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Today’s topics
• Overview of extended loglinear models
• Logit models for response variables
• Models for ordinal factors
• RC models, estimating row/col scores
• Models for square tables
• More complex models
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Visual overview: Models for frequency tables 
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Related models: logistic regression, polytomous regression, log odds models, …
Goal: connect all with visualization methods



Loglinear models: Perspectives
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Extending loglinear models
Loglinear models can be extended in a variety of ways
• Models for ordinal factors allow a more parsimonious 

description of association (linear association)
• Specialized models for square tables provide more nuanced 

hypotheses (symmetry, quasi-symmetry)
• These ideas apply to higher-way tables
• Some of these extensions are more easily understood when 

loglinear models are re-cast in an equivalent but simpler or 
more general form (logit models)
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Loglinear models: Perspectives

6



Loglinear models: Perspectives
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Logit models
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Logit models
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Logit models
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Logit models
• Each logit model for a binary response, C, ≡ a loglinear model
 The loglin model must include the [AB] association of predictors
 When the response, C, has m>2 levels, multinomial models have 

equivalent loglinear form
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Berkeley data: loglinear approach
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Berkeley data: glm() approach
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GLM approach, using glm()
• Convert UCBadmissions to a frequency data frame
• The Freq variable is used at the response variable

> berkeley <- as.data.frame(UCBAdmissions)
> head(berkeley)

Admit Gender Dept Freq
1 Admitted   Male    A  512
2 Rejected   Male    A  313
3 Admitted Female    A   89
4 Rejected Female    A   19
5 Admitted   Male    B  353
6 Rejected   Male    B  207



Berkeley data: glm() approach
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GLM approach, using glm()
• Fit the same model of conditional independence, [AD][GD]
• This uses family = “poisson” to give model for log(Freq)

> berk.glm1 <- glm(Freq ~ Dept * (Gender+Admit), 
data=berkeley, family="poisson")

> vcdExtra::LRstats(berk.glm1)
Likelihood summary table:

AIC BIC LR Chisq Df Pr(>Chisq)   
berk.glm1 217 238     21.7  6     0.0014 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Hmm, doesn’t look like a very good fit!
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What does the mosaic plot tell us?

For a glm() model, mosaic() uses 
residuals from that model

Standardized residuals (“rstandard”) 
have better statistical properties

Here, we see that the lack of fit is 
confined to Dept A



Berkeley data: Logit approach
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> berk.logit2 <- glm(Admit=="Admitted" ~ Dept+Gender, 
data=berkeley, weights=Freq, family="binomial")

> Anova(berk.logit2, test="Wald")
Analysis of Deviance Table (Type II tests)

Response: Admit == "Admitted"
Df Chisq Pr(>Chisq)    

Dept    5 534.71     <2e-16 ***
Gender  1   1.53       0.22    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Plots for logit models
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• Logit models are easier to interpret because there are fewer parameters
• Easiest to interpret from plots of the fitted & observed odds
• Get these using the predict() method for the model

> obs <- log(UCBAdmissions[1,,] / UCBAdmissions[2,,])
> pred2 <- cbind(berkeley[,1:3], 

fit=predict(berk.logit2))
> pred2 <- cbind(subset(pred2, Admit=="Admitted"),  

obs=as.vector(obs))
> head(pred2)

Admit Gender Dept   fit   obs
1  Admitted   Male    A  0.58  0.49
3  Admitted Female    A  0.68  1.54
5  Admitted   Male    B  0.54  0.53
7  Admitted Female    B  0.64  0.75
9  Admitted   Male    C -0.68 -0.54
11 Admitted Female    C -0.58 -0.66
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ggplot(pred2, aes(x=Dept, y=fit, group=Gender, color=Gender)) +
geom_line(linewidth=1.4) +
geom_point(aes(y=obs), size=3) + …

Large effect of Dept on 
admission

Small effect of Gender (NS)

Reason for lack of fit: Dept A



A better model
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Plot observed and fitted values from this model

Large effect of Dept on 
admission

No effect of Gender

Perfect fit now for Dept A (at 
the expense of 1 df)



Loglinear models for ordinal variables
Ordinal variables reveal themselves in different ways in exploratory plots
• In correspondence analysis, one large dimension accounting for most of χ2

• In mosaic plots, an opposite corner pattern of residuals
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Advantages of ordinal models
• More focused tests → greater power to detect
• Use fewer df → can fit different models between 

independence [A][B] and saturated [AB]
 Fewer parameters → easier interpretation
 Fewer parameters → smaller std. errors 

These are similar to reasons for using:
• Cochran-Mantel-Haenzel (CMH) tests
• Testing linear (or polynomial) contrasts in ANOVA
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Models for ordered categories
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Linear x Linear Model (Uniform association)
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Row effects & column effects: R, C, R+C
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Models for ordered categories
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L × L

R

C

RC(1)

RC(2)

R+C1

I-1

J-1

(I-1)+(J-1)

0

(I-1)+(J-1)-1

Nesting relations among models for ordinal variables

[A][B]

df for 
association 
term

integer 
scores

estimated 
scores



Example: Mental impairment & SES
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Data on mental health status of NYC youth in relation to parents’ SES
Note that ses & mental have been declared as ordered factors

> (Mental.tab <- xtabs(Freq ~ mental+ses, data=Mental))
ses

mental       1   2   3   4   5   6
Well      64  57  57  72  36  21
Mild      94  94 105 141  97  71
Moderate  58  54  65  77  54  54
Impaired  46  40  60  94  78  71

> str(Mental)
'data.frame': 24 obs. of  3 variables:
$ ses : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 1 1 1 1 2 2 2 2 3 3 ...
$ mental: Ord.factor w/ 4 levels "Well"<"Mild"<..: 1 2 3 4 1 2 3 4 1 2 ...
$ Freq  : int  64 94 58 46 57 94 54 40 57 105 ...

Display it as a 2-way table



Example: Mental impairment & SES
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Fit  and test the independence model using glm()

> indep <- glm(Freq ~ mental+ses,
family = poisson, data = Mental)

> vcdExtra::LRstats(indep)
Likelihood summary table:

AIC    BIC LR Chisq Df Pr(>Chisq)    
indep 209.59 220.19   47.418 15  3.155e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Yoda: Look at the mosaic, Luke!
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Departures from independence 
show the classic opposite corner 
pattern

The mosaic uses discrete shading 
levels, so it is useful to show 
residuals in the cells

> mosaic(indep, residuals_type="rstandard", 
labeling=labeling_residuals,
main="Mental health data: Independence")



Local odds ratios

30

For ordered tables, useful to examine the local log odds ratios for successive 2 x 2 sub-
tables
These would all be ≈ 0 under independence

> (LMT <- loddsratio(t(mental.tab)))
log odds ratios for mental and ses

ses
mental                  1:2    2:3     3:4    4:5    5:6
Well:Mild 0.1158 0.1107  0.0612 0.3191  0.227
Mild:Moderate -0.0715 0.0747 -0.1254 0.0192  0.312
Moderate:Impaired -0.0683 0.2201  0.2795 0.1682 -0.094

> mean(LMT$coefficients)
[1] 0.103
> mean(LMT$coefficients) |> exp()
[1] 1.11

On average, a one-unit step down the SES scale multiplies the odds of one worse 
mental health classification by exp(0.103) = 1.11 (11% increase) 



Local odds ratios

31

We can plot these as area- and color-proportional shaded squares using corrplot()

corrplot(as.matrix(LMT), method="square", is.corr = FALSE,
tl.col = "black", tl.srt = 0, tl.offset=1)



Fitting ordinal models
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Recall: in R, an interaction term, A:B is represented by the product, ai × bj of the 
parameters, ai, bj,  for the factors.
Rscore, Cscore here are just numbers, so are not estimated parameters



Comparing models
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Comparing models
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When overall tests are unclear, you can carry out tests of nested sets of models using 
anova(), giving tests of ∆G2.
The indep, linlin and row effect models are one nested set:

The L × L model is a signif. improvement; the R model is not



Comparing models: Mosaic plots
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Beyond statistical tests, mosaic plots show the remaining structure in the residuals, 
unaccounted for in a given model.



Interpreting the L × L model
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> coef(linlin)[["Rscore:Cscore"]]
[1] 0.09069

> exp(coef(linlin)[["Rscore:Cscore"]])
[1] 1.095

In the L × L model, the parameter γ is the constant local odds ratio. eγ is the multiplier 
of the odds for a one-step change in mental or ses



Log-multiplicative (RC) models
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Log-multiplicative (RC) models
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Generalized nonlinear models

39



Example: Mental impairment & SES
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Fit the RC(1) and RC(2) model by adding terms using Mult() to the independence 
model
> library(gnm)
> indep <- gnm(Freq ~ mental + ses,

family = poisson, data = Mental, verbose=FALSE)
> RC1 <- update(indep, . ~ . + Mult(mental, ses))
> RC2 <- update(indep, . ~ . + instances(Mult(mental, ses),2))

Compare models with GOF tests and AIC, BIC

> vcdExtra::LRstats(indep, linlin, roweff, coleff, RC1, RC2)
Likelihood summary table:

AIC BIC LR Chisq Df Pr(>Chisq)    
indep 210 220     47.4 15    3.2e-05 ***
linlin 174 186      9.9 14       0.77    
roweff 174 189      6.3 12       0.90    
coleff 179 196      6.8 10       0.74    
RC1    180 199      3.6  8       0.89    
RC2    187 211      0.5  3       0.91    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Comparing models
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> anova(linlin, RC1, RC2, test="Chisq")
Analysis of Deviance Table

Model 1: Freq ~ mental + ses + Rscore:Cscore
Model 2: Freq ~ mental + ses + Mult(mental, ses)
Model 3: Freq ~ mental + ses + Mult(mental, ses, inst = 1) + 

Mult(mental, ses, inst = 2)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1        14       9.90                     
2         8       3.57  6     6.32     0.39
3         3       0.52  5     3.05     0.69

anova() again gives tests of ∆χ2 for nested models
• Are estimated RC scores better than integer scores in the L x L model?
• If so, do we need more than one dimension?

Neither RC model shows a significant advantage over the L x L model



Comparing models: Mosaic plots
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Visualizing RC scores
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mental: mild & moderate not 
that different, but ordered 
correctly

ses: approx. linear, except for
ses = (1,2), which don’t differ

Similar to what we saw in CA

When this matters, RC models 
provide the statistical machinery 
for inference



Visualizing RC scores
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rc2 <- rc(Mental.tab, nd=2, weighting="marginal", se="jackknife")
coords <- plot(rc2, conf.ellipses=0.68, cex=1.5, 

rev.axes=c(TRUE, FALSE))



Square tables
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Square tables arise when the row and column variables have the same categories, 
often ordered
Special loglinear models allow us to tease apart different reasons for association



Square tables: Models
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In such cases, general association is a given, because of the diagonal cells
More interesting models concern the nature of association in off-diagonal cells



Square tables: Models
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Diag adds k parameters to fit diagonal cells, beyond independence
Symm adds k x (k+1) parameters to fit a symmetric pattern of association

More general topological models allow an arbitrary pattern of association, but more 
parsimonious than the independence model



Square tables: Using gnm()
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Example: Visual acuity
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data("VisualAcuity", package="vcd")
women <- subset(VisualAcuity, gender=="female", select=-gender)
sieve(Freq ~ right + left, data=women, shade = TRUE,

main = "Unaided distance vision data")

Diagonal cells clearly dominate

What associations remain, ignoring 
these?

Is there evidence for quasi-symmetry?

A more complete analysis could 
examine gender in relation to these
associations



Fitting models

50

> indep <- glm(Freq ~ right + left,  data = women, family = poisson)
> quasi <- update(indep, . ~ . + Diag(right, left))

> symm <- glm(Freq ~ Symm(right, left), data = women, family = poisson)
> qsymm <- update(symm, . ~ right + left + .)

> vcdExtra::LRstats(indep, quasi, symm, qsymm)
Likelihood summary table:

AIC  BIC LR Chisq Df Pr(>Chisq)    
indep 6803 6808     6672  9     <2e-16 ***
quasi  338  347      199  5     <2e-16 ***
symm 157  164       19  6     0.0038 ** 
qsymm 151  161        7  3     0.0638 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Start with the independence model, then update() to add other terms

The quasi-symmetry model (qsymm) fits reasonably well; none of the others do by LR 
G2 tests or AIC, BIC; qsymm is best by AIC, BIC



Visualizing model fits
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Quasi-independence: The diagonal cells are forced to fit exactly.  
Lack-of-fit appears in the symmetrically opposite cells



More models, more mosaics
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For the Hauser79 data on occupational mobility, there are a wide variety of models to 
consider

library(gnm)
hauser.indep <- gnm(Freq ~ Father + Son, 

data=Hauser79, family=poisson)
hauser.quasi <- update(hauser.indep, ~ . + Diag(Father,Son))
hauser.qsymm <- update(hauser.indep, ~ . + Diag(Father,Son) + Symm(Father,Son) )

# numeric scores
Fscore <- as.numeric(Hauser79$Father)
Sscore <- as.numeric(Hauser79$Son)
hauser.UA     <- update(hauser.indep, ~ . + Fscore*Sscore)
hauser.roweff <- update(hauser.indep, ~ . + Father*Sscore)
hauser.UAdiag <- update(hauser.UA, ~ . + Diag(Father,Son))

# RC models, estimating category scores
hauser.RC <- update(hauser.indep, ~ . + Mult(Father, Son), verbose=FALSE)
hauser.RCdiag <- update(hauser.RC, ~ . + Diag(Father, Son), verbose=FALSE)

# crossings models
hauser.CR <- update(hauser.indep, ~ . + Crossings(Father,Son))
hauser.CRdiag <- update(hauser.CR, ~ . + Diag(Father,Son))



More models, more mosaics
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Mosaic plots reveal the 
pattern of lack-of-fit

For more sensitive
comparisons, we need 
model fit statistics

Q: 
• How to interpret  

quasi-independence?
• Quasi-symmetry?
• RC? 
• RC+Diag()?



Model comparisons
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modlist <- glmlist(hauser.indep, hauser.roweff, hauser.UA, 
hauser.UAdiag, hauser.quasi, hauser.qsymm, 
hauser.topo, hauser.RC, hauser.CR, hauser.CRdiag)

LRstats(modlist, sortby = "BIC")

Likelihood summary table:
AIC    BIC LR Chisq Df Pr(>Chisq)    

hauser.indep 6390.8 6401.8   6170.1 16  < 2.2e-16 ***
hauser.UA     2503.4 2515.6   2280.7 15  < 2.2e-16 ***
hauser.roweff 2308.9 2324.7   2080.2 12  < 2.2e-16 ***
hauser.RC 920.2  939.7    685.4  9  < 2.2e-16 ***
hauser.quasi 914.1  931.1    683.3 11  < 2.2e-16 ***
hauser.CR      318.6  334.5     89.9 12  5.131e-14 ***
hauser.UAdiag 305.7  324.0     73.0 10  1.161e-11 ***
hauser.CRdiag 298.9  318.5     64.2  9  2.030e-10 ***
hauser.topo 295.3  311.1     66.6 12  1.397e-09 ***
hauser.qsymm 268.2  291.3     27.4  6  0.0001193 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Collect the models in a glmlist() and compare them using LRstats():

Sorting by BIC shows the best models at the bottom:

The quasi-symmetry model is best, but still shows some lack of fit



Model comparison plots
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When there are more than a few models, a model comparison plot can show the 
trade-off between goodness-of-fit and parsimony
• This sorts the models by both fit & complexity

Plot BIC vs. df

Can also use AIC, or 
G2 / df in this plot

Plot on log scale to 
emphasize diffce

among better 
models

And, the winner is:
Quasi-symmetry!



More complex models
• Extensions of these methods occur in a variety of contexts:
 Panel surveys, where attitude items are analyzed over time & space
 Social mobility data, where occupational status of parents and 

children may admit subtly different models across strata
 Migration data, where geographical & political factors require special 

treatment (e.g., mover-stayer models)

• These often involve:
 ordinal variables: support for abortion, occupational status
 square tables: husbands/wives, fathers/sons
 strata or layers to control for other factors or analyze change over time 

or differences over geography
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More complex models
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Models for stratified mobility tables
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Example: Social mobility in US, UK & Japan
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> data(Yamaguchi87, package="vcdExtra")
> Yama.tab <- xtabs(Freq ~ Father + Son + Country, data=Yamaguchi87)
> structable(Country+Son~Father, Yama.tab[,,1:2])

Country   US                       UK                    
Son     UpNM LoNM UpM LoM Farm UpNM LoNM UpM LoM Farm

Father                                                          
UpNM 1275  364  274  272   17  474  129   87  124   11
LoNM 1055  597  394  443   31  300  218  171  220    8
UpM 1043  587 1045  951   47  438  254  669  703   16
LoM 1159  791 1323 2046   52  601  388  932 1789   37
Farm            666  496 1031 1632  646   76   56  125  295  191

Data from Yamaguchi (1987): Cross-national comparison of occupational mobility

Questions:
• Is occupational mobility the same for all countries? (No layer effects)
• If not, how do they differ?
• Are there simple models that describe mobility?
See: demo(“yamaguchi-xie”, package=“vcdExtra”)



Explore: Try MCA
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library(ca)
Yama.dft <- expand.dft(Yamaguchi87)
yama.mjca <- mjca(Yama.dft)
plot(yama.mjca, what=c("none","all"))

Dimensions have reasonable 
interpretations
Farm differs from others
All sons seem to move up!

How does this relate to theories of 
mobility?

How to understand country effects?



Yamaguchi data: Baseline models

61

The minimal, null model asserts Father ⊥ Son | Country = [FC][SC] = (F+S)*C

Within country, diagonal cells for F=S 
dominate

Much more data for US; least for 
Japan 



Yamaguchi data: Baseline models
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We expect F ≈ S. Ignore diagonal cells with quasi-independence → Quasi-perfect 
mobility

The term Diag(F, S):Country fits 
diagonal cells perfectly w/in each 
country 



Models for homogeneous associations
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gnm(): easy to fit collections of models using update() to the yamaDiag model. 
These have no Country term, so they assert same associations for all countries

Rscore <- as.numeric(Yamaguchi87$Father)
Cscore <- as.numeric(Yamaguchi87$Son)
yamaRo <- update(yamaDiag, ~ . + Father:Cscore)
yamaCo <- update(yamaDiag, ~ . + Rscore:Son)
yamaRpCo <- update(yamaDiag, ~ . + Father:Cscore + Rscore:Son)
yamaRCo <- update(yamaDiag, ~ . + Mult(Father,Son))
yamaFIo <- update(yamaDiag, ~ . + Father:Son)



Models for heterogeneous associations
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Can combine these with models including layer (Country) effects
Log-multiplicative (UNIDIFF) models add a term Mult(…, Exp(Country))  

yamaRx <- update(yamaDiag, ~ . + Mult(Father:Cscore, Exp(Country)))
yamaCx <- update(yamaDiag, ~ . + Mult(Rscore:Son, Exp(Country)))
yamaRpCx <- update(yamaDiag, ~ . + Mult(Father:Cscore + 

Rscore:Son, Exp(Country)))
yamaRCx <- update(yamaDiag, ~ . + Mult(Father, Son, Exp(Country)))
yamaFIx <- update(yamaDiag, ~ . + Mult(Father:Son, Exp(Country)))

We now have quite a collection of alternative models
• How to compare them?
• How to interpret the associations they imply about Father, Son mobility across 

countries?



Yamaguchi data: Comparing models
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> models <- glmlist(yamaNull, yamaDiag, 
yamaRo, yamaRx, yamaCo, yamaCx, yamaRpCo, 
yamaRpCx, yamaRCo, yamaRCx, yamaFIo, yamaFIx)

> LRstats(models)
Likelihood summary table:

AIC  BIC LR Chisq Df Pr(>Chisq)    
yamaNull 6168 6231     5592 48    < 2e-16 ***
yamaDiag 1943 2040     1336 33    < 2e-16 ***
yamaRo 771  877      156 29    < 2e-16 ***
yamaRx 766  877      148 27    < 2e-16 ***
yamaCo 682  789       68 29    6.1e-05 ***
yamaCx 677  789       59 27    0.00038 ***
yamaRpCo 659  773       39 26    0.05089 .  
yamaRpCx 658  776       33 24    0.10341    
yamaRCo 658  772       38 26    0.06423 .  
yamaRCx 657  775       32 24    0.12399    
yamaFIo 665  788       36 22    0.02878 *  
yamaFIx 664  791       31 20    0.05599 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

LRstats() and related methods facilitate model comparisons

Homogeneous,
Father:Son models

Heteroogeneous,
Father:Son models

Baseline models



Yamaguchi data: Comparing models
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Easier to understand by plotting the criteria for these models

BIC <- matrix(LRstats(models)$BIC[-(1:2)], 5, 2, byrow=TRUE)
matplot(BIC, …)

BIC strongly prefers homogeneous 
models

Little diffce among Col, Row+Col, 
RC(1) models

→ R:C association ~ Row scores 
(fathers’ status)



Yamaguchi data: Comparing models
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Easier to understand by plotting the criteria for these models

AIC <- matrix(LRstats(models)$AIC[-(1:2)], 5, 2, byrow=TRUE)
matplot(AIC, …)

AIC slightly prefers heterogeneous 
models

Row + Col & RC(1) fit best

→ R:C association ~ ordinal scores

Model summary plots make sense 
of multiple models



Interpreting associations
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> library(logmult)
> (yamaUni <- unidiff(as.table(Yama.tab)))

Layer coefficients:
US     UK  Japan  

1.000  1.206  0.931  

Layer intrinsic association coefficients:
US     UK  Japan  

0.412  0.497  0.383  

Full two-way interaction coefficients:
Son

Father  UpNM LoNM UpM LoM Farm   
UpNM 1.0063   0.3024  -0.4399  -0.6048  -0.4394
LoNM 0.4644   0.5228  -0.2547  -0.3856  -0.5121
UpM 0.0214  -0.0268   0.2557  -0.0972  -0.5828
LoM -0.2056  -0.1028   0.0891   0.2632  -0.6504
Farm  -0.5320  -0.3026   0.0101   0.2592   2.074

logmult::unidiff() uses gnm() for fitting, but makes summaries & plotting easier



Visualizing associations
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Plotting the unidiff object plots the layer association coefficients

plot(yamaUni, cex=3, col="red", pch=16)

Father – Son 
association is ordered 
UK > US > Japan



Visualizing associations
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The common association parameters, δij
RC are contained in the unidiff object.

Can extract these and plot in various ways

> inter <- yamaUni$unidiff$interaction
> names(inter)
[1] "Estimate"   "Std. Error"

> inter.mat <- matrix(inter$Estimate, 5, 5, 
dimnames=dimnames(Yama.tab)[1:2])

> inter.mat
Son

Father    UpNM LoNM UpM LoM Farm
UpNM 1.0063  0.3024 -0.4399 -0.6048 -0.439
LoNM 0.4644  0.5228 -0.2547 -0.3856 -0.512
UpM 0.0214 -0.0268  0.2557 -0.0972 -0.583
LoM -0.2056 -0.1028  0.0891  0.2632 -0.650
Farm -0.5320 -0.3026  0.0101  0.2592  2.075



Visualizing associations
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Plot these as shaded squares using corrplot()



Visualizing associations
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Plot these as a line plot using matplot()

matplot(t(inter.mat), type="b", pch=15:19, cex=1.5, xaxt="n"
xlab="Father's status", ylab="Association estimate" )



Summary
• Loglinear models, as originally formulated, were quite general, but 

treated all table variables as unordered factors
 The GLM perspective is more general, allowing quantitative predictors and 

handling ordinal factors
 The logit model give a simplified approach when one variable is a 

response

• Models for ordered factors give more powerful & focused tests
 L × L, R, C and R+C models assign scores to the factors
 RC(1) and RC(2) models estimate the scores from the data

• Models for square tables allow testing structured questions
 Quasi-independence: ignoring diagonals
 symmetry & quasi-symmetry
 theory-specific “topological” models

• These methods can be readily combined to analyze complex tables

73
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