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Donner party: A graphic tale of survival & influence
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Donner party: A graphic tale of survival & influence Donner pa r‘ty: Data

History: > data ("Donner", package="vcdExtra")

° “Hastings cutoff”: an untried route through Salt Lake desert (90 people) > Donner$survived <- factor (Donner$survived,
. . 1 1s= " n, " "
*  Worst recorded winter: Oct 31 blizzard; stranded at Truckee Lake (nr Reno) el yes™))

= Rescue parties sent out (“Dire necessity”, “Forelorn hope”, ...) > car::some (Donner, 8)
= Relief parties from CA: 42 survivors (Mar—Apr 1847) family age sex survived death
Breen, Peter Breen 3 Male yes <NA>
Donner, Jacob Donner 65 Male no 1846-12-21
TRAIL OF THE DONNER PARTY Foster, Jeremiah MurFosPik 1 Male no 1847-03-13
= Who lived? Who / Graves, Nancy Graves 9 Female yes <NA>
{I\@%f ® e died? McCutchen, Harriet McCutchen 1 Female no 1847-02-02
T 4 I LCM_JI; Reed, James Reed 46 Male yes <NA>
\\A\*\ c lai / Reinhardt, Joseph Other 30 Male no 1846-12-21
1:‘9 i Fort Hall \ Wissouri { ar? VYe exp am.w Wolfinger, Doris FosdWolf 20 Female yes <NA>
a %; 3 Swsetstor &y o prae . VST Chentt ”’> logistic regression?
JoHhson' i ! FortLaramie -
R‘%'};" [V e o 5 I recoded some families
o 5 © - ~
plcebendance > xtabs (~fam)
fam
Breen Donner Other Graves MurFosPik Reed

Fieid 9 14 38 10 12 7
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Exploratory plots

Before fitting models, it is useful to explore the data with conditional ggplots
The age-old ,

. \ 00 Y vl 20 .t Survival decreases with age for
question

sex both men and women
Female
== Male . .
Women more likely to survive,
0757 particularly the young
= Conf. bands show the data is thin
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Questions

* Is the relation of survival to age well expressed as a linear

Using ggplot

Basic plot: survived vs. age, colored by sex, with jittered points

99 <= ggplot (Donner, logistic regression model?
aes (age, as.numeric(survived=="yes"), color=sex)) + = Allow a quadratic or higher power using poly(age,2), poly(age,3)
ylab ("Survived") +

geom jitter (height = 0.02, width = 0)

logit(;)
logit(;)
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o+ _‘31 Xi + _‘L'}QX;

. P 2 E 3
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To this we can add conditional logistic fits using stat_smooth (method="glm")
This is plotted on the probability scale, but reflects a linear relation with log odds.

= Use natural spline functions: ns(age, df) — more flexible shape, with

. s . control of number of df
gg + stat smooth (method = "glm" , .
method.args = list (family = binomial), = Use non-parametric smooths: loess(age, span, degree)
formula = y ~ x, ° H 2
ot 0.5, lued, ams (] — smm) Is the relation the same for men & womens
theme bw(base size = 16) +
= c(

= Allow an interaction of sex * age or sex * f(age)
= Test goodness of fit relative to the main effects model

theme (legend.position c(.85, .85))




gg + stat_smooth(method = "glm", gg + stat_smooth(method = "loess", span=0.9,

method.args = list(family = binomial), alpha = 0.2, size=2,
formula =y ~ poly(x,2), alpha = 0.2, size=2, aes(fill = sex)) + ... aes(fill = sex)) + coord_cartesian(ylim=c(-.05,1.05)) +
1.001 sl Sal, bt ol —= . ™~ et
Fit separate quadratics for sex Fit separate loess smooths for 1.007 szte Pl 0l ¢ " osex
M & F Female M & F. span controls how Female
== Male smooth == Male
This highlights the very 0.75 1 0.751
high survival among young For males, the result is not as
women (but not infants) . smooth as the poly(age,2) .
g suggests g
Using library(splines) and E 0.507 E 0.507
formula=y ~ ns(x,2) gives w All fitted models give a w
nearly identical results smoothing of the binary
0,95 - outcome! 0.25
0007 ¥ 3wy oo s 0.001
0 20 40 60 0 20 40 60
age age

Fitting models Fitting models

Models with linear effect of age, w/, w/o interaction age*sex Models with quadratic effect of age:

> donner.modl <- glm(survived ~ age + sex, > donner.mod3 <- glm(survived ~ poly(age,2) + sex,
data=Donner, family=binomial) data=Donner, family=binomial)

> donner.mod2 <- glm(survived ~ age * sex, > donner.mod4 <- glm(survived ~ poly(age,2) * sex,

data=Donner, family=binomial) data=Donner, family=binomial)

> Anova (donner.mod?2) > Anova (donner.mod4)

Analysis of Deviance Table (Type II tests) Analysis of Deviance Table (Type II tests)

Response: survived Response: survived

LR Chisg Df Pr (>Chisq) LR Chisg Df Pr (>Chisq)

age 5.52 1 0.0188 =* poly(age, 2) 9.91 2 0.0070 **

sex 6.73 1 0.0095 ** sex 8.09 1 0.0044 **

age:sex 0.40 1 0.5269 poly(age, 2):sex 8.93 2 0.0115 ~*

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 * ' 1 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ' 1




Comparing models

These models are only nested in pairs. We can compare them using AIC & Ay?

> library (vcdExtra)
> LRstats (donner.modl, donner.mod2, donner.mod3, donner.mod4)
Likelihood summary table:

AIC BIC LR Chisg Df Pr(>Chisq)

donner.modl 117 125 111.1 87 0.042 *
donner.mod2 119 129 110.7 86 0.038 *
donner.mod3 115 125 106.7 86 0.064 .
donner.mod4 110 125 97.8 84 0.144 v

Signif. codes: 0 ‘*=**’ (0.001 ‘**’ 0.01 ‘*’ 0.05 '.” 0.1 * ' 1

linear non-linear Ax?  p-value
additive 111.128 106.731 4.396 0.036 v
non-additive | 110.727 97.799 12.928 0.000 v
Ax? 0.400 8.932
p-value 0.527 0.003

Who was influential?

res <- influencePlot (donner.mod3, id = list(col="blue", n=2), scale=8)
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Why were they influential?

> idx <- which (rownames (Donner) %in% rownames (res))
> # show data together with diagnostics
> cbind (Donner[idx,2:4], res)

age sex survived StudRes Hat CookD
Breen, Patrick 51 Male yes 2.50 0.0915 0.3235
Donner, Elizabeth 45 Female no -1.11 0.1354 0.0341
Graves, Elizabeth C. 47 Female no -1.02 0.1632 0.0342
Reed, James 46 Male yes 2.10 0.0816 0.1436

@ Patrick Breen, James Reed: Older men who survived
@ Elizabeth Donner, Elizabeth Graves: Older women who died

@ Moral lessons of this story:
@ Don't try to cross the Donner Pass in late October; if you do, bring lots of
food
@ Plots of fitted models show only what is included in the model
@ Discrete data often need smoothing (or non-linear terms) to see the pattern
@ Always examine model diagnostics — preferably graphic

Polytomous responses: Overview

* Polytomous responses
* m categories — (m-1) independent comparisons (logits)
* One part of the model for each logit

* Similar to ANOVA where an m-level factor - (m-1)
contrasts (df)

* Methods differ according to whether the response
categories are ordered or unordered
® proportional odds model
® Nested dichotomies
® Generalized multinomial logistic model




When response
categories are Ordered Unordered
No improvement NDP
For example Some Liberal
Marked Conservative
Green

the analysis can use Multinomial logistic
. regression
Proportional g
odds model
Nested
dichotomies |
;
we model these logits l
[ e oo ormaied | [ Hone)
[ 1

Polytomous responses: Ordered

Polytomous responses

* m categories — (m-1) comparisons (logits)

* One part of the model for each logit

* Similar to ANOVA where an m-level factor — (m-1) contrasts (df)

Ordered response categories, e.g., None, Some, Marked
improvement

@ Proportional odds model

N S Marked
@ Uses adjacent-category logits one H ome or Varke

None or Some ‘ Marked

@ Assumes slopes are equal for all m — 1 logits; only intercepts vary
@ R:polr() in MASS

‘ None || Some or Marked
Some || Marked
@ Model each logit separately

e (2 s are additive — combined model

o Nested dichotomies

Polytomous responses: Unordered

Unordered response categories, e.g., vote: NDP, Liberal, Green,
Tory

@ Multinomial logistic regression
@ Fits m — 1 logistic models for logits of category i = 1,2,... m — 1 vs. category m
NDP Tory

° eg, Tory
Green Tory

@ This is the most general approach
@ R:multinom() functionin nnet

@ Can also use nested dichotomies

These contrasts are

orthogonal

* Models are independent

* GZ?sadd to that for
combined model

|NDP Liberal Green | |Tory|

| NDP Liberal | |Green |

Proportional odds model

Arthritis treatment data:

Improvement
Sex Treatment None Some Marked Total
F Active 6 5 16 27
F Placebo 19 7 6 32
M Active 7 2 5 14
M Placebo 10 0 1 11

The proportional odds model uses logits for (m-1) = 2 adjacent category cut-points

logit (8;1) = log _ logit ( None vs. [Some or Marked] )
Tij2 + Tij3
logit (¢j2) = log Tt T TR logit ( [None or Some] vs. Marked)
Tij3




@ Consider a logistic regression model for each logit:
logit(fj1) = a1 + Xj; 31 None vs. Some/Marked

logit(fjz) = a2 + ij B2 None/Some vs. Marked
@ Proportional odds assumption: regression functions are parallel on the
logit scale i.e., 31 = 3s.
Proportional Odds Model
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Proportional odds: Latent variable interpretation

A simple motivation for the proportional odds model:

@ Imagine a continuous, but unobserved response, &, a linear function of

predictors
& =pB"X +¢i

@ The observed response, Y, is discrete, according to some unknown
thresholds, aq < o, < - -+ < arp_y

@ Thatis, the response, Y =i if a; < & < i

@ Thus, intercepts in the proportional odds model ~ thresholds on ¢

Proportional odds: Latent variable interpretation

We can visualize the relation of the latent variable ¢ to the observed response
Y, for two values, xy and x2, of a single predictor, X as shown below:

g ‘ Y
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Proportional odds: Latent variable interpretation

Plotting the effect of Age on the latent variable scale

plot (effect ("Age", mod = arth.polr, latent = TRUE))
Age effect plot
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Fitting the proportional odds model

NB: The response Improved has been defined as an ordered factor

> data(Arthritis, package = "vcd")

> head (Arthritis$Improved)

[1] Some None None Marked Marked Marked
Levels: None < Some < Marked

Fit the model with MASS : :polr ()

> arth.polr <- polr (Improved ~ Sex + Treatment + Age,
data = Arthritis)

> summary (arth.polr) # for coefficients
> Anova (arth.polr) # Type II tests

summary () gives the standard statistical results

> summary (arth.polr) # for coefficients
Call:
polr (formula = Improved ~ Sex + Treatment + Age, data = Arthritis)
Coefficients:
Value Std. Error t value

SexMale -1.2517 0.5464 =229
TreatmentTreated 1.7453 0.4759 3.67
Age 0.0382 0.0184 2.07
Intercepts:

Value Std. Error t value
None | Some 2.532 1.057 2.395
Some |Marked 3.431 1.091 3.144

Residual Deviance: 145.46
AIC: 155.46

2.53 3.43
None Some | Marked
A

>

Interpretation of

intercepts | | | | | | |
0 1 2 3 4

Degree of improvement

car: :Anova () gives hypothesis tests for the model terms

> Anova (arth.polr) # Type II tests
Analysis of Deviance Table (Type II tests)

Response: Improved
LR Chisg Df Pr (>Chisq)

Sex 5.69 1 0.01708 =*
Treatment 14.71 1 0.00013 ***
Age 4.57 1 0.03251 *

Signif. codes: 0 ‘x**/ (0.001 ‘**’ 0.01 *" 0.05 '.” 0.1 " 1

e Type Il tests are partial tests, controlling for the effects of all other terms
* e.g., G2 (Sex | Treatment, Age), G2 (Treatment | Age, Sex)
* NB: anova() gives only Type | (sequential) tests — not usually useful

Testing the proportional odds assumption

@ The PO model is valid only when the slopes are equal for all predictors
@ This can be tested by comparing this model to the generalized logit NPO
model

PO: L = oj+X'B  j=1..., m—1 (1)
NPO: L, = oj+X'3 j=1....m—1 (2)

@ A likelihood ratio test requires fitting both models calculating
AG? = G&p, — Go with p df.

@ This can be done using vglm() in the VGAM package

@ The rms package provides a visual assessment, plotting the conditional
mean E(X | Y) of a given predictor, X, at each level of the ordered
response Y.

o [f the response behaves ordinally in relation to X, these means should be
strictly increasing or decreasing with Y.




Testing the proportional odds assumption Plotting effects in the PO model

Treatment*Age effect plot

In VGAM, the PO model is fit using family = cumulative (parallel=TRUE)

Sy T——— L, D W @ % o D library(effects)
L Improved = Marked Improved = Marked " . n
arth.po <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis, Treatment = Placebo Treatment = Ireated plot(effect("Treatment:Age",
family = cumulative (parallel=TRUE) ) 08 1 L arth.polr))

06 r
The more general NPO model is fit using paralle1=FALSE 047 /
024 L
00 ‘W’WI/_U// . |

X ‘ | I VR TIRATHa 1 III\HI I T W TR
- ~ = 1 1 mproved = Some. moroved = Some
arth.npo < vglm(Imlefoved Sex +‘Treatment + Age, data=Arthritis, T e Fpied = pame
family = cumulative (parallel=FALSE) )

®
% 7 o8
. 06
The LR test indicates that the proportional odds model is OK 2 ] | 4,  The default style shows
g | Y I separate curves for the
> VGAM: :1rtest (arth.npo, arth.po) E mm Lo 1w ] g g response categories
Likelihood ratio test Teeainem = Placebo Teeaiment = T1eod

05 4 | - .
Model 1: Improved ~ Sex + Treatment + Age 067\ [ D_Ifflcult to compare these in
Model 2: Improved ~ Sex + Treatment + Age 0'4_ | different panels
#Df LogLik Df Chisg Pr (>Chisq) 0'2_ |

1 160 -71.8
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Visual comparisons are easier when the response levels are “stacked” Visual comparisons are easier when the response levels are “stacked”
plot (effect ("Treatment:Age", arth.polr), style='stacked’, plot (effect ("Sex:Age", arth.polr), style='stacked’,
colors=scales::alpha ("blue", alpha = (1:3)/8) ) colors=scales::alpha ("blue", alpha = (1:3)/8) )
Treatment*Age effect plot Sex*Age effect plot
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These plots are even simpler on the logit scale, using latent = TRUE to show the
cutpoints between adjacent categories

plot(effect("Treatment:Age", arth.polr, latent = TRUE))

Treatment*Age effect plot
20 30 40 50 60 70

1 Il 1 1
Treatment = Placebo Treatment = Treated

Improved: None, Some, Marked
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Nested dichotomies

@ m categories — (m — 1) comparisons (logits)
@ If these are formulated as (m — 1) nested dichotomies:
@ Each dichotomy can be fit using the familiar binary-response logistic model,
@ the m— 1 models will be statistically independent (G? statistics will be
additive)
@ (Need some extra work to summarize these as a single, combined model)

@ This allows the slopes to differ for each logit

1 2 3 4 1 2 3 4
g 2 3 4 2 3 4

m—1
’ . 1 1 IIIIII I |" \II\III‘II\III\IIII‘IIIIIIHHII‘ ; 1 | IIIIII 1 II Il IIIIHIIIIIIII}IIIIIIIIII! Gazﬂ = ZGz(LI) dfaﬁ :de(LI) 3 4
20 30 40 50 60 70 7
Age
Nested dichotomies: Examples Example: Women’s Labour-force participation
5 , Data: Social Change in Canada Project, York ISR, car::womenl £ data
Him N [None | [Someormarked | L, = 1081[_'2 T @ Response: not working outside the home (n=155), working part-time
Arthritis ? (n=42) or working full-time (n=66)
treatment [Some | [Marked | L, = log ks @ Model as two nested dichotomies:
T, e Working (n=106) vs. NotWorking (n=155)
e Working full-time (n=66) vs. working part-time (n=42).
— - Ly: ‘not working ‘ ‘ part-time, full-time
= 1 , ,
L= 1081,':2 T, 4T, Lp: part-time || full-time

Psychiatric [Normal | [Manic Depressed Schiz |
diagnosis

[Manic Depressed | [Schiz | L. =log

[Manic | [Depressed | L= logﬂ

partic hincome children region

@ Predictors:

31 not.work 13 present Ontario

e Children? — 1 or more minor-aged children 51 parctime 10 present Prairie
s . 74 not.work 17 present Ontario

@ Husband's Income — in $1000s 108 not.work 19 present Ontario
. . 131 partti: 19 3d t Ontari

@ Region of Canada (not considered here) Tor e 1o breeent omearic
178 fulltime 13 absent Ontario




Nested dichotomies: Recoding

In R, need to create new variables, working and fulltime.

> library (dplyr)
> Womenlf <- Womenlf |>

mutate (working = ifelse(partic=="not.work", 0, 1)) [>
mutate (fulltime = case_ when (

working & partic == "fulltime" ~ 1,

working & partic == "parttime" ~ 0)

)

> some (Womenlf, 8)

partic hincome children region working fulltime
76 parttime 38 present Ontario 1 0
93 parttime 9 present Ontario 1 0
101 fulltime 11 absent Atlantic 1 1
107 not.work 13 present Prairie 0 NA
109 not.work 19 present Atlantic 0 NA
157 parttime 15 present BC 1 0
220 fulltime 16 absent Quebec 1 1
249 not.work 23 absent Quebec 0 NA

Nested dichotomies: Fitting

Then, fit separate models for each dichotomy:

Womenlf <- within(Womenlf, contrasts(children)<- 'contr.treatment’)
mod.working <- glm(working ~ hincome + children, family=binomial, data=Womenlf)
mod.fulltime <- gIm(fulltime ~ hincome + children, family=binomial, data=Womenlf)

Some output from summary(mod.working)

Coefficients:

Estimate Std. Error z value Pr(>]|z|)
(Intercept) 1.3358 0.3838 3.48 0.0005 **xx*
hincome -0.0423 0.0198 -2.14 0.0324 *
childrenpresent -1.5756 0.2923 -5.39 Te—08 ***

Some output from summary(mod.fulltime)

Coefficients:

Estimate Std. Error z value Pr(>]|z|)
(Intercept) 3.4778 0.7671 4.53 5.8e-06 **x*
hincome -0.1073 0.0392 -2.74 0.0061 **
childrenpresent -2.6515 0.5411 -4.90 9.6e-07 **x

Nested dichotomies: Combined tests

@ Nested dichotomies — \2 tests and df for the separate logits are
independent
@ — add, to give tests for the full m-level response (manually)

Global tests of BETA=0

Prob

Test Response ChisSqg DF Chisqg
Likelihood Ratioc working 36.4184 2 <.0001
fulltime 39.8468 2 <.0001

ALL 76.2652 4 <.0001

Wald tests for each coefficient:

Wald tests of maximum likelihocd estimates

Prob

Variable Response WaldChiSg DF ChiSqg
Intercept working 12.1164 1 0.00053
fulltime 20.5536 1 <.0001

ALL 32.6700 2 <.0001

children working 29.0650 1 <.,0001
fulltime 24.0134 1 <.0001

ALL 53.0784 2 <.0001

husinc working 4.5750 1 0.0324
fulltime 7.5062 1 0.0061

ALL 12.0813 2 0.0024

Nested dichotomies: Interpretation

Write out the predictions for the two logits, and compare coefficients:

og (Prworking) 1\ 4 35 0.042H$ — 1.576 kids
Pr(not working)
og (PrUulime) \ = 5 478 0107 HS — 2.652kids
Pr(parttime)
Better yet, plot the predicted log odds for these equations:
- Children absent - | Children present
g .| - 8
- NN £
§ o o = ~ g o -H_ ™. -
I_—-\M:lrk!ng l \"‘.\
v - full-time + | =~ .

T T T T T T T T T
1] 10 20 30 40 50 o 10 20 30 40 50

Husband's Income Husband's Income




Nested dichotomies: Plotting

For plotting, calculate the predicted probabilities (or logits) over a grid of
combinations of the predictors in each sub-model, using predict ().

* type = “response” givesthese on the probability scale

* type “1ink” (default) gives these on the logit scale

predictors <- expand.grid(hincome=1:45, children=c('absent', 'present'))
# get fitted values for both sub-models

p.work <- predict (mod.working, predictors, type='response')
p.fulltime <- predict(mod.fulltime, predictors, type='response')

The fitted value for the fulltime dichotomy is conditional on working outside the
home; multiplying by the probability of working gives the unconditional probability.

p.full <- p.work * p.fulltime
p.part <- p.work * (1 - p.fulltime)
p.not <- 1 - p.work

This plot is produced using base R functions plot(), lines() and legend()
See the file: wlf-nested.R on the course web page for details
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Multinomial logistic regression

* Multinomial logistic regression models the probabilities of m
response categories as (m-1) logits

= Typically, these compare each of the first m-1 categories to the last
(reference) category: 1vs.m, 2 vs. m, ... m-1vs. m

e.g., vote for Tory
(m=4) Tory
Green Tory

= Logits for any pair of categories can be calculated from the m-1 fitted
ones

Multinomial logistic regression

* with k predictors, x,, x,, ..., X, and for j=1, 2, ..., m-1, the model
fits separate slopes for each logit

- ij
Lim = log (4_—)
Tim

= One set of coefficients, B, for each response category except the last

= Each coefficient, By, gives effect on log odds that response is j vs. m,
for a one unit change in the predictor x,,

Boj + B Xin + B2j Xiz + -+ - + Bk Xik

= Bx

* Probabilities in response categories are calculated as

exp(B7 x; ‘ m-]
( ! ) Tim =1 = Z

M= =1, m-—1;
I - ’ .
Y exp(8x) pu




Fitting multinomial regression models

Fit the multinomial model using nnet: :multinom ()
For ease of interpretation, make not.work the reference category

> Womenlf$partic <- relevel (Womenlf$partic, ref="not.work")

> library(nnet)

> wlf.multinom <- multinom(partic ~ hincome + children,
data=Womenlf, Hess=TRUE)

The Anova () tests are similar to what we got from summing these tests from the
two nested dichotomies

> Anova (wlf.multinom)
Analysis of Deviance Table (Type II tests)

Response: partic

LR Chisqg Df Pr (>Chisq)
hincome 15.2 2 0.00051 ***
children 63.6 2 1.6e-14 **xx*

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ' 1

Interpreting coefficients

As before, interpret coefficients as increments in log odds or exp(coef) as multiples

> coef (wlf.multinom) > exp (coef (wlf.multinom))

(Intercept) hincome childrenpresent (Intercept) hincome childrenpresent
parttime -1.43 0.00689 0.0215 parttime 0.239 1.007 1.0217
fulltime 1.98 -0.09723 -2.5586 fulltime 7.263 0.907 0.0774

0 (MJ —1.43+0.0069 HS —0.215 kids

Pr(notworking)

1.98-0.097 H$ - 2.55 kids

o Pr(fulltime)
Pr(notworking)

Each 1000$ of husband’s income:

* Increases log odds of parttime by 0.0069; multiplies odds by 1.007 (+0.7%)
* Decreases log odds of fulltime by 0.097; multiplies odds by 0.091 (-9%)
Having young children:

* Increases odds of parttime by 0.0215; multiplies odds by 1.0217 (+2%)

* Decreases odds of fulltime by 2.559; multiplies odds by 0.0774 (-92%)

Multinomial models: Plotting

Multinomial models: Plotting

partic (probability)

Much easier to interpret a model from a plot, but even more so for polytomous
response models

library(effects)
plot (Effect (c("hincome", "children"), wlf.multinom), style = "stacked")

hincome*children effect plot

10 20 30 40 . X
! For multinomial

model,
style="stacked” plots
cumulative probs.

Il Il Il Il 1
children = absent children = present

0.8 r

0.4 r

fulltime
0.2 parttime r
not.work

0.0 \I\III\I!I\IIIIIIII‘\ I NNl I‘ (| IIIIII\II‘I\IIII\III‘I (| NENEN I |
10 20 30 40
hincome

An alternative is to plot the predicted probabilities of each level of participation over a
grid of predictor values for husband’s income and children.

> predictors <- expand.grid(hincome=1:50, children=c('absent', 'present')

> fit <- data.frame (predictors,

+ predict (wlf.multinom, predictors, type='probs'))

> fit |> filter (hincome %in% c (10, 25, 40)) # show a few observations
hincome children not.work parttime fulltime

10 10 absent 0.250 0.0639 0.68627
25 25 absent 0.520 0.1475 0.33233
40 40 absent 0.683 0.2150 0.10157
60 10 present 0.678 0.1773 0.14427
75 25 present 0.747 0.2164 0.03693
90 40 present 0.750 0.2411 0.00863

We want to plot predicted probability vs. hincome, with separate curves for levels
of participation. To do this we need to reshape the fit data from wide to long

plotdat <- fit |[>
gather (key="Level", value="Probability", not.work:fulltime)




Now, plot Probability ~ hincome, with separate curves for Level of partic A Ia rge rexam p I (SH B E PS d ata

library(directlabels)

gg <- ggplot(plotdat, aes(x = hincome, y = Probability, colour = Level)) + Political knoWIedge & party Cholce |n Britain
geom_line(size=1.5) + facet_grid(~ children, labeller = label both) L. .
Shlmee . leiell (g, List(Ctem bunstries?, l.tmnely = 5 + 0o2))) Example from Fox & Anderson (2006); data from 1997-2001 British Election Panel

Survey (BEPS), N=1325

children = absent children = present

@ Response: Party choice— , Labour, Conservative
Sl @ Predictors

e e Europe: 11-point scale of attitude toward European integration
(high="Eurosceptic”)

o Political knowledge: knowledge of party platforms on European integration
(*low”"=0-3="high")

0.50 o Others: Age, Gender, perception of economic conditions, evaluation of party

leaders (Blair, Hague, Kennedy)- 1:5 scale

Probability

full-time
part-time part-time @ Model:

e Main effects of Age, Gender, economic conditions (national, household)
e Main effects of evaluation of party leaders
e Interaction of attitude toward European integration with political knowledge

hed

o

a
1

0.00 =

T
0 10 20 30 40 50 0 10 20 30 40 50
hincome

BEPS data: Fitting BEPS data: Interpretation?

Fit a model with main effects and an interaction of Europe * political knowledge Coefficients give log odds relative of party choice relative to Conservatives
library (car) # for Anoval() How to understand the nature of these effects?
library (nnet) # for multinom ()
data (BEPS, package = "carData")
BEPS.mod <- multinom(vote ~ age + gender + economic.cond.national + > coef (BEPS.mod)
economic.cond.household + Blair + Hague + Kennedy + (Intercept) age gendermale economic.cond.national
Europe*political.knowledge, data=BEPS) Labour -0.873 -0.0198 0.1126 0.522
SN R I Liberal Democrat -0.718 -0.0146 0.0914 0.145
economic.cond.household Blair Hague Kennedy Europe
Analysis of Deviance Table (Type TT tests) Labour 0.17863 0.824 -0.868 0.240 -0.00171
Liberal Democrat 0.00773 0.278 -0.781 0.656 0.06841
Response: vote political.knowledge Europe:political.knowledge
LR Chisq Df Pr(>Chisq) Labour 0.658 -0.159
age 18.9 2  0.00097 == Liberal Democrat 1.160 -0.183
gender 0.5 2 0.79726
economic.cond.national 30.6 2 2.3e-07 ***
economic.cond.household 5.7 2 0.05926 .
Blair 135.4 2 < 2e-16 ***
Hague 166.8 2 < 2e-16 ***
Kennedy 68.9 2 1oille=1ly e
Europe 78.0 2 < 2e-16 **=
political.knowledge 55,6 2 B.6e=13 =i
8 2 9.3e=1lz Wi

Europe:political.knowledge 50.

Signif. codes: 0 ‘***/ 0,001 ‘**’ 0.01 ‘*/ 0.05 ‘.’ 0.1 '’ 1




BEPS data: Effect plots

BEPS data: Effect plots

vote (probability)

plot(predictorEffects(BEPS.mod, ~ age + gender),
lattice=list(key.args=list(rows=1)),
lines=list(multiline=TRUE, col=c("blue", "red", "orange")))

age predictor effect plot gender predictor effect plot
vote vote
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Labour — Labour —
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Examine the interaction between political knowledge and attitude toward European
integration

Knowledge = 0 Knowledge =1 Knowledge =2 Knowledge =3
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Aftttuce tovward Europe Aftitucte tovward Europe Attitude tovvard Europe Attitude tovvard Europe

¢ Low knowledge: little relation between attitude and party choice

+** As knowledge increases: more Eurosceptic view — more likely to support
Conservatives

+#* Detailed understanding of complex models depends strongly on visualization!

Summary

° Polytomous responses
" m response categories — (m-1) comparisons (logits)
= Different models for ordered vs. unordered categories
° Proportional odds model
= Simplest approach for ordered categories
= Assumes same slopes for all logits
* Fit with MASS::polr()
* Test PO assumption with VGAM::vgim()
* Nested dichotomies
= Applies to ordered or unordered categories
= Fit m— 1 separate independent models — Additive G2 values
® Multinomial logistic regression
= Fit m—1 logits as a single model
= Results usually comparable to nested dichotomies, but diff interpretation
= R:nnet::multinom()




