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Today’s topics

* Model-based methods: Overview

* Logistic regression: one predictor, multiple
predictors, fitting

* Visualizing logistic regression
* Effect plots

* (Case study: Racial profiling

°* Model diagnostics



Model-based methods: Overview

@ Explicitly assume some probability distribution for the data, e.g., binomial,
Poisson, ...

@ Distinguish between the systematic component— explained by the
model— and a random component, which is not

@ Allow a compact summary of the data in terms of a (hopefully) small
number of parameters

Advantages

@ Inferences: hypothesis tests and confidence intervals

@ Can test individual model terms (anova ())

@ Methods for model selection: adjust balance between goodness-of-fit and
parsimony

@ Predicted values give model-smoothed summaries for plotting

@ — Interpret the fitted model graphically




Modeling approaches: Overview

Response models

Association models

Loglinear models

(contingency table form)
[Admit][Gender Dept]

* Binary response
* Categorical predictors: logit models
logit(Admit) ~ 1

<€
[Admit Dept][Gender Dept]

[AdmitDept][AdmitGender][GenderDept]

Poisson GLMs
(Frequency data frame)
Freg ~ Admit + Gender * Dept
Freqg ~ Admit*Dept + Gender*Dept
Freq ~ Admit*(Dept + Gender) +
Gender*Dept

Ordinal variables
Freq ~ right + left + Diag(right, left)
Freq ~ right + left + Symm(right, left)

>

logit(Admit) ~ Dept
logit(Admit) ~ Dept + Gender

* Continuous/mixed predictors

. Logistic regression models
Pr(Admit) ~ Dept + Gender + Age + GRE

* Polytomous response

* Ordinal: proportional odds model
Improve ~ Age + Sex + Treatment

°* General multinomial model
WomenWork ~ Kids + Husbandlncome




loglm() vs. glm()

With Loglm () you can only test overall fit (anova () ) or difference between
models (Lrstats () )

> berk.modl <- loglm(~ Dept * (Gender + Admit), data=UCBAdmissions)
> berk.mod2 <- loglm(~(Admit + Dept + Gender) "2, data=UCBAdmissions)

> anova (berk.mod?2)
Call:
loglm(formula = ~(Admit + Dept + Gender)”"2, data = UCBAdmissions)

Statistics:

X"2 df P(> X"2)
Likelihood Ratio 20.20 5 0.001144
Pearson 18.82 5 0.00207

What we can say:
Even the model with all pairwise associations fits poorly ®



Comparing models with anova () and LRstats ()

> anova (berk.modl, berk.mod2, test="Chisqg")
LR tests for hierarchical log-linear models

Model 1:

~Dept * (Gender + Admit)
Model 2:

~(Admit + Dept + Gender) "2

Deviance df Delta (Dev) Delta(df) P (> Delta (Dev)

Model 1 21.74 6
Model 2 20.20 5 1.531 1 0.21593
Saturated 0.00 O 20.204 5 0.00114

> LRstats (berk.modl, berk.mod?2)
Likelihood summary table:

AIC BIC LR Chisg Df Pr (>Chisq)
berk.modl 217 238 21.7 6 0.0014 *x*
berk.mod2 217 240 20.2 5 0.0011 **

Signif. codes: 0 ‘***r (0,001 ‘**" 0.01 ** 0.05 . 0.1 Y " 1

Q: What can we say from this?



loglm() vs. glm()

With glm () you can test individual terms using anova () orcar: :Anova ()

> berkeley <- as.data.frame (UCBAdmissions)

> berk.glm?2 <- glm(Freq ~ (Dept+Gender+Admit) "2, data=berkeley,
family="poisson")

> anova (berk.glm2, test="Chisqg")

Analysis of Deviance Table

Model: poisson, link: log
Response: Freq

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr (>Chi)

NULL 23 2650

Dept 5 160 18 2491 <2e-16 ***
Gender 1 163 17 2328 <2e-16 ***
Admit 1 230 16 2098 <2e-16 ***
Dept:Gender 5 1221 11 877 <2e-16 ***
Dept:Admit 5 855 6 22 <2e-16 ***
Gender:Admit 1 2 5 20 0.22

Signif. codes: 0 Y***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 v " 1

Q: Can someone help interpret the term for Gender:Admit ?



Dropping & adding terms

A useful strategy for model-building is to start with some model, and consider
* The effect of dropping high-order terms, one at a time
* The effect of adding terms w/in the scope of a larger model, one at a time

 MASS:dropterm() and MASS::addterm() do this for both glm() and loglm() models

> MASS: :dropterm(berk.glm2,

Single term deletions

217

1335.
970.

test="Chisqg")

Model:

Freq ~ (Dept + Gender + Admit) "2
Df Deviance

<none> 20.20

Dept:Gender 5 1148.90

Dept:Admit 5 783.61

Gender:Admit 1 21.74

Signif. codes: O

Nk Xk x/
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0.001

AIC LRT Pr (Chi)

.26
96 1128.70 <2e-16 *x*x*
67 763.40 <2e-16 *x*x*
.80 1.53 0.2159
VxS 0.01 Y*r 0.05 MY

0.1 7 1



Fitting & graphing models: Overview

Object-oriented approach in R:

- gim(} | lot(mod \
Input - polr() model plot(mod)

plot(f(mod)) e
data multlnom object . BB

@ Fit model (cbj <- glm(...)) — amodel object

@ print (obj) and summary (ocbj) — numerical results

@ anova (obj) and Anova (obj) — tests for model terms

@ update (obj), addl (obj), dropl (obij) for model selection

Plot methods:
@ plot (obj) often giveLs diagnostic plots
@ Other plot methods:
@ Mosaic plots: mosaic (obj) for "loglm™ and "glm" objects

e Effect plots: plot (Effect (obj) ) for nearly all linear models
e Influence plots (car): influencePlot (cb3j) for "glm" objects



Logistic regression
Responsevariabe

Response variable

@ Binary response: success/failure, vote: yes/no
@ Binomial data: x successes in n trials (grouped data)

glm(success ™~ ..., family=binomial)
glm(cbind(Nsuccess, Nfail) ~ ..., family=binomial)

Explanatory variables

@ Quantitative regressors: age, dose

@ Transformed regressors: ,/age, log(dose)

@ Polynomial regressors: age?, age?, - - - (or better: splines)

@ Categorical predictors: treatment, sex (dummy variables, contrasts)
@ Interaction regessors: treatment x age, sex x age

This is exactly the same as in classical ANOVA, regression models



Logistic regression: Extensions

Response variable

@ Binary response: success/failure, vote: yes/no

@ Binomial data: x successes in n trials (grouped data)
@ Ordinal response: none < some < severe depression
@ Polytomous response: vote Liberal, Tory, NDP, Green

Extensions of the framework for logistic regression allow us to handle more than two
discrete outcomes. Explanatory variable remain the same

Explanatory variables

@ Quantitative regressors: age, dose

@ Transformed regressors: ,/age, log(dose)

@ Polynomial regressors: age?, age?, - - - (or better: splines)

@ Categorical predictors: treatment, sex (dummy variables, contrasts)
@ Interaction regessors: treatment x age, sex x age

This is exactly the same as in classical ANOVA, regression models



HAPPY

Feeling before Sleep

SAD

Logistic regression examples

 A— C CEEE

Combination of the day’s activity {7)
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Survival in the Donner Party

survived

Data on the Donner Party records the fate of 90 people who set out to CA in 1846.
They were trapped in an early winter storm near Reno, NV. Only 48 survived.

1.00 7

0.754

0.25

0.00

e By o+ 3% 08

§o0 o St * e,

0 20

age

40

60

Who survived? Why?
Logistic regression can model the
probability of the binary (0/1)

outcome of survival

The model is linear in log-odds, but
non-linear on the probability scale.

A quantitative predictor like age gives
predicted probabilities (& Cl)

Other predictors — sex, family, ... can
give a more detailed understanding
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Survival in the Donner Party

@ Binary response: survived

@ Categorical predictors: sex,
family

@ Quantitative predictor: age

@ Q: Is the effect of age linear?

@ Q: Are there interactions among
predictors?

@ This is a generalized pairs plot,
with different plots for each pair

Some possible models:

glm(survived ~ age, data=Donner,

glm(survived ~ age + sex + family,
glm(survived ~ age * sex, data=Donner,

survived
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family=binomial)

data=Donner, family=binomial)

family=binomial)
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Challenger: A dataviz disaster

* The space shuttle Challenger exploded 73 sec. after takeoff on
January 28, 1986, killing all 7 crew

= Subsequent investigation revealed the proximal cause: Low
temperature — failures of the rubber O-rings joining rocket stages

"= The anterior cause was a failure of data analysis & visualization

° Data: 24 previous flights: temperature, # of “incidents”
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Calculated Joint Tomporaturce (F)

&aQ

&5

7a

=

8a

Morton-Thiokol engineers
prepared this bad graph

But, they also excluded all

flights where there was no
damage
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Challenger: A better graph

This graph plots the number of failures out of 6 O-rings in all previous flights, including
those with O failures

It fits a simple quadratic regression, nFailures ~ poly(Temperature, 2)
It should have been a warning that failures increase as temperature gets lower
But it doesn’t take into account that nFailures ~ Bin(p, n=6)

[
&
L

Number c:-f_f)-ring failures
L
L
L
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o
1

60 70 80
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Challenger: A better analysis

Logistic regression treats the # failures as a binomial outcome with n =6 trials
The model provides

* Predicted probabilities outside the range of the data

* Confidence intervals, to judge model uncertainty

NASA Space Shuttle O-Ring Failures When the challenger
1 was launched, the temp
: was 31°F

1.0

The Cl band is very wide,
but the predicted value
. is uncomfortably high

0.4

Estimated failure probability
0.2
|

| This analysis & graph
Challenger 00000 00 §

| | | | T | mlght have saved lives!
30 40 50 60 70 80

0.0

Temperature (degrees F)
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Example: Arthritis treatment

P, e

LL I e )

e

1
25

Age

@ The response variable, Improved
is ordinal: "None" < "Some" <
"Marked"

@ A binary logistic model can
consider just Better =
(Improved>"None")

@ Other important predictors: Sex,
Treatment

@ Main Q: how does treatment affect
outcome?

@ How does this vary with Age and
Sex?

@ This plot shows the binary
observations, with several
model-based smoothings
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Example: Berkeley admissions

@ Admit/Reject can be considered a
Model: logit(admit) = Dept Gender binomial response for each Dept
1°° and Gender
1° @ Logistic regression here is
o 17° analogous to an ANOVA model,
' | but for log odds(Admit)
@ (With categorical predictors, these
are often called logit models)

[}

-0

Log Odds (Admittec)

(PanLupw) Alngeqod

@ Every such model has an
equivalent loglinear model form.

@ This plot shows fitted logits for the

108 main effects model, Dept +

~ z S 5 z z Gender

Department

|
[}

| 910
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Binary response: What’s wrong with OLS?

@ For a binary response, Y € (0,1),
want to predict # = Pr(Y = 1] x)

® A linear probability model uses 1o et e SRR .
classical linear regression (OLS)

@ Problems:

e Gives predicted values and Cls g os
outside 0 < < 1 8

@ Homogeneity of variance is
violated: V(7)) = A(1 — 7t) # 00 A LR S
constant

e Inferences, hypothesis tests are
wrong!

24



Linear regression vs Logistic regression

OLS regression: Logistic regression:
« Assume y|x ~ N(0, 02) » Assume Pr(y=1|x) ~ binomial(p)

1/

Fig. 2.1. Graphical representation of a simple linear normal regression. Fig. 2.2. Graphical representation of a simple linear logistic regression.
y linear with x y ~ logit (x)
constant residual variance non-constant residual variance ~ p (1-

P) 25



Logistic regression

@ Logistic regression avoids these
problems

@ Models logit(7;) = log[7/(1 — )]

@ logit is interpretable as “log odds”
that Y =1

@ A related probit model gives very
similar results, but is less
interpretable

@ For 0.2 < 7 < 0.8 fitted values are
close to those from linear
regression.

1.00+

073+

025+

0.00-
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Logistic regression: One predictor

For a single quantitative predictor, x, the simple linear logistic regression
model posits a linear relation between the log odds (or logit) of Pr(Y = 1)
and x,

logit|7(x)] = log (1?—:}:{)}()) = a+ X .

@ When 3 > 0, m(x) and the log odds increase as x increases; when 3 < 0
they decrease with x.
@ This model can also be expressed as a model for the probabilities 7(x)

1
1 +exp[—(a+ Bx)]

m(x) = logit™ [ (x)]

Thinking logistically:
* Modelis for the log odds of the marked response, Y =1
» Can always back transform with logit™ to get probability of Y =1

27



Logistic regression: One predictor

The coefficients, a, B of this model have simple interpretations in terms of odds & log
odds

— exp(o + 3x) = e (e°)*

logit[7(x)] = log (1 i(;{)x)) = a+ BX odds(Y = 1)

B isthe change in log odds for a unit increase in x

—The odds of Y=1 are multiplied by eP for each unit increase in x
o is the log odds when x=0

—The odds of Y=1 when x=0 is e®
In R, use exp (coef (model) ) to getthese values

Another interpretation: In terms of probability, the slope of the logistic regression

curve is Brr(1-m)
This has the maximum value /4 when =%

28



Logistic regression: Multiple predictors

@ For a binary response, Y < (0,1), let x be a vector of p regressors, and
m; be the probability, Pr(Y = 1| x).

@ The logistic regression model is a linear model for the log odds, or logit
that Y = 1, given the values in X,

|GQit(?T;}E|Dg( il ) = a+x'p

1 —

= -+ 51X + P2Xjg + - + PpXip

@ An equivalent (non-linear) form of the model may be specified for the
probability, 7;, itself,
= {1 +exp(—[a+xT 4]}

@ The logistic model is also a multiplicative model for the odds of “success,’

T =

Hj

1 = exp(a + X! 3) = exp(«) exp(x; 3)
-

Increasing x; by 1 increases logit(7;) by 3;, and multiplies the odds by e”.
29



Fitting the logistic regression model

Logistic regression models are the special case of generalized linear models, fit in R
usingglm(..., family=binomial)
For this example, we define Better as any improvement at all

> data (Arthritis, package="vcd")
> Arthritis$Better <- as.numeric (Arthritis$Improved > "None")

Fit and print:

> (arth.logistic <- glm(Better ~ Age, data=Arthritis, family=binomial))

Call: glm(formula = Better ~ Age, family = binomial, data = Arthritis)

Coefficients:
(Intercept) Age
-2.6421 0.0492

Degrees of Freedom: 83 Total (i.e. Null); 82 Residual
Null Deviance: 1106
Residual Deviance: 109 AIC: 113

30



The summary() method gives details and tests of coefficients

> summary (arth.logistic)

Call:
glm (formula = Better ~ Age, family = binomial, data = Arthritis)

Deviance Residuals:
Min 10 Median 30 Max
-1.5106 -=-1.1277 0.0794 1.0677 1.7611

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.6421 1.0732 -2.46 0.014 ~*
Age 0.0492 0.0194 2.54 0.011 *

Signif. codes: 0 ‘“***xr (0.001 ‘** 0.01 *" 0.05 . 0.1 Y " 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 116.45 on 83 degrees of freedom szOFFMZBA@==0
Residual deviance: 109.16 on 82 degrees of freedom G? for Hy: Bage # 0

How much better is this than the null model? AG*;)=116.45-109.16 = 7.29



Interpreting coefficients

> coef(arth.logistic) > exp(coef(arth.logistic))
(Intercept) Age (Intercept) Age
-2.64207 0.04925 0.07121 1.05048
> exp(10*coef(arth.logistic)[2])
Age
1.636
Interpretations:

@ log odds(Better) increase by 5 = 0.0492 for each year of age

@ odds(Better) multiplied by e® = 1.05 for each year of age— a 5%
Increase

@ over 10 years, odds(Better) are multiplied by exp(10 x 0.0492) = 1.64, a
64% increase.

@ Pr(Better) increases by 3/4 = 0.0123 for each year (near m = %)

32



Multiple predictors

The main interest here is the effect of Treatment. Sex and Age are control
variables. Fit the main effects model (no interactions):

logit(7;) = a + B1Xj1 + PaXiz + PaXie

where x; is Age and x; and x3 are the factors representing Sex and
Treatment, respectively. R uses dummy (0/1) variables for factors.

- — 0 if Female - — 0 if Placebo
271 1 ifMale =1 1 if Treatment

@ o doesn’t have a sensible interpretation here. Why?

@ 31: increment in log odds(Better) for each year of age.

@ /35: difference in log odds for male as compared to female.
@ /J3: difference in log odds for treated vs. the placebo group
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Multiple predictors: Fitting

Fit the main effects model. Use I(Age — 50) to center Age, making a interpretable

arth.logistic2 <- glm(Better ~ I(Age - 50) + Sex + Treatment,
data=Arthritis, family=binomial)

Imtest: :coeftest () givesjustthe tests of coefficients provided by summary()
> Imtest::coeftest (arth.logistic?2)
z test of coefficients:

Estimate Std. Error z value Pr(>|z])

(Intercept) -0.5781 0.3674 -1.57 0.1106

I(Age - 50) 0.0487 0.0207 2.36 0.018 ~*
SexMale -1.4878 0.5948 -2.50 0.012 =
TreatmentTreated 1.7598 0.5365 3.28 0.001 *~*

broom: :glance () gives model fit statistics

> broom: :glance (arth.logistic2)
# A tibble: 1 x 8
null.deviance df.null logLik AIC BIC deviance df.residual nobs
<dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
1 1ll6. 83 -46.0 100. 110. 92.1 80 84
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Interpreting coefficients

> cbind (coef=coef (arth.logistic2),
OddsRatio=exp (coef (arth.logistic?)),
exp (confint (arth.logistic?2)))
coef OddsRatio 2.5 % 97.5 %

(Intercept) -0.5781 0.561 0.2647 1.132
I (Age - 50) 0.0487 1.050 1.0100 1.096
SexMale -1.4878 0.226 0.0652 0.689
TreatmentTreated 1.7598 5.811 2.1187 17.727
@ o = —0.578: At age 50, females given placebo have odds(Better) of
e 0578 — 0.56.

@ 3y = 0.0487: Each year of age multiplies odds(Better) by %9487 = 1.05,
a 5% increase.

@ 3> = —1.49: Males e~ 14° = 0.26 x less likely to show improvement as
females. (Or, females e'4° = 4.437 x more likely than males.)

@ 33 = 1.76: Treated e'76=5.81 x more likely Better than Placebo
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Hypothesis testing: Questions

@ Overall test: How does my model, logit(7) = o + X' 3 compare with the
null model, logit(7) = a?

@ One predictor: Does xi significantly improve my model? Can it be
dropped?

Ho : Bx = 0 given other predictors retained

@ Lack of fit: How does my model compare with a perfect model (saturated
model)?

For ANOVA, regression, these tests are carried out using F-tests and t-tests.
In logistic regression (fit by maximum likelihood) we use

@ F-tests — likelihood ratio G? tests
@ t-tests — Wald z or y? tests
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Maximum likelihood estimation

In classical linear models using 1m (), we fit using ordinary least squares.
All glm () models use maximum likelihood estimation— better properties

@ Likelihood, £ = Pr(data| model), as function of model parameters
@ For case J,

L [p Y=t

%1 p" _ |
' l-p cy_g P (-p7)  where  p;=1/(1+exp(x;B))

@ Under independence, joint likelihood is the product over all cases
n
Yi Yi
L= HP; (1—p;")
i

@ — Find estimates _ﬁ that maximize log L. lterative, but this solves the
“estimating equations”
X'y=X'p
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Overall model tests

Likelihood ratio test (G?)
°* Compare nested models, similar to F tests in OLS
* Let L, = maximized value for our model
logit(m) = B, + x". B w/ k predictors
* Let L, = maximized likelihood for the null model

logit(r;) = B, under Hy: B, =B, =...=
* Likelihood ratio test statistic:

L,

j 2(log L, —log L)) ~ x;
Ll

G’ :—2log(

38



Wald tests & confidence intervals

* Analogous to t-tests in OLS

* Test Hy: B =0 =l L NOD) o ey
s(,)

* Confidence interval
b,xz_,,sb)

> rl <- Imtest::coeftest(arth.logistic?2)
> r2 <- confint(arth.logistic2)
Waiting for profiling to be done...
> cbind(rl, r2)
Estimate Std. Error z value Pr(>|z]|) 2.5 % 97.5 %

(Intercept) -0.578 0.367 -1.6 0.116 -1.33 0.124
I (Age - 50) 0.049 0.021 2.4 0.018 0.01 0.092
SexMale -1.488 0.595 -2.5 0.012 -2.73 -0.372

TreatmentTreated 1.760 0.536 3.3 0.001 0.75 2.875
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LR, Wald & Score tests

Testing Global Null Hypothesis: BETA=0 . — - —
HO: B, =B,=B,=0
Test Chi-Square DFE Pr > Chisqg
TLikelihood Ratio 24.3859 3 <.0001
Score 22.0051 3 <. 0001
Wald 17.5147 3 0.0006

log Likelihood

-50

-100
|

-150
|

Different ways to measure
departure fromH,: =0

* LR test: diff*®inlogL
* Wald test: (B —B,)?
e Score test:slopeatf =0
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Plotting logistic regression data

Plotting a binary response together with a fitted logistic model can be difficult
because the 0/1 response leads to much overplottting.

@ Need to jitter the points

@ Useful to show the fitted logistic ] R I e
curve

@ Confidence band gives a sense of
uncertainty

@ Adding a non-parametric (loess)
smooth shows possible
nonlinearity

@ NB: Can plot either on the
response scale (probability) or the . e

8 U1 g e aeans .3 S

link scale (logit) where effectsare = ¢ * % "%eeme FF7°
linear 20 310 40 S0 60 70 80

1.0

08

0.6

Probability {Better)

0.4

0.2

Age
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Types of plots

Conditional plots: Stratified plot of Y or logit(Y) vs. one X,
conditioned by other predictors--- only that subset is plotted

for each panel

Male

Female

Rt

1.00

0.75 -
Treatment
50 - Placebo
m Treated

025+

Better
]
3

000
T T ]
25 a0 5

1 |
25 50 75
Age
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Types of plots

* Full-model plots: Plot of fitted response surface, showing all
effects; usually shown in several panels

Female Male
1.00 - bl aes "ol " -
—0.75-
[T
3
E‘D_SD -
=
3
e
O 025
000 ¢ 1 ~
I | | I | | I | I I
30 40 50 &0 Ta K] 40 &0 &0 70
Age

Treatment
Placebo

| Treated
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Types of plots

* Effect plots: plots of predicted effects for terms in the model,
averaged over predictors not shown in a given plot

Better

Age effect plot

0.3 1

0.7

0.6
0.5 +
04
0.3 +

0.2 H

0.1 4

L e B

30 35 40 45 50 55 60 65 70O

Age

Better

Sex effect plot

0.7 +

0.8
0.5 +
04 H
0.3 +

0.2 +

T
Female

Sex

Better

Treatment effect plot

0.8

0.7 -
0.6 —
0.5 +
04
0.3 +

0.2+

T
Placebo

Treatment
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Conditional plots with ggplot2

Plot Arthritis data by Treatment, ignoring Sex; overlay fitted logistic reg. lines

gg <- ggplot (Arthritis, aes(Age, Better, color=Treatment)) +
x1im (15, 85) +
geom_ jitter (height 0.02, width = 0, size=2) +
stat smooth (method = "glm", method.args=(family = “binomial”), alpha = 0.2,
aes (fill=Treatment), size=2.5, fullrange=TRUE) +
theme bw(base size = 16) + theme (legend.position = c (.85, .2))
gg # show the plot

1.00 1 P T I it i ™ ¢
geom_jitter() shows the observations
075 more distinctly
. Fitted lines use method="glm”,
g 0507 family=binomial
0251 Treatment
Placebo
== Treated
0.00 - s %° . 9% & g oute s o
2Il’.} 4Il’.} ESID SI[}
Age
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Conditional plots with ggplot2

Can show the conditional plots for M & F, simply by faceting by Sex

gg + facet wrap(~ Sex)
Female — Only the data for each
1.00 A ¢, ¥ Sana * e * ° dumy Sex is used in each plot
Plotting the data points
shows that the data for

males is too thin to

0.75 1
give good estimates of
separate regression

-
g
"q-j 0.50
m
0.25 7 Treatment
Placebo
== Treated
0.00 A . . * % 3 L] o " .
40 60 a0 20 40 60 a0
Age
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Full-model plots

Full-model plots show the fitted values on the logit scale or on the response
scale (probability), usually with confidence bands. This often requires a bit of
custom programming.

Steps:

@ Obtain fitted values with predict (model, se.fit=TRUE)—
type="1ink" (logit) is the default

@ Canuse type="response" for probability scale

@ Join this to your data (ecbind())

@ Plot as you like: plot (), ggplot (), ---

> arth.fit?2 <- cbind(Arthritis,
+ predict (arth.logistic?2, se.fit = TRUE))
> head(arth.fit2[,-91, 4)

ID Treatment Sex Age Improved Better fit se.fit

1 57 Treated Male 27 Some 1 -1.43 0.758
2 46 Treated Male 29 None 0 -1.33 0.728
3 77 Treated Male 30 None 0O -1.28 0.713
4 17 Treated Male 32 Marked 1 -1.18 0.684
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Plotting with ggplot2

Plot the fitted log odds, confidence band and observations

arth.fit?2 <- arth.fit2 |>
mutate (obs = ifelse (Better==0, -4, 4)) # show obs at -4, 4

ggplot ( arth.fit2, aes(x=Age, y=fit, color=Treatment)) +
geom line(size = 2) +
geom ribbon (aes(ymin = fit - 1.96 * se.fit,
ymax = fit + 1.96 * se.fit,
fill = Treatment), alpha = 0.2,

color = "transparent") +
labs(x = "Age", y = "Log odds (Better)") +
geom Jjitter (aes (y=obs), height=0.25, width=0) +
facet wrap(~ Sex) +
theme bw(base size = 16)

Using color=Treatment gives separate points and lines for the two groups

48



Full-model plot

Plotting on the logit scale shows the additive effects of age, treatment and sex
NB: easier to compare the treatment groups within the same panel

Female Male

*e t LRbeass * . * ¢

T 25-
©
aa) Treatment
g 0.0 Placebo
B == Treated
S
< -2.9

& L - - L o ., -

30 40 50 60 70 30 40 50 60 70
Age

These plots show model uncertainty (confidence bands)

Jittered points show the data 4



Full-model plot

Plotting on the probability scale may be simpler to interpret
Use predict (.. type = “response”) to getffitted probabilities

arth.fit2r <- cbind(Arthritis,
predict (arth.logistic?2, se.fit = TRUE, type='"response'"))

Female Male

1.00- * . . Bl'LE i ' . ‘ T
—D0.75-
8 Treatment
£'0.50~ Placebo
E = Treated
('8 0.25-

0.00- [ ] - [ ] [ ] . s L] “ L

3 40 50 60 70 0 4 5 60 70
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Models with interactions

Is the linear effect of age the same for females, males?
* We can test this by adding an interaction of Sex x Age

 update () makes it easy to add/subtract terms from a model

* car::Anova () gives partial tests of each term after all others

> arth.logistic4 <- update (arth.logistic2, . ~ . + I(Age-50) :Sex)
> car::Anova (arth.logistic4)
Analysis of Deviance Table (Type II tests)

Response: Better
LR Chisg Df Pr (>Chisq)

I (Age - 50) 6.16 1 0.01308 ~*
Sex 6.98 1 0.00823 *~*
Treatment 11.90 1 0.00056 *xx*=*
I (Age - 50) :Sex 3.42 1 0.06430 .

Signif. codes: 0 ‘***r (0,001 ‘**’ (0.01 *’ 0.05 '.” 0.1 Y"1

The interaction term Age:Sex is not quite significant, but plot the fitted model anyway
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Models with interactions

Female Mal
. 3 .

23
=
@
i=
3 Treatment
= 0.0
_E Placebo
= e Treated

2.3

—-3.0-
30 A0 S0 in] T0 30 40 S B0 70
Age

@ Only the model changes
@ predict () automatically incorporates the revised model terms
@ Plotting steps remain the same
@ This interpretation is quite different!
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Effect plots: Basic ideas

Show a given marginal effect, controlling / adjusting for other model effects

Data

s

o _ "
¥l %2 sex x1x2 v vhat Fit data: XB = y
1 1 1 F 1 4.73 4.46
2 2 1 M 0 6.10 5.55
3 3 1 F -1 4.32 4.34 X*n:‘f*
®
4 1 1 F 1 4.84 4.46 Score data B y
5 2 1 F 0 4.73 4.40 ® plOt vars: vary over range
sy | = i  w 0 6.10 6.15 * control vars: fix at means
30 3 2 F 1 6.71 7.14
Soore data 12 effect plot
x1l x2 |sex xl:x2 v vhat * 73 o
31 1 1] 0.5 1 NA 5.030 S [ |
32 2 1| 0.5 2 NA 4.971 | —
33 | 3 1| 0.5 3 "ia 4.912 plot "
34 1 2| 0.5 2 NA 3.437
35 | 2 2| 0.5 4 NA 5.574 "
36 3 2| 0.5 6 NA 7.710 | _
‘_Y_, k_YJ |||||’1|| . T . Ll

10 15 o 15 30

plotvars control vars . 53



Effect plots: Details

@ For simple models, full model plots show the complete relation between
response and all predictors.

@ Fox(1987)— For complex models, often wish to plot a specific main effect
or interaction (including lower-order relatives)— controlling for other
effects

e Fit full model to data with linear predictor (e.g., logit) n = X3 and link

function g(p) = n — estimate b of 3 and covariance matrix ﬂ?ﬁ) of b.
e Construct “score data”

@ Vary each predictor in the term over its’ range
@ Fix other predictors at “typical” values (mean, median, proportion in the data)
o — “effect model matrix,” X*

o Use predict () on X~
@ Calculate fitted effect values, 71* = X*b. B
@ Standard errors are square roots of diag X* V(b)X*T

o Plot #*, or values transformed back to scale of response, g='(#*).

@ Note: This provides a general means to visualize interactions in all linear
and generalized linear models.
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Plotting main effects

allEffects () calculates effects for all high-order terms in the model
The response is plotted on the logit scale, but labeled with probabilities

library (effects)
arth.eff2 <- allEffects(arth.logistic?)
plot (arth.eff2, rows=1l,

Better

Averaged
over:

Age effect plot

0.8

0.6
0.4

0.2

L e e A
20 30 40 50 60 70

Age

Sex
Treatment

Better

cols=3, 1lwd=2)

Sex effect plot

0.7

06 7
0.5 1
04
0.3 1

0.2

Female Male

Sex

Age
Treatment

Treatment effect plot

Better

08 ~
0.7 -
06 ~
0.5 ~
0.4 -
0.3 ~
02 - -
| |

Placebo Treated

Treatment

Age

Sex
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Full-model plot

The full-model plot is simply the Effect () of the highest-order interaction of factors

arth.full <- Effect(c("Age", "Treatment", "Sex"), arth.logistic?2?)
plot (arth.full, multiline=TRUE, ci.style="bands",
colors = c("red", "blue"), lwd=3, e L)

Age*Treatment*Sex effect plot
20 30 40 a0 60 70

| | | | | 1 | | | | | |
Sex = Female Sey = Male

0.95 7 Treatment

0.90 o | _
il acebo i

0.75 / Treated

0.50 _

0.25 B

0.10 —

0.05 —

I T Y TN UV TN A A I 1 R RIMATAAR TN RTTANRITY
20 30 40 50 60 70
Age

Better

56



Better

Model with interaction of Age x Sex

arth.effd4d <- allEffects(arth.logistic4)

plot (arth.eff4, lwd=2)

Treatment effect plot

0.8 ~

0.7 -
06 ~
0.5 7 -
0.4 ~

0.3 7 -
0.2 ~

[ [
Placebo Treated

Treatment

Better

Age*Sex effect plot

20 30 40 50 60 70
|

| | | | | 11 | | | |
Sex = Male

Sex = Female
0.8 ~
06 ~
0.4 —
0.2 —
s B B A B e
20 30 40 50 60 7O

Age

Only the high-order terms: Treatment & Age * Sex are shown & need to be interpreted

Q: How would you describe this?

57



Race &

Crime

Toronto Star investigation of
racial disparities in treatment
by Toronto Police Services

FOI request — > % M arrests,
1997—2002

Evidence for racial profiling?

Only look at discretionary
charges:

Simple marijuana possession
Non-moving auto infractions

THE SATURDAY STAR

Periods of rain; windy. High 14 C

o

October 19, 2002

Also inside . ..
® Waterfront: Dreams of what could be, B1, B45
® Hydro woes: Insulating against price spikes, E1
® Wheels: The Bug goes roofless, G1
® Paul Martin: The man who would be king, H1
® Carol Shields: Her last novel? Unless . . . J1

JTTTITTINY.com ONTARIO EDITION

AN INVESTIGATION INTO RACE AND CRIME

P RARTTORCAID STAR

SUING POLICE: .Tason Burke, falsely aceused of dealing drugs during Caribana two years ago, says he was a vietim of racial profiling.

Singl

Telling numbers

Police records show that & black person In Toronto
amested on a single dnag pussession charge
was less likely 1 be released at the scene..

% of each racil group
. and twice as lkely
o be held for @ ball
hearing, compared to
a white person on
the same charge.
White: Black

White  Black
Held for ball

Released at scene

ed out

Star analysis of police crime data shows

justice is different for blacks and whites

Blacks arrested by Toronto po-
lice are treated more harshly than
whites, a Toronto Star analysis of
crime data shows.

Black people, charged with sim-
ple drug possession, are taken to
police stations more often than
whites facing the harge.

™ Managing Editor's notebook, A2

leaders and criminologists, sug-
gests police use racial profiling in
deciding whom to pull over.

The evidence is contained in a

Once at the station, accused
blacks are held overnight, for a
bail hearing, at twice the rate of
whites.

The Teronto crime data also
shows a disproportionate number
of black motorists are ticketed for
violations that only surface follow-
ing a traffic stop. This difference,
say civil libertarians, commumnity

pol
more than 480,000 incidents in
which an individual was arrested,
or ticketed, for an offence dating
back to 1996. It included almost
800,000 criminal and other charg-
es. The Star obfained that data
through a freedom of information
request, marking the first time ac-
cess to these numbers was grant-
ed to anyone outside the police

COTITLInty.

Police are forbidden, by their
governing board, from analyzing
this data in terms of race, but The
Star has no such restriction. The
findings provide hard evidence of
what blacks have long suspected

ding — race matters in Canadian soci-

ety especially when dealing with
ice.

Chief Julian Fantino disputed
the findings, saying the colour of a
person’s skin has nothing to do
with how they're treated by his of-
ficers.

“We don't treat people different-

W Please see Toromte, A12

Chrétien
expected
to keep
cabinet
minister

Ethics report has
‘wiggle room’ to
save MacAulay

By TiM HARPER
AND LES WHITTINGTON
CTTAWA BUREAL

OTTAWA — Jean Chrétien
receives a report from his eth-
ics counsellor today that is ex-
pected to give him encugh
“wiggle room” to keep his solic-
itor-general, Lawrence MacAu-
lay, in the federal cabinet.

Ethics counsellor Howard
Wilson completed his report
and delivered it to the Prime
Minister's Office last night,
where it was received by Chré-
tien's chief of staff, Percy
Downe.

It was then to be relayed to
Chrétien by secure fax to Bei-
rut, where the Prime Minister
is attending & summit of
French-speaking nations. It
was 13 am. in Beirut when
the fax arrived so Chrétien
would likely be reading it this
morning.

Senior sources 2aid last night
that unless there is a surprise in
Wilson's report, the Prince Ed-
ward Island minister will re-
main, Chrétien will return to
Ottawa and weather the inevi-
table storm of opposition and
media protest and forge ahead
with an ethics package by mid-
week.

Wilson has been investigat-
ing whether MacAulay broke
ethics guidelines for cahinet
ministers in the awarding of a
contract and extension worth,
£100,000 to Everett Roche, a
Charlottetown political friend
of the solicitor-general's.

Chrétien will not fire MacAu-
lay unless he is given incontro-
vertible evidence of wrongdo-
ing for tao key reasons, sourc-

W Plaase see MacAulay, A

Baretay L2
Birthe BT

Bt Teshar 12
Jarmee Trawers M7



Case study: Arrests for marijuana

°* |n Dec. 2002, the Toronto Star examined the issue of racial
profiling, by analyzing a data base of 600,000+ arrest records

from 1997-2002.

* They focused on a subset of arrests for which police action
was discretionary, e.g., simple possession of small quantities
of marijuana, where the police could:

= Release the arrestee with a summons — like a parking ticket
= Bring to police station, hold for bail, ... -- harsher treatment

* Response variable: released: “Yes”, “No”
= Main predictor of interest: skin-colour of arrestee (black, white)

= QOther predictors: year, age, sex, ...
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Racial profiling: Presentation graphic

Together, we created this (nearly) self-explaining infographic

Legend gives a layman’s
Title gives the description of shading levels

main conclusion

Same charge, different treatment

o Statistical analysis of single drug possession charges shows Degree of likelihood
Text dESCI’IptIOH that blacks are much less likely to be released at the scene . Much less likely to occur
ives details and much more likely to be held in custody for a bail hearing.
g Darker colours represent a stronger statistical link between . Much more likely to occur

skin colour and police treatment. I:l More likely to occur

Whites are more likely to be released at the scene

it crrges [ 62 (88 =
. - releas s _
Divided by % released 2 at station

Blacks are much more likely to be held for bail hearings

. gfwdélrl’ges 64% 20% _ 16% held
numbers shown in laid released at the scene released at station WRYHEY]

the cells | | I | | | | I | | |
0% 10 20 30 40 50 60 70 80 90 100

SOURCE: Toronto police arrest records 1996-2002
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Arrests for marijuana: Data

Response variable: released
Control variables:

year, age, sex
employed, citizen: Yes, No
checks: # of police databases (previous arrests, convictions, parole status) where the
arrestee’s name was found

> library (car) # for Anova ()
> data (Arrests, package = "carData")
> some (Arrests)
released colour year age sex employed citizen checks

218 Yes White 2000 24 Male Yes Yes 0
1301 No Black 1999 17 Male Yes No 1
1495 Yes White 1998 23 Male Yes Yes 0
1732 Yes Black 2000 18 Male Yes Yes 2
1838 Yes Black 1997 27 Male No Yes 5
2257 No White 2001 19 Male No Yes 2
3100 No Black 2000 19 Male No Yes 4
3843 Yes White 1999 20 Male Yes Yes 0
4580 Yes Black 1999 26 Male Yes Yes 1
4833 Yes Black 1998 38 Male Yes Yes 0
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Arrests for marijuana: Model

year is numerical. But may be non-linear. Convert to a factor
Fit model with all main effects, but allow interactions of colour:year and colour:age

> Arrests$Syear <- as.factor (ArrestsSyear)

> arrests.mod <- glm(released ~ employed + citizen + checks +
colour*year + colour*age,
family=binomial, data=Arrests)

> Anova (arrests.mod)

Analysis of Deviance Table (Type II tests)

Response: released
LR Chisg Df Pr (>Chisq)

employed 72.7 1 < 2e-16 ***
citizen 25.8 1 3.8e-07 ***
checks 205.2 1 < 2e-16 **x*
colour 19.6 1 9.7e-06 **x*
year 6.1 5 0.29785

age 0.5 1 0.49827

colour:year 21.7 5 0,00059 ===
colour:age 13.9 1 0,00019 ==

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 *.” 0.1 v 1
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Effect plot: Skin colour

plot (Effect ("colour", arrests.mod), lwd=3, ci.style="bands”, ...)

0.88 -+ Effect plot for colour shows

average effect controlling
(adjusting) for all other factors
0.86 - - simultaneously

e (The Star analysis controlled for
these one at a time.)

— Evidence for different treatment
of blacks & whites

e Even Francis Nunziata could
understand this.

Probability(released)

0.82 B

* However, effect smaller than

0.80 -
reported by the Star

Black White
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Effect plots: Interactions

The story turned out to be more nuanced than reported by the Toronto Star

plot (Effect (c("colour","year"), arrests.mod), multiline=TRUE, ...)

Probability(released)

colour*year effect plot

0.88
0.86
0.84 +
0.82
0.80
075 colour
Black o
0.76 - White o
[ [ [ [ | [
1997 1808 16049 2000 2001 2002

as.numeric(year)

Up to 2000, strong evidence for
differential treatment of blacks
& whites

Also: evidence to support Police
claim of effect of training to
reduce racial effects in
treatment

65



Effect plots: Interactions

A more surprising finding ...

plot (Effect (c("colour","year"), arrests.

Probability(released)

0.95

=
o
=

0.85

0.80
0.75

0.70

Effects of skin colour and age on release

mod), multiline=TRUE, ...)

colour

Black —
White ——

Opposite age effects for blacks &
whites:

* Young blacks treated more
harshly than young whites

e QOlder blacks treated less
- harshly than older whites

10

20

30

40

trans(age)

20

60

70
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Effect plots: allEffects

All high-order terms can be viewed together using plot(allEffects(mod))

arrests.effects <- allEffects(arrests.mod,
xlevels=1list (age=seqg(15,45,5)))
plot (arrests.effects, ylab="Probability(released)", ..)

employed effect plot citizen effect plot checks effect plot
i) T 088 i) : : : :
g 0887 -2 | I 2 09
S 086 - g 086 8
£ 084+ - 2 0847 i 2 05+
Z 082 - £ 0.82 7 B Z
S 080 - o 080 - T 07 A
3 078 - 8 078 - 2 064
£ 9 L £ o B

- T T T T :
Mo Yes Mo Yes ] 1 2 3 4 5 6
employed citizen checks
colour*year effect plot colour*age effect plot
y Y
199B9BIDAD P02 15202530354045

— 1 1 | | | L1 1 | | | 1 — L1 | | | | 1 | | | | | |
2 colour = Black | colour = White 2 colour = Black | colour = White
@ 090 - @ | i
o © 090
£ 085 B 2 0.85 - T |
Z 080 4 L Z U
8 075 - § 0807 i
o 0.70 T T T T T T T 1 — o 0.75 wmwwm“w
o o
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Model diagnhostics

As in regression and ANOVA, the validity of a logistic regression model is
threatened when:

@ Important predictors have been omitted from the model
@ Predictors assumed to be linear have non-linear effects on Pr(Y = 1)
@ Important interactions have been omitted

@ A few “wild” observations have a large impact on the fitted model or
coefficients

Model specification: Tools and techniques

@ Use non-parametric smoothed curves to detect non-linearity

@ Consider using polynomial terms (X2, X3, ...) or regression splines (e.g.,
ns (X, 3))

@ Use update (model, ...) totest forinteractions— formula: . ~ .2
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Diagnostic plots in R

In R, plotting a g1m object gives the “regression quartet” — 4 basic diagnostic plots

arth.modl <- glm(Better ~ Age + Sex + Treatment, data=Arthritis,

family="'binomial")
plot (arth.modl)

Residuals

-2

Residuals vs Fitted Normal Q-Q Scale-Location Residuals vs Leverage
- 7 380
7] @& ™ 10 @] 280 & o5z 10
a &° ° a o 40
\ &
i _ %{ - R, e
© -hg'.l ] -% E = - = ‘;%U%Q
) o 2 & ¢
- 8 2 S °7 AN
Q—ﬁ”__#ﬂ/ § o - § E Q%ﬂ—o\
@ il o o
% © ® e e 7o Q% % o
i = Z S 2 o o °
R = o~ o
b [ o
o
_ 280 o
lo} @ _] o
% % —03225 S : - - Cook's distance o
I I I I I I I I I I I I I I I [ T L (L
2 1 0 1 2 2 -1 0 1 2 2 1 0 1 2 000 004 008 012

These plots often look peculiar for logistic regression models

Better versions are available in the car package
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Three archetypal cases:

Heuristic formula:

Low leverage, Ou

= Typical X (low leverage), bad fit

Unusual X (high leverage), bad fit

Influence = X leverage x Y residual

Y

mj High leverage, good fit

601
501
401
307

20"

120

Unusual data: Leverage & Influence

“Unusual” observations can have dramatic effects on least-squares
estimates in linear models

-- Not much harm
Unusual X (high leverage), good fit -- Not much harm
-- BAD, BAD, BAD

Influential observations: unusual in both X & Y

70

607

507

40-

307

20+

: High leverage, Outlier




Influence plots

Influence (Cook’s D) measures impact of individual obs. on coefficients, fitted values

. A _Y\2 High
Influence ~ Residual (y -y) x Hat-value (X-X) leverage
Bubble size ~ influence ,
High
7 @dical.technicians i \ influence
ctmnic.wnrkers ) i i
Bad fit g . rp—"j'—f“r ————————————————— -

0 i
™
- % — 6{)@:} % OK \/ O q Ofarm.worke@
influencePlot(modl) i o B o0 o
E +I° [ 1
=T T e T
= . ete :
% . Lo o © ot o general@anageirso
o D%D o | !
7 o 0 YOO : :
e O @ : |
| ® @ |
Bad fit =~ - R T oo
T T T ' T T :
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Influence plots in R

library(car)
influencePlot (arth.logistic2, ..)

Studentized Residuals
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Hat-Values

X axis: Leverage (“hat values”)
notable values: > 2k/n, 3k/n

Y axis: Studentized residuals

Bubble size ~ Cook’s D
(influence on coefficients)
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Which cases are influential?

Treatment Sex Age Better StudRes Hat CookD
1 Treated Male 27 1 1.92 0.0897 0.1128
4 Treated Male 32 1 1.79 0.0840 0.0818
15 Treated Female 23 0 -1.18 0.1416 0.0420
16 Treated Female 32 0 -1.36 0.0926 0.0381
39 Treated Female 69 0 -2.17 0.0314 0.0690
OL) @j case 1: younger male: moderate Hat,
o - @@O@o 8@ o 5 5 better than predicted — large Cook D
g o ©
ke ¢
§ N R T | case 15: very young treated female: large
kS Hat; did not improve
g @@%O * o |
5 | o %1@ 15 ) case 39: older female: small Hat, but did
o © ; i not improve with treatment
o At
0_54 0_216 0_58 O_;O O_|12 O_;tl
Hat-Values
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Looking ahead

Logistic regression models need not always have
linear effects— models nonlinear in Xs sometimes
useful

Polytomous outcomes can be handled as well

= e.g., Improved = {“None”, “Some”, “Marked”}

If ordinal,
" the proportional odds model is a simple extension
" nested dichotomies provides an alternative approach

Otherwise, multinomial logistic regression is the way
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loglm() provides only overall tests of model fit

Model-based methods, glm(), provide hypothesis
tests, Cls & tests for individual terms
Logistic regression: A glm() for a binary response

= |linear model for the log odds Pr(Y=1)

= All similar to classical ANOVA, regression models
Plotting

" Conditional, full-model plots show data and fits

= Effect plots show predicted effects averaged over others
Model diagnostics

" |Influence plots are often informative
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