
NB: easier to compare the treatment groups within the same panel
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These plots show model uncertainty (confidence bands)
Jittered points show the data

Full-model plot

Plotting on the probability scale may be simpler to interpret
Use predict (.. type = “response”) to get fitted probabilities

arth.fit2r <- cbind(Arthritis,
predict (arth.logistic2, se.fit = TRUE, type="response"))
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Models with interactions

Is the linear effect of age the same for females, males?
* We can test this by adding an interaction of Sex x Age

* update () makes it easy to add/subtract terms from a model

* car::Anova () gives partial tests of each term after all others

> arth.logistic4 <- update(arth.logistic2, . ~ . + I(Age-50) :Sex)
> car::Anova (arth.logistic4)
Analysis of Deviance Table (Type II tests)

Response: Better
LR Chisg Df Pr (>Chisq)

I(Age - 50) 6.16 1 0.01308 *

Sex 6.98 1 0.00823 **

Treatment 11.90 1 0.00056 ***

I(Age - 50):Sex 3.42 1 0.06430 .

Signif. codes: 0 ‘***/ (0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ' 1

The interaction term Age:Sex is not quite significant, but plot the fitted model anyway




Models with interactions

Effect plots: Basic ideas
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@ Only the model changes

@ predict () automatically incorporates the revised model terms
@ Plotting steps remain the same

@ This interpretation is quite different!

Show a given marginal effect, controlling / adjusting for other model effects

Data
x1 x2 sex xlx2 v vhat * Fit data: XB =Yy
1 11 F 1 4.73 4.46
2 2 1 M 0 6.10 5.55
3 3 1 F -1 4.32 4.34 X*A:>A*
L]
4 11 F 1 4.84 4.46 Score data Py
5 =+t F 0 4513 4.40 * plot vars: vary over range
20| 2 2 M 0 6.10 6.15 * control vars: fix at means
30 3 2 F 1 6.71 7.14
Score data i amactplot
x1 x2 |sex xl1:x2 v vhat * =

a1 1 1| 0.5 1 NA 5.030 L=
32 2 1| 0.5 2 NA 4.971 _
33 3 1| 0.5 3 IHA 4.912 plot . ¢
34 1 2| 0.5 2 NA 3.437
35 | 2 2| 0.5 4 NA 5.574 ‘
36 3 2| 0.5 6 NA 7.710 . J

B 5 zn 28 20

plotvars  control vars bl

Effect plots: Details

Plotting main effects

@ For simple models, full model plots show the complete relation between
response and all predictors.

@ Fox(1987)— For complex models, often wish to plot a specific main effect
or interaction (including lower-order relatives)— controlling for other
effects

o Fit full model to data with linear predictor (e.g., logit) n = X3 and link
function g(p) = n — estimate b of 3 and covariance matrix VTE) of b.
e Construct “score data”

@ Vary each predictor in the term over its’ range
@ Fix other predictors at “typical” values (mean, median, proportion in the data)
@ — “effect model matrix,” X~*

o Use predict () on X*
@ Calculate fitted effect values, 7j* = X*b.
@ Standard errors are square roots of diag X* V(b)X*T

e Plot #*, or values transformed back to scale of response, g~ (7*).

@ Note: This provides a general means to visualize interactions in all linear
and generalized linear models.

allEffects () calculates effects for all high-order terms in the model
The response is plotted on the logit scale, but labeled with probabilities

library(effects)
arth.eff2 <- allEffects(arth.logistic2)
plot(arth.eff2, rows=1l, cols=3, lwd=2)
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|-model plot

The full-model plot is simply the Effect () of the highest-order interaction of factors

arth.full <- Effect(c("Age", "Treatment", "Sex"), arth.logistic2)
plot(arth.full, multiline=TRUE, ci.style="bands",
colors = c("red", "blue"), 1lwd=3, |

Age*Treatment*Sex effect plot
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Model with interaction of Age x Sex

arth.effd4 <- allEffects(arth.logistic4)
plot (arth.eff4, lwd=2)

Treatment effect plot Age*Sex effect plot
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Only the high-order terms: Treatment & Age * Sex are shown & need to be interpreted
Q: How would you describe this?

Race &

Crime

Toronto Star investigation of
racial disparities in treatment
by Toronto Police Services

FOI request — > % M arrests,
1997—2002

Evidence for racial profiling?

Only look at discretionary
charges:

Simple marijuana possession
Non-moving auto infractions
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Case study: Arrests for marijuana

* |n Dec. 2002, the Toronto Star examined the issue of racial
profiling, by analyzing a data base of 600,000+ arrest records
from 1997-2002.

* They focused on a subset of arrests for which police action
was discretionary, e.g., simple possession of small quantities
of marijuana, where the police could:

= Release the arrestee with a summons — like a parking ticket
® Bring to police station, hold for bail, ... -- harsher treatment

* Response variable: released: “Yes”, “No”

= Main predictor of interest: skin-colour of arrestee (black, white)
= QOther predictors: year, age, sex, ...




Racial profiling: Presentation graphic

Together, we created this (nearly) self-explaining infographic

Legend gives a layman’s
description of shading levels

Title gives the
main conclusion

Same charge, different treatment

L. Statistical analysis of single drug possession charges shows Degree of likelihood
Text description that blacks are much less likely to be released at the scene . Much less likely to occur
ives details and much more likely to be held in custody for a bail hearing. .
g Darker colours represent a stronger statistical link between . Much more likely to occur
skin colour and police treatment. D More likely to occur
Whites are more likely to be released at the scene
. 0
Bar width ~ charges [ 552 | 78% 14.5%
i 9 Jaid released at the scene released
Divided by % release at station

Blacks are much more likely to be held for bail hearings

e T 20% — FrI
numbers shown in laid released at the scene released at station  WETE N
the cells I | I | | | | I | | I
0% 10 20 30 40 50 60 70 80 920 100

SQURCE: Toronto police arrest records 1996-2002

Arrests for marijuana: Data

Response variable: released

Control variables:

* year, age, sex

¢ employed, citizen: Yes, No

¢ checks: # of police databases (previous arrests, convictions, parole status) where the
arrestee’s name was found

> library(car) # for Anova ()
> data (Arrests, package = "carData")
> some (Arrests)
released colour year age sex employed citizen checks

218 Yes White 2000 24 Male Yes Yes 0
1301 No Black 1999 17 Male Yes No 1
1495 Yes White 1998 23 Male Yes Yes 0
1732 Yes Black 2000 18 Male Yes Yes 2
1838 Yes Black 1997 27 Male No Yes 5
2257 No White 2001 19 Male No Yes 2
3100 No Black 2000 19 Male No Yes 4
3843 Yes White 1999 20 Male Yes Yes 0
4580 Yes Black 1999 26 Male Yes Yes 1
4833 Yes Black 1998 38 Male Yes Yes 0

Arrests for marijuana: Model

Effect plot: Skin colour

year is numerical. But may be non-linear. Convert to a factor
Fit model with all main effects, but allow interactions of colour:year and colour:age

> Arrests$year <- as.factor (Arrests$year)

> arrests.mod <- glm(released ~ employed + citizen + checks +
colour*year + colour*age,
family=binomial, data=Arrests)

> Anova (arrests.mod)

Analysis of Deviance Table (Type II tests)

Response: released
LR Chisqg Df Pr(>Chisq)

employed 72.7 1 < 2e-16 ***
citizen 25.8 1 3.8e-07 ***
checks 205.2 1 < 2e-16 ***
colour 19.6 1 9.7e-06 ***
year 6.1 5 0.29785

age 0.5 1 0.49827

colour:year 21.7 5 0.000859 www
colour:age 13.9 1 0.00019 ***

Signif. codes: 0 ‘***/ (0.001 ‘**’/ 0.01 ‘*’ 0.05 ‘.” 0.1 ' 1

plot (Effect ("colour", arrests.mod), lwd=3, ci.style="bands”, ...)
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Effect plots: Interactions

Effect plots: Interactions

The story turned out to be more nuanced than reported by the Toronto Star

plot (Effect (c("colour", "year"), arrests.mod), multiline=TRUE, ...)

colour*year effect plot

Up to 2000, strong evidence for

088 1 i differential treatment of blacks
T & whites
D 086 -
8
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A more surprising finding ...

plot (Effect (c("colour", "year"), arrests.mod), multiline=TRUE, ...)

Effects of skin colour and age on release

colour Opposite age effects for blacks &
Black —— hites:

~ White —— whites:
T 095 1 F
on * Young blacks treated more
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=090 o -
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Effect plots: allEffects

All high-order terms can be viewed together using plot(allEffects(mod))

arrests.effects <- allEffects(arrests.mod,
xlevels=list (age=seq(15,45,5)))
plot (arrests.effects, ylab="Probability(released)", ..)
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Model diagnostics

As in regression and ANOVA, the validity of a logistic regression model is
threatened when:

@ Important predictors have been omitted from the model
@ Predictors assumed to be linear have non-linear effects on Pr(Y = 1)
@ Important interactions have been omitted

@ A few “wild” observations have a large impact on the fitted model or
coefficients

Model specification: Tools and techniques

@ Use non-parametric smoothed curves to detect non-linearity

@ Consider using polynomial terms (X2, X3, ...) or regression splines (e.g.,
ns (X, 3))

@ Use update (model, ...) totestfor interactions— formula: . ~ 2




Residuals
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0
1

Diagnostic plots in R

In R, plotting a g1m object gives the “regression quartet” — 4 basic diagnostic plots

arth.modl <- glm(Better ~ Age + Sex + Treatment, data=Arthritis,
family="'binomial')
plot (arth.modl)
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These plots often look peculiar for logistic regression models
Better versions are available in the car package

Unusual data: Leverage & Influence

*  “Unusual” observations can have dramatic effects on least-squares
estimates in linear models
* Three archetypal cases:
= Typical X (low leverage), bad fit
= Unusual X (high leverage), good fit -- Not much harm
-- BAD, BAD, BAD

* Influential observations: unusual in both X & Y

-- Not much harm

= Unusual X (high leverage), bad fit

® Heuristic formula:
Influence = X leverage x Y residual

y
707

y
| High leverage, good fit m_ High leverage, Outlier

0
Low leverage, Outlier.

601
501
401

307

20+

Influence plots

Influence (Cook’s D) measures impact of individual obs. on coefficients, fitted values

. N I\ 2 High
Influence ~ Residual (y -y) x Hat-value (X-X) leverage
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Hat-Values

library (car)
influencePlot (arth.logistic2, ..)

X axis: Leverage (“hat values”)
notable values: > 2k/n, 3k/n

w —
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Which cases are influential? Looking ahead

Treatment  Sex Age Better StudRes — Hat CookD * Logistic regression models need not always have
1 Treated Male 27 1 1.92 0.0897 0.1128 ] ) . .
4 Treated Male 32 1 1.79 0.0840 0.0818 linear effects— models nonlinear in Xs sometimes
15 Treated Female 23 0 -1.18 0.1416 0.0420
16 Treated Female 32 0 -1.36 0.0926 0.0381 useful
39 Treated Female 69 0 -2.17 0.0314 0.0690
* Polytomous outcomes can be handled as well
TTOUTT = e.g., Improved = {“None”, “Some”, “Marked”}
@ g case 1: younger male: moderate Hat, )
2 - o %5 4 better than predicted — large Cook D ° |f ordlnal,
§ ] case 15: very young treated female: large ® the proportional odds model is a simple extension
g .. e Hat; did not improve = nested dichotomies provides an alternative approach
S o PO o
z 1% i« 16 case 39: older female: small Hat, but did * Otherwise, multinomial logistic regression is the way
@) O iD not improve with treatment
"

T T T T T T
0.04 0.06 0.08 0.10 0.12 0.14

Hat-Values

* loglm() provides only overall tests of model fit

* Model-based methods, glm(), provide hypothesis
tests, Cls & tests for individual terms
* Logistic regression: A glm() for a binary response
® |inear model for the log odds Pr(Y=1)
= All similar to classical ANOVA, regression models
* Plotting
® Conditional, full-model plots show data and fits
= Effect plots show predicted effects averaged over others
* Model diagnostics
® |nfluence plots are often informative




