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Today’s topics

Overview of extended loglinear models
Logit models for response variables
Models for ordinal factors

RC models, estimating row/col scores
Models for square tables

More complex models



Visual overview: Models for frequency tables

/Generalized nonlinear models\

gnm(F~A+B+Mult (A,B), family=poisson)

/ Generalized linear models\
glm(F~A+B, family=poisson)

Loglinear models
loglm(~A+B)

\S A

Related models: logistic regression, polytomous regression, log odds models, ...
Goal: connect all with visualization methods




Loglinear models: Perspectives

Loglinear approach

Loglinear models were first developed as an analog of classical ANOVA
models, where multiplicative relations (under independence) are re-expressed
In additive form as models for log(frequency).

logmj = pu+ X'+ A\’ = [A][B] =~ A+ B

@ This expresses the model of independence for a two-way table (no A*B
association, or A L B)

@ The notations [A][B] =~ A + B are shorthands

@ Three-way tables: models [A|[B|[C] (mutual indep.), [AB]|C] (joint indep.),
|AB]|[AC] (cond. indep.), ... |[ABC] (saturated)



Extending loglinear models

Loglinear models can be extended in a variety of ways

* Models for ordinal factors allow a more parsimonious
description of association (linear association)

* Specialized models for square tables provide more nuanced
hypotheses (symmetry, quasi-symmetry)

* These ideas apply to higher-way tables

°* Some of these extensions are more easily understood when
loglinear models are re-cast in an equivalent but simpler or
more general form (logit models)



Loglinear models: Perspectives

GLM approach

More generally, loglinear models are also generalized linear models (GLMs)
for log(frequency), with a Poisson distribution for the cell counts.

logm = X3

@ This looks just like the general linear ANOVA, regression model, but for
log frequency

@ This approach allows quantitative predictors and special ways of treating
ordinal factors



Loglinear models: Perspectives

Logit models

When one table variable is a binary response, a logit model for that response
is equivalent to a loglinear model.

log(muk/Maj) = o + 58 + € = [AB][AC][BC]

@ log(mjk/ Mo ) represents the log odds of response category 1 vs. 2

@ The model formula includes only terms for the effects on A of variables B
and C

@ The equivalent loglinear model is [AB] [AC] [BC]
@ The logit model assumes [BC] association, and [AB] — _.-'315, [AC] — 3¢
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Logit models

For a binary response, each loglinear model is equivalent to a logit model
(logistic regression, with categorical predictors)
@ e.g., Admit I Gender |Dept (conditional independence = [AD][DG])

|Og My = [ — /\;q + AJD 4 )\E 1 /\ﬁ-D 4 }‘EG

So, for admitted (i = 1) and rejected (i = 2), we have:

log myx = p + X+ AP + AZ + M7 + ARC (1)
log maj = ' + 25 + AP + A + 57 + A€ (2)

Thus, subtracting (1)-(2), terms not involving Admit will cancel:
Lk = logmy —log moy = log(myj/mej) = log odds of admission
= (M =22) + (M = AF)

= a+ ,-:r?Fe’pt (renaming terms)
iDept :

where, «: overall log odds of admission; B effect on admissions of

department



Logit models

Other loglinear models have similar, simpler forms as logit models, where only
the relations of the response to the predictors appear in the equivalent logit
model.

@ Admit L Gender L Dept (mutual independence = [A][D][G])
logmjx = p+ A+ A},D + )¢
=Ly = (M —X))=a (constantlog odds)
@ Admit L Gender | Dept, except for Dept. A

logmiie =+ M+ AP+ A7+ NP+ AR + 551)\iE

5D . .
=Lk = IDg{mkamejk) = ¥ + -"jj °pt + rﬁU‘:”_:ﬁGender

where,
° _ﬁfnem: effect on admissions for department j,
o 5;_1)3%e"%": 1 df term for effect of gender in Dept. A.
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Logit models

* Each logit model for a binary response, C, = a loglinear model
"= The loglin model must include the [AB] association of predictors

= When the response, C, has m>2 levels, multinomial models have
equivalent loglinear form

Table: Equivalent loglinear and logit models for a three-way table, with C as a binary
response variable.

Loglinear model Logit model Logit formula
AB|[C] aQ cC ~ 1
[AB|[AC] a+ 34 C " A
[AB|[BC] n+;:¥f’ C ~ B
[AB|[AC]|[BC] aQ +_::f;-"'+ .-_EJB C " A+ B
[ABC] a+B8f+52+p8 C A B

11



Berkeley data: loglinear approach

Loglinear approach, using MASS::1loglm()

@ Uses UCBAdmissions in table form
@ Fit model of conditional independence of gender and admission given
department, [AD||GD]|

library (MASS)
berk.loglml <- loglm(~ Dept * (Gender + Admit), data=UCBAdmissions)
berk.loglml

## Call:

## loglm(formula = "Dept * (Gender + Admit), data = UCBAdmissions)
T

## Statistics:

i X2 df P(> X72)

## Likelihood Ratio 21.736 6 0.0013520
## Pearson 19.938 6 0.0028402

12



Berkeley data: glm() approach

GLM approach, using glm()

VvV Vv

o U i W DN

Convert UCBadmissions to a frequency data frame
The Freqgvariable is used at the response variable

berkeley <- as.data.frame (UCBAdmissions)
head (berkeley)

Admit Gender Dept Freqg
Admitted Male A 512

Rejected Male A 313
Admitted Female A 89
Rejected Female A 19
Admitted Male B 353
Rejected Male B 207

13



Berkeley data: glm() approach

GLM approach, using glm()
* Fit the same model of conditional independence, [AD][GD]
* This uses family = “poisson” to give model for log(Freq)

> berk.glml <- glm(Freqg ~ Dept * (Gender+Admit),
data=berkeley, family="poisson")

> vcdExtra::LRstats (berk.glml)
Likelihood summary table:

AIC BIC LR Chisg Df Pr (>Chisq)
berk.glml 217 238 21.7 © 0.0014 *x*

Signif. codes: 0O ‘***" (0.001 ‘**’ 0.01 ‘** 0.05 ‘. 0.1 Y " 1

Hmm, doesn’t look like a very good fit!

14
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What does the mosaic plot tell us?

library (vedExtra)

mosaic(berk.glml, shade=TRUE, formula="Admit+Dept+Gender,
residuals_type="rstandard", labeling=labeling_residuals,
main="Model: [AdmitDept] [GenderDept]")

Model: [AdmitDept][GenderDept]

Dept

A B c D E F
o rstandard For a glm() model, mosaic() uses
5 N residuals from that model
£ N
= m
5 - 20 Standardized residuals (“rstandard”)

— have better statistical properties

Here, we see that the lack of fit is
confined to Dept A

—
3
o
T

"y
o
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Berkeley data: Logit approach

Logit approach, using glm()

e The equivalent logit model is L;j = a + 37 + _;:ife“der

@ Fit this with g1lm () using Admit=="Admitted" as the response, and
family=binomial

@ Need to specify weight s=Freqg with the data in frequency form

> berk.logit2 <- glm(Admit=="Admitted" ~ Dept+Gender,
data=berkeley, weights=Freq, family="binomial")

> Anova (berk.logit2, test="Wald")
Analysis of Deviance Table (Type II tests)

Response: Admit == "Admitted"
Df Chisg Pr (>Chisq)

Dept 5 534.71 <2e-16 ***

Gender 1 1.53 0.22

Signif. codes: 0O ‘**x*’ (0,001 ‘**’ 0.01 ‘*’ 0.05 . 0.1 v " 1
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Plots for logit models

* Logit models are easier to interpret because there are fewer parameters
* Easiest to interpret from plots of the fitted & observed odds
* Getthese using the predict () method for the model

> obs <- log (UCBAdmissions([1l,,] / UCBAdmissions([2,,])
> pred?2 <- cbind(berkeley[,1:3],
fit=predict (berk.logit2))
> pred?2 <- cbind (subset (pred2, Admit=="Admitted"),
obs=as.vector (obs))
> head (pred?2)
Admit Gender Dept fit obs

1 Admitted Male A 0.58 0.49
3 Admitted Female A 0.68 1.54
5 Admitted Male B 0.54 0.53
7 Admitted Female B 0.64 0.75
9 Admitted Male C -0.68 -0.54
11 Admitted Female C -0.58 -0.66

17



ggplot (pred?2,

aes (x=Dept, y=fit,

geom line (linewidth=1.4) +
geom point (aes (y=obs), size=3)

Log odds (Admitted

O

Gender

Male
= Female

group=Gender, color=Gender)) +

Large effect of Dept on
admission

Small effect of Gender (NS)

Reason for lack of fit: Dept A

18



A better model

Allow an association between Admit and Gender only in Dept. A
@ Loglinear form:

log mijge = p+ M+ AP + A8+ MNP+ A28 + (= 1)NE
@ Equivalent logit form:

Lj=o+ _;ji}"PEpt + I(j = 1)pGender

berkeley <-— within (berkeley,

deptlAG <— (Dept=='A') * (Gender=="'Female'))
berk.logit3 <-— glm(Admit=="Admitted" =~ Dept + Gender + deptlAgG,
data=berkeley, weights=Freq, family="binomizl")

Anova (berk.logit3)

## Analysis of Deviance Table (Type II tests)

i

## Response: Admit == "Admitted"

i LR Chisqg Df Pr(>Chisq)

## Dept 647 5 < 2e-16 *x%*
## Gender 0 1 0.72

## deptlAG 18 1 2.7e6-05 xx*
F

## Signif. codes: 0 "xxx' 0.001 "*xx+' 0.01 '"+' 0.0

L
L]
ot
—
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Log odds (Admitted

Plot observed and fitted values from this model

] - Gender
) Male
= Female
[], -
-1 -
_2 -
A B C D E

Large effect of Dept on
admission

No effect of Gender

Perfect fit now for Dept A (at
the expense of 1 df)
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Loglinear models for ordinal variables

Ordinal variables reveal themselves in different ways in exploratory plots

Dimension 2 (4.58%)

In correspondence analysis, one large dimension accounting for most of y?
In mosaic plots, an opposite corner pattern of residuals

0.2
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-04 -0.2 0.0 0.2 04

Dimension 1 (93.95%)

Mental health data: Independence

Mental Health Status
Well Mild Moderate Impaired
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________________
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Advantages of ordinal models

°* More focused tests — greater power to detect

* Use fewer df — can fit different models between
independence [A][B] and saturated [AB]

" Fewer parameters — easier interpretation
" Fewer parameters — smaller std. errors

These are similar to reasons for using:
* Cochran-Mantel-Haenzel (CMH) tests
* Testing linear (or polynomial) contrasts in ANOVA

22



Models for ordered categories

Consider an R x C table having ordered categories

@ In many cases, the RC association may be described more simply by

assigning numeric scores to the row & column categories.

@ For simplicity, we consider only integer scores, 1, 2, ... here

@ These models are easily extended to stratified tables
R:C model ;ffc df Formula
Uniform association | i x j x~ | 1 it
Row effects aj x J (I—1) R: 7
Col effects I % by (J—1) i:C
Row+Col eff jai+iby | I+J—3 R:j + i:C
RC(1) oiypxy | 1+J—3 Mult (R, C)
Unstructured (R:C) AC (I—1)(J—-1) | r:C

23



Linear x Linear Model (Uniform association)

@ Assume linear ordering of both the row and column variables
@ Assign scores (usually integers, 1, 2, ...)

a = {a}, a1<a<---g
b = {b}. by <by<---by

@ Then, the linear-by-linear model (L x L) model is:
log(my) = pu+ X'+ A7+~ ajb| .
@ The local odds ratios for adjacent 2 x 2 tables are:
log(#j) = v(a@i+1 — ai)(bj+1 — bj) = log(#j) =~ for integer scores

@ Only one more parameter (v) than the independence model
@ Independence model: special case, vy =0

24



Row effects & column effects: R, C, R+C

@ In the row effects model (R), the row variable, A, is treated as nominal,
but B is assignhed scores

log(my) = p + A }\F +aiby > Zn; =0ora; =0
;

@ In the analogous column effects model (C), the row variable, A, is
assigned scores, but B is nominal

@ The row plus column effects model (R+C), assigns scores to both the
rows and column variables.

log(my) = p+ A + AP + (ajby + aif3)

25



Models for ordered categories

Nesting relations among models for ordinal variables

-1 (I-1)+()-1)-1
R > RC(]_) \estimated
RC(2)
[AlIB] = L xL ot
0 T R+C

df for \ C (1-1)+(J-1)

association
term

J-1

26



Example: Mental impairment & SES

Data on mental health status of NYC youth in relation to parents’ SES
Note that ses & mental have been declared as ordered factors

> str (Mental)

'data.frame': 24 obs. of 3 wvariables:
$ ses : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<, 1
$ mental: Ord.factor w/ 4 levels "Well"<"Mild"<..: 1 2
S Freq : int 64 94 58 46 57 94 54 40 57 105 ...

111222233 ...
3412 3412

Display it as a 2-way table

> (Mental.tab <- xtabs (Freqg ~ mental+ses, data=Mental))

ses
mental 1 2 3 4 5 6
Well o4 57 57 72 36 21
Mild 94 94 105 141 97 71

Moderate 58 54 65 77 54 54
Impaired 46 40 60 94 78 71

27



Example: Mental impairment & SES

Fit and test the independence model using gIm()

> indep <- glm(Freqg ~ mental+tses,
family = poisson, data = Mental)

> vcdExtra::LRstats (indep)
Likelihood summary table:

AIC BIC LR Chisg Df Pr (>Chisq)
indep 209.59 220.19 47.418 15 3.155e-05 **x*

Signif. codes: 0O ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 Y " 1

28



Yoda: Look at the mosaic, Luke!

> mosaic (indep, residuals type="rstandard",
labeling=labeling residuals,
main="Mental health data: Independence")

Mental health data: Independence
Departures from independence

Mental Health Stafus show the classic opposite corner
Mdild Moderate Impaired pattern
retandard
3.3 . ) )
[ The mosaic uses discrete shading
20 levels, so it is useful to show

residuals in the cells

— =210
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Local odds ratios

For ordered tables, useful to examine the local log odds ratios for successive 2 x 2 sub-
tables

These would all be = 0 under independence

> (LMT <- loddsratio(t (mental.tab)))
log odds ratios for mental and ses

ses
mental 1:2 2:3 3:4 4:5 5:6
Well:Mild 0.1158 0.1107 0.0612 0.3191 0.227
Mild:Moderate -0.0715 0.0747 -0.1254 0.0192 0.312

Moderate:Impaired -0.0683 0.2201 0.2795 0.1682 -0.094

> mean (IMTScoefficients)
[1]

> mean (LMT$coefficients) |> exp()

On average, a one-unit step down the SES scale multiplies the odds of one worse
mental health classification by exp(0.103) = 1.11 (11% increase)

30



Local odds ratios

We can plot these as area- and color-proportional shaded squares using corrplot ()

corrplot(as.matrix (LMT), method="square", is.corr = FALSE,
tl.col = "black", tl.srt = 0, tl.offset=1)
1.2 2.3 34 4:5 o6
0.32
0.27
Well:Mild
0.23
0.19
- 0.14
Mild:Moderate - 0.1
- 0.05
F0.01
Moderate:Impaired 004
r-0.08
— 013
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Fitting ordinal models

To fit ordinal models, use a= . numeric () on a factor variable to assign
integer scores (or other numeric scores)

Cscore <— as.numeric{(MentalSses)
Rscore <— as.numeric (MentalSmental)

Then, add the appropriate L x L, R, or C terms to the independence model:
linlin <- update (indep, -
roweff <-— update (indep,
coleff <-— update (indep,

+ Rscore:Cscore)
+ mental :Cscore)
+ Rscore:ses)

~a

~a

Recall: in R, an interaction term, A:B is represented by the product, a; x b; of the
parameters, a,, bj, for the factors.

Rscore, Cscore here are just numbers, so are not estimated parameters

32



Comparing models

LRstats (indep, linlin, roweff, coleff, sortby="AIC")

##
##
##
##
##
##
##
##

Likelihood summary table:

AIC BIC LR Chisg Df Pr (»Chisq)
indep 209.6 220.2 47.42 15 3.16e-05 *x=
coleff 179.0 195.5 6.83 10 0.741
roweff 174.4 188.6 6.28 12 0.901
linlin 174.1 185.8 9.90 14 0.770
Signif. codes: 0 "#+%+"'" 0.001 "++' 0.01 '"+«"' 0.05 "." 0.1 " " 1

@ All ordinal models are acceptable by LR tests
@ The L x L model is judged the best by both AIC and BIC.
@ This has only 1 more parameter than the independence model

33



Comparing models

When overall tests are unclear, you can carry out tests of nested sets of models using
anova (), giving tests of AG2.
The indep, linlin and row effect models are one nested set:

=

anova(indep, linlin, roweff, test="Chisqg")

## Analysis of Deviance Table
i

## Model 1: Freq " mental + ses

## Model 2: Freq ~ mental + ses + Rscore:Cscore

## Model 3: Freq "~ mental + ses + mental:Cscore

¥ Resid. Df Resid. Dev Df Deviance Pr (>Chi)

¥ 1 15 47.4

¥F 2 14 9.9 1 37.5 9e-10 *x=

¥ 3 12 6.3 2 3.6 0.16

i A

## Signif. codes: 0 '"x=*xx' 0.001 '=x+' 0.01 '+' 0.03 '." 0.1 " " 1

The L x L model is a signif. improvement; the R model is not
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Beyond statistical tests, mosaic plots show the remaining structure in the residuals,

unaccounted for in a given model.
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Interpreting the L x L model

In the L x L model, the parametery is the constant local odds ratio. €' is the multiplier
of the odds for a one-step change in mental or ses

> coef(linlin) [["Rscore:Cscore"]]

[1] 0.09069

> exp(coef (linlin) [ ["Rscore:Cscore™"]])
[1] 1.095

@ 7 =0.0907 = local odds ratio, FJ“,;,- = exp(0.0907) = 1.095.

@ each step down the SES scale increases the odds of being classified one
step poorer in mental health by 9.5%.

@ a very simple interpretation of association!
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Log-multiplicative (RC) models

The L x L, R, and C models are all simp|er to interpret than the saturated
model

But, all depend on assigning fixed scores to the categories
The row-and-column effects model (RC(1)) makes these parameters

log(my) = p + /‘\}q + }\F +y a3 or, )\}?B = v o f3;

where ~, a and 3 comprise additional parameters to be estimated
beyond the independence model.

~ hereis ~ to vinthe L x L model

The ordering and spacing of the categories is estimated from the data (as
in CA)

Requires some constraints to be identifiable: e.g., unweighted solution—

Z aj = Z ,-"tij = 0

i J

Zm;? = Z_ﬁf = 1
;

/
3/



Log-multiplicative (RC) models

@ This generalizes to multiple bilinear terms, the RC(M) model
M

ME=S"wawBk M=min(I-1.J-1)
k=1

@ e.g., the RC(2) model has two bilinear terms (like a 2D CA solution)

AB __ _ ey Vin (3
/\,}- = 1 ¥ .J-jj1 + 2 'T-HE.-'-%'E

@ RC models are not loglinear— contain multiplicative terms
e Can'tuse glm/()
@ The gnm () function in gnm fits a wide variety of such generalized

nonlinear models
@ The rc () function in logmult uses gnm () and makes plotting easier.

38



Generalized nonlinear models

The gnm package provides fully general ways to specify nonlinear GLMs
@ Basic nonlinear functions: Exp (), Inv (), Mult ()
@ The RC(1) model: gnm (Freq "A + B + Mult (A, B)

@ The RC(2) model:
gnm(Freq A + B + instances (Mult (A,B), 2)

@ Models for mobility tables— the UNIDIFF model
|Gg Mijk = Qi + ,-’ffjk + exp(ﬁ.-k)ﬁ,}-

the exponentiated multiplier is specified as Mult (Exp (C), A:B)
@ User-defined functions allow further extensions

39



Example: Mental impairment & SES

Fit the RC(1) and RC(2) model by adding terms using Mult() to the independence
model

> library (gnm)
> indep <- gnm(Freq ~ mental + ses,
family = poisson, data = Mental, verbose=FALSE)
> RC1 <- update(indep, . ~ . + Mult(mental, ses))
> RC2 <- update(indep, . ~ . + instances (Mult (mental, ses),2))

Compare models with GOF tests and AIC, BIC

> vcdExtra::LRstats(indep, linlin, roweff, coleff, RCl, RC2)
Likelihood summary table:
AIC BIC LR Chisg Df Pr (>Chisq)

indep 210 220 47.4 15 So2e=05 5w
linlin 174 186 9.9 14 0.77
roweff 174 189 6.3 12 0.90
coleff 179 196 6.8 10 0.74
RC1 180 199 3.6 8 0.89
RC2 187 211 0.5 3 0.91

Signif. codes: 0 ‘***xr (0,001 ‘**’ 0.01 ** 0.05 ‘. 0.1 Y"1
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Comparing models

anova () again gives tests of Ax? for nested models
* Are estimated RC scores better than integer scores in the L x L model?
* If so, do we need more than one dimension?

> anova(linlin, RC1l, RC2, test="Chisqg")
Analysis of Deviance Table

Model 1: Freg ~ mental + ses + Rscore:Cscore
Model 2: Freqg ~ mental + ses + Mult (mental, ses)
Model 3: Freqg ~ mental + ses + Mult (mental, ses, inst = 1) +

Mult (mental, ses, inst = 2)
Resid. Df Resid. Dev Df Deviance Pr (>Chi)
1 14 9.90
2 8 3.57 6 6.32 0.39
3 3 0.52 5 3.05 0.69

Neither RC model shows a significant advantage over the L x L model
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Visualizing RC scores

@ The RC(1) model can be interpreted visually using a dotplot of the scaled
category scores together with error bars.

@ This allows you to see where this model differs from the L x L model with
integer spacing

mental: mild & moderate not

mental that different, but ordered
Impaired = correctly
Moderate —e—
Mild [—
Well e ses: approx. linear, except for
ses ses = (1,2), which don’t differ
] —s—
5 —es— .. .
1 e Similar to what we saw in CA
3 —s—
2 —e— .
1 When this matters, RC models
| | | | provide the statistical machinery
2 1 0 1 2 for inference

RC1 Score
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Visualizing RC scores

rc2 <- rc(Mental.tab, nd=2, weighting="marginal", se="jackknife")
coords <- plot(rc2, conf.ellipses=0.68, cex=1.5,
rev.axes=c (TRUE, FALSE))

0.5

@ For the RC(2) model, plot the
category scores for dim. 1 and 2

@ The logmult package makes these
plots much easier

@ Also, provides bivariate
confidence ellipses

Dimension 2 (0.04)

-0.5
]

-05 0.0 05

Dimension 1 (0.77)

—t-r



Square tables

Square tables arise when the row and column variables have the same categories,
often ordered
Special loglinear models allow us to tease apart different reasons for association

Unaided distant vision data Son
UpMM LoNM  UpM LoM Farm

High

LoNM UpMM

1~ ]

Uph

Right Eye Grade
Father

L

Lok

Low [ 71

Farm

High 2
Left Eve Grade

Visual acuity data Hauser social mobility data
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Square tables: Models

In such cases, general association is a given, because of the diagonal cells
More interesting models concern the nature of association in off-diagonal cells

@ Quasi-independence: ignore the diagonal cells
log mjj = 1+ M+ AP + 5i1(i =) .

This model adds one parameter, 4;, for each diagonal cell, which fits
those frequencies perfectly.

@ Symmetry: w; = 7, but this implies marginal homogeneity,
T+ = Zj Tij = Z}- Tji = T4i for all /.

@ Quasi-symmetry:
log myj = j+ A\ + )\F +Aj . A=A

@ [t can be shown that

symmetry = quasi-symmetry + marginal homogeneity
G%(S) = G?(QS)+ G*(MH)
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Square tables: Models

For these models, the essential idea is to construct factor levels
corresponding to the unique parameters representing association

S L0 C 11 12 13 14 7
Diags = | - 2 . Svmm. . _ | 12 22 23 24
4x4 .. 3 . ymmy 4 13 23 33 34

] 4 | | 14 24 34 44

Diag adds k parameters to fit diagonal cells, beyond independence
Symm adds k x (k+1) parameters to fit a symmetric pattern of association

More general topological models allow an arbitrary pattern of association, but more
parsimonious than the independence model

TDpD-:lel —

LRGN
NS NN

AR WN
AR WW
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Square tables: Using gnm()

Some models for structured associations in square tables:
@ quasi-independence (ignhore diagonals)

gnm(Freq ™ row + col + Diag(row, col), family=poisson)
RC _ \RC
@ symmetry (A, = A7)

gnm(Freq © Symm(row, col), family=poisson)

@ quasi-symmetry = quasi + symmetry
gnm(Freq “ row + col + Symm(row, col), family=poisson)
@ fully-specified “topological” association patterns

gnm(Freq ® row + col + Topo(row, col, spec=RCmatrix), ...)

All of these are actually GLMs, but the gnm package provides convienence
functions Diag, Symm, and Topo to facilitate model specification.
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Example: Visual acuity

data ("VisualAcuity", package="vcd")

women <- subset (VisualAcuity, gender=="female", select=-gender)
sieve (Freqg ~ right + left, data=women, shade = TRUE,
main = "Unaided distance vision data")

Visual acuity data (women)

left
1 2 3 4
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I TOTOTOTO T bbbk b bt
- TRAFAFRBFAFEY L Ll iOTT
B e B ma = e N NI Y Y N N )
THERFHFR A L CC L C i T+
I TOTOTOTOTa LU LD LD DL LA+ .. .. .
R W W W e What associations remain, ignoring
- T e e B e e p === ey
EER T OTHOTTE Ot 0T+ +4
NTOITOTAT H¥H HHFHHT AT T these?
B A+ rH+H+ BIGORTERTEOETITT .
HTOITOTOT ATEARTREOTE AT+ + Y
oy BTHITATAY tH T HHTE HT
NTOITOTOT THERHHTR AT HETTTTY
g L i ] ; ,
= ; . .
S [OTOITOTAT B HRF B AT A H 14 - I
©  prmarornr FEERHEER Is there evidence for quasi Symmetry
O TTOATTITITIT T 1T TT
Frrr++++H B jigufal
I N I e g e ey HEH
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© CECCCrrTRia T nTan Hong ; : :
MMMyt eeesesa et EEE examine gender in relation to these
Froihi e o -
CUCCCC T T THFH A AEAEA D HHH associations
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C T T T O T O I B DA R R B O
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Fitting models

Start with the independence model, then update() to add other terms

> indep <- glm(Freq ~ right + left, data = women, family = poisson)
> quasi <- update(indep, . ~ . + Diag(right, left))

> symm <- glm(Freq ~ Symm(right, left), data = women, family = poisson)
> gsymm <- update(symm, . ~ right + left + .)

The quasi-symmetry model (gsymm) fits reasonably well; none of the others do by LR
G2 tests or AIC, BIC; gsymm is best by AIC, BIC

> vcdExtra::LRstats (indep, quasi, symm, gsymm)
Likelihood summary table:
AIC BIC LR Chisg Df Pr (>Chisq)

indep 6803 6808 6672 9 <2e-16 ***
quasi 338 347 199 5 <2e-16 ***
S ymm 157 164 19 © 0.0038 **
gsymm 151 161 73 0.0638

Signif. codes: 0 ‘***xr (0,001 ‘**’ 0.01 ** 0.05 ‘. 0.1 Y"1
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Visualizing model fits

Quasi-independence: The diagonal cells are forced to fit exactly.
Lack-of-fit appears in the symmetrically opposite cells

Visual Acuity: Quasi Symmetry

Visual Acuity: Quasi Independence

Left eye grade Left eye grade

2
2

4

Right eye grade
Right eye grade

3
3
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More models, more mosaics

For the Hauser79 data on occupational mobility, there are a wide variety of models to
consider

library (gnm)
hauser.indep <- gnm(Freqg ~ Father + Son,
data=Hauser79, family=poisson)
hauser.quasi <- update (hauser.indep, ~ . + Diag(Father,Son))
hauser.gsymm <- update (hauser.indep, ~ . + Diag(Father,Son) + Symm(Father,Son) )

# numeric scores
Fscore <- as.numeric (Hauser79SFather)
Sscore <- as.numeric (Hauser79SSon)

hauser.UA <- update (hauser.indep, ~ . + Fscore*Sscore)
hauser.roweff <- update (hauser.indep, ~ . + Father*Sscore)
hauser.UAdiag <- update (hauser.UA, ~ . + Diag(Father,Son))

# RC models, estimating category scores
hauser.RC <- update (hauser.indep, ~ . + Mult(Father, Son), verbose=FALSE)
hauser.RCdiag <- update (hauser.RC, ~ . + Diag(Father, Son), verbose=FALSE)

# crossings models

hauser.CR <- update (hauser.indep, ~ . + Crossings (Father, Son))
hauser.CRdiag <- update (hauser.CR, ~ . + Diag(Father,Son))
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More models, more mosaics

Independence model Quasi-independence model
Son' ti ' i .
UpNM onsoﬁ:\lpr: '3BM LoM Farm UpNMsonsochoul\?r:tlaEM LoM Farm Mosaic plots reveal the
= = .
| || [ B B otter of lack-of fit
= =
_% [ N =< KH N
-§§ . _'EI'S 'E?L 25 || 26 1N For more sensitive
g 8 comparisons, we need
53 53 26 || 3 model fit statistics
* How to interpret
. RC + Dia i
Quasi-symmetry model = f’() quasi-independence?
Son's occupation UM LoNM UpM  LoM Famn * Quasi-symmetry?
UpNM LoNM UpM  LoM Farm = ° RC?
: mE L '
2 33 ) .
5 > * RC+Diag()?
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Model comparisons

Collect the models in a glmlist() and compare them using LRstats():

modlist <- glmlist (hauser.indep, hauser.roweff, hauser.UA,
hauser.UAdiag, hauser.quasi, hauser.gsymm,
hauser.topo, hauser.RC, hauser.CR, hauser.CRdiag)

LRstats (modlist, sortby = "BIC")

Sorting by BIC shows the best models at the bottom:

Likelihood summary table:

AIC BIC LR Chisqg Df Pr (>Chisq)
hauser.indep 6390.8 6401.8 6170.1 16 < 2.2e-16 ***
hauser.UA 2503.4 2515.6 2280.7 15 < 2.2e-16 ***
hauser.roweff 2308.9 2324.7 2080.2 12 < 2.2e-16 ***
hauser.RC 920.2 939.7 685.4 9 < 2.2e-16 ***
hauser.quasi 914.1 931.1 683.3 11 < 2.2e-16 ***
hauser.CR 318.6 334.5 89.9 12 5.131le-14 *x*x*
hauser.UAdiag 305.7 324.0 73.0 10 1.16le-11 *x**
hauser.CRdiag 298.9 318.5 64.2 9 2.030e-10 ***
hauser.topo 295.3 311.1 66.6 12 1.397e-09 **x*
hauser.gsymm 268.2 291.3 27.4 6 0.0001193 *x**

Signif. codes: 0 Y***’ (0,001 ‘*x*'

(@)

.01 **r 0.05 . 0.1 " 1

The quasi-symmetry model is best, but still shows some lack of fit
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Model comparison plots

When there are more than a few models, a model comparison plot can show the
trade-off between goodness-of-fit and parsimony
e This sorts the models by both fit & complexity

e Plot BIC vs. df
o
ugj _|
Can also use AIC, or
G2 / df in this plot
roweff U.A P
—_ O [ ]
Q o _|
8 & Plot on log scale to
o emphasize diffe
@]
S 2 RC quasi among better
o © o o models
S - | And, the winner is:
gsymm CRdiag thbd Quasi-symmetry!
o UAgiag 3
]
| | | | | |
6 8 10 12 14 16

Degrees of freedom 55



More complex models

* Extensions of these methods occur in a variety of contexts:

Panel surveys, where attitude items are analyzed over time & space

Social mobility data, where occupational status of parents and
children may admit subtly different models across strata

Migration data, where geographical & political factors require special
treatment (e.g., mover-stayer models)

* These often involve:

ordinal variables: support for abortion, occupational status
square tables: husbands/wives, fathers/sons

strata or layers to control for other factors or analyze change over time
or differences over geography
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More complex models

@ For example, the log-multiplicative uniform difference (UNIDIFF)
model, for factors R, C, with layer variable L:

log Mjk = p1+ Af + A7 + Mg + M+ Ai- + % 07©

e The term for the three-way association [RCL] pertains to how the [RC]
association varies with layer (L)

e The UNIDIFF model says there is a multiplier ~, for a common éﬁc
association

e Special cases: R, C, RC(1) models for the [RC] association;

e Special cases: homogeneous associations (v, = 0) for layers

@ gnm () notation uses Exp (L), so layer effects are on a log scale.

@ The logmult package provides a unidiff () function that makes this
easier.
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Models for stratified mobility tables

Baseline models:

@ Perfect mobility: Freg = (R+C) *L

@ Quasi-perfect mobility: Freq ~ (R+C)+L + Diag(R, C)
Layer models:

@ Homogeneous: no layer effects— v = 0

@ Heterogeneous: e.g., ;xﬂﬁ = exp(7}) f‘?fc

Extended models: Baseline & Layer model( R:C model )

Layer model
R:C model Homogeneous log multiplicative
Row effects .+ R:j “.+ Mult (R:7j, Exp(L))
Col effects L+ i:cC “.+ Mult (i:C, Exp(L))
Row+Col eff .+ R:j + i:C “.+ Mult (R:j + i:C, Exp(L))
RC(1) .+ Mult (R, C) | “.+ Mult(R, C, Exp(L))
Full R: C .+ R:C “.+ Mult (R:C, Exp(L)
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Example: Social mobility in US, UK & Japan

Data from Yamaguchi (1987): Cross-national comparison of occupational mobility

> data (Yamaguchi87, package="vcdExtra")
> Yama.tab <- xtabs(Freq ~ Father + Son + Country, data=Yamaguchi87)
> structable (Country+Son~Father, Yama.tabl[,,1:2])

Country US UK

son UpNM LoNM UpM LoM Farm [UpNM LoNM UpM LoM Farm
Father
UpNM 1275 364 274 272 171 474 129 87 124 11
LoNM 1055 597 394 443 31| 300 218 171 220 8
UpM 1043 587 1045 951 47| 438 254 669 703 16
LoM 1159 791 1323 2046 52| 601 388 932 1789 37
Farm 666 496 1031 1632 646 76 56 125 295 191
Questions:

* |s occupational mobility the same for all countries? (No layer effects)
* If not, how do they differ?

* Are there simple models that describe mobility?

See: demo (“yamaguchi-xie”, package=“vcdExtra”)
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Dim 2: Occ. Status (28.0%)

Explore: Try MCA

Yamaguchi data: Mobility in US, UK and Japan, MCA

library(ca)

Yama.dft <- expand.dft(Yamaguchi87)
< yama.mjca <- mjca(Yama.dft)
° : plot(yama.mjca, what=c("none","all"))
C\J nDnLI;IM SonFarm
o | F oM :

Ag'::ﬂ?;j:SonUpM Fat
N _ . .
~o | Dimensions have reasonable
herUpM . .
o | & interpretations
o < ,CountryUS .
A A0 pan Farm differs from others
SonLoNM All sons seem to move up!
(8]
S 7 :
Sonupsg oM How does this relate to theories of
.-
< mobility?
? 7 FatherUpNM
: How to understand country effects?
©
<
I
| i | | | | |
~0.2 0.0 0.2 0.4 0.6 0.8 1.0

Dim 1: Farm vs. Other (52.6%)
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Yamaguchi data: Baseline models

The minimal, null model asserts Father L. Son | Country = [FC][SC] = (F+S)*C

yamaNull <- gnm(Freq -~ (Father + Son) s+ Country, data = Yamaguchig7,
family = poisson)
mosaic (yamaNull, “"Country + Son + Father, condvars = "Country", ...)

[FC][SC] Null [FS] association (perfect mobility)

Son's status . .
UpNM  LoNM  UpM Farm Within country, diagonal cells for F=S
I = .
[ 1= =AM Pearson dominate

Iy N i 1ph realduula
I LoM

Much more data for US; least for
Japan

Country

Japan
IQ‘JU
T8
&6

i
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Yamaguchi data: Baseline models

We expect F = S. Ignore diagonal cells with quasi-independence — Quasi-perfect
mobility

yamaDiag <- update(yamaNull, ~. + Diag(Father, S5Son) :Country)

mosaic (yamaDiag, "“"Country + Son + Father, condvars = "Country", ...)
[FC][SC] Quasi perfect mobility, +Diag(F,S)

UphM Lumﬁ:nmﬁt;lh.l;s LoM  Farm The term Diag(F, S):Country fits

Pearson

residuals: diagonal cells perfectly w/in each
171
country

4.0
20
0.0
-2.0
-4.0

-11.9
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Models for homogeneous associations

gnm(): easy to fit collections of models using update() to the yamaDiag model.
These have no Country term, so they assert same associations for all countries

Rscore <- as.numeric (Yamaguchi87S$Father)

Cscore <- as.numeric (Yamaguchi87S$Son)

yamaRo <- update (yamaDiag, ~ + Father:Cscore)

yamaCo <- update (yamaDiag, ~ + Rscore:Son)

yamaRpCo <- update (yamaDiag, -~ + Father:Cscore + Rscore:Son)
yamaRCo <- update (yamaDiag, -~ + Mult (Father, Son))

yamaFIo <- update(yamaDiag, -~ + Father:Son)

Model Ro: homogeneous row efiects, +Father) Model Co: homogeneous col effects. +i:Son Model ACo: homogeneous RC(1)
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Models for heterogeneous associations

Can combine these with models including layer (Country) effects
Log-multiplicative (UNIDIFF) models add a term Mult(..., Exp(Country))

yamaRx <- update (yamaDiag, ~ . + Mult (Father:Cscore, Exp(Country)))
yamaCx <- update (yamaDiag, ~ . + Mult (Rscore:Son, Exp(Country)))
yamaRpCx <- update(yamaDiag, ~ . + Mult (Father:Cscore +

Rscore:Son, Exp (Country)))
yamaRCx <- update(yamaDiag, ~ . + Mult (Father, Son, Exp(Country)))
yamaFIx <- update(yamaDiag, ~ . + Mult (Father:Son, Exp(Country)))

We now have quite a collection of alternative models

* How to compare them?

* How to interpret the associations they imply about Father, Son mobility across
countries?
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Yamaguchi data: Comparing models

LRstats () and related methods facilitate model comparisons

> models <- glmlist (yamaNull, yamaDiag,
yamaRo, yamaRx, yamaCo, yamaCx, yamaRpCo,
yamaRpCx, yamaRCo, yamaRCx, yamaFIo, yamaFIXx)
> LRstats (models)
Likelihood summary table:
AIC BIC LR Chisg Df Pr (>Chisq)

yamaNull 6168 6231 55092 48 < 2e-16 *x* }_ Baseline models
yvamaDiag 1943 2040 1336 33 < 2e-1l6 *** —

yamaRo 771 877 156 29 < 2e-16 **x

yamaRx 766 877 148 27 < 2e-16 *** - FEIrEREIEeUs,
yamaCo 682 789 68 29 6.1e-05 *** Father:Son models
yamaCx 677 789 59 27 0.00038 *** —

yamaRpCo 659 773 39 26 0.05089 B

yamaRpCx 658 776 33 24 0.10341

yamaRCo 658 772 38 26 0.06423 . Heteroogeneous,
yamaRCx 657 775 32 24 0.12399 B Father:Son models
yamaFIo 665 788 36 22 0.02878 *

yamaFIx 664 791 31 20 0.05599 . -

Signif. codes: 0 ‘***xr (.001 ‘**’ 0.01 ‘*" 0.05 '.” 0.1 ¥ " 1
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BIC

Yamaguchi data: Comparing models

Easier to understand by plotting the criteria for these models

BIC <- matrix (LRstats (models) $BIC[-(1:2)1, 5, 2,

matplot (BIC, ..)

-180 -180 -140
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=220

Yamaguchi-Xie models: R:C model by Layer model Summary

Country model

log multiplicative e

homogeneous @l

rowy eff

I I I I
col eft row-+col RC(1) H:.C

byrow=TRUE)

BIC strongly prefers homogeneous
models

Little diffce among Col, Row+Col,
RC(1) models

— R:C association ~ Row scores
(fathers’ status)

66



AIC

Yamaguchi data: Comparing models

Easier to understand by plotting the criteria for these models

AIC <- matrix (LRstats (models)S$SAIC[-(1:2)], 5, 2, byrow=TRUE)

matplot (AIC, ..)

Yamaguchi-Xie models: R:C model by Layer model Summary
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AIC slightly prefers heterogeneous
models

Row + Col & RC(1) fit best
— R:C association ~ ordinal scores

Model summary plots make sense
of multiple models
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Interpreting associations

logmult: :unidiff () uses gnm() for fitting, but makes summaries & plotting easier

> library(logmult)
> (yamaUni <- unidiff (as.table(Yama.tab)))

Layer coefficients:
UsS UK Japan
1.000 1.206 0.931

Layer intrinsic association coefficients:
US UK Japan
0.412 0.497 0.383

Full two-way interaction coefficients:
sSon

Father UpNM LoNM UpM LoM Farm
UpNM 1.0063 0.3024 -0.4399 -0.6048 -0.4394
LoNM 0.4644 0.5228 -0.2547 -0.3856 -0.5121
UpM 0.0214 -0.0268 0.2557 -0.0972 -0.5828
LoM -0.2056 -0.1028 0.0891 0.2632 -0.6504
Farm -0.5320 -0.3026 0.0101 0.2592 2.074
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Visualizing associations

Plotting the unidiff object plots the layer association coefficients

plot (yamaUni, cex=3, col="red", pch=16)
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Visualizing associations

The common association parameters, SURC are contained in the unidiff object.
Can extract these and plot in various ways

> inter <- yamaUniSunidiff$interaction
> names (inter)
[1] "Estimate" "Std. Error"

> inter.mat <- matrix(interS$Estimate, 5, 5,
dimnames=dimnames (Yama.tab) [1:2])

> 1nter.mat
Son
Father UpNM LoNM UpM LoM Farm
UpNM 1.0063 0.3024 -0.4399 -0.6048 -0.439
LoNM 0.4644 0.5228 -0.2547 -0.3856 -0.512
UpM 0.0214 -0.0268 0.2557 -0.0972 -0.583
0.2056 -0.1028 0.0891 0.2632 -0.650
Farm -0.5320 -0.3026 0.0101 0.2592 2.075
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Visualizing associations

Plot these as shaded squares using corrplot()

Father's Occupational Status

UpNM

LoNM

Lo

Farm

Father - Son Associations

UpNM LoNM Uph LoM Farm

Son's Occupnational Status

207

1.8

1.53

1.26

-0.98
r0.71

r0.44

~0.65

~0.38
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Visualizing associations

Plot these as a line plot using matplot()

matplot (t (inter.mat), type="b", pch=15:19, cex=1.5, xaxt="n"
xlab="Father's status", ylab="Association estimate" )
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Loglinear models, as originally formulated, were quite general, but
treated all table variables as unordered factors

" The GLM perspective is more general, allowing quantitative predictors and
handling ordinal factors

"= The logit model give a simplified approach when one variable is a
response

Models for ordered factors give more powerful & focused tests
= LxL,R, CandR+C models assign scores to the factors
= RC(1) and RC(2) models estimate the scores from the data
Models for square tables allow testing structured questions
® Quasi-independence: ignoring diagonals
= symmetry & quasi-symmetry
= theory-specific “topological” models

These methods can be readily combined to analyze complex tables
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