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Generalized linear models

GLMs for count data

= Example: PhD publications
Model diagnostics

" [nteractions

= Nonlinearity

= Qutliers, leverage & influence
Overdispersion

" Quasi-poisson models

= Negative binomial models
Excess zeros

= Zero-inflated models
" Hurdle models



Count data models: Overview

* Count data models arise when the basic observation is a
frequency, y =0, 1, 2, ... of some event and we have some
predictors, x4, X,, ... to help explain them.

= Typically, these counts ~ Poisson() — “poisson regression”
°* Examples:

= Number of articles published by PhD candidates

* Predictors: Married?, Female?, Kids < 5?, pubs by mentor

"= Number of parasites in blood samples of Norwegian cod
* Predictors: Catch area, Year, length of fish

" Female horseshoe crabs: Number of “satellite” males
* Predictors: Female weight, color, spine condition, shell width

* Special circumstances
= Qverdispersion: when the variance > mean
= Zero-counts: When excess 0 counts require an extra model




Generalized linear models

We have used generalized linear models fit with glm() in two contexts so far

Loglinear models

@ the outcome variable is the vector of frequencies y in a table
cross-classified by factors in a design matrix X
@ The model is expressed as a linear model for log y

log(y) = X3

@ The random (or unexplained) variation is expressed as a Poisson
distribution for £(y | X)

Hmm. Isn’t the problem with frequency data just that of non-constant variance?

Questions:
*  Why not just transform y -> log(y) and use standard OLS regression?
*  Why should | bother with Poisson anyway? He wasn’t even NORMAL !



Generalized linear models

Logistic regression

@ the outcome variable is a categorical response y, with predictors X
@ The model is expressed as a linear model for the log odds that y = 1 vs.

y =0.
Priy =11 _
oy —0)) = X

@ The random (or unexplained) variation is expressed as a Binomial
distribution for £(y | X)

logit(y) = log [

Hey, aren’t these both very like the familiar, classical linear model,
y=XB+e, e~N(0.2) 7

Yes, for some transformation, g(y), and with different distributions!

g(y)=XPB+e € ~ Bin() || Pois() || Nbin()||...



Generalized linear models

Nelder & Wedderburn (1972) said, “Let there be light!”, a generalized linear
model, encompassing them all, and many more. This has 3 components:

@ A random component, specifying the conditional distribution of y given
the explanatory variables in X, with mean £(y; | X;) = p;

e The normal (Gaussian), binomial, and Poisson are already familiar
o But, these are all members of an exponential family
@ GLMs now include an even wider family: negative-binomial and others

@ The systematic component, a linear function of the predictors called the
linear predictor

n=XB3 or ni=p+/Xn+- -+ 5pXp

@ An invertible link function, g(y;) = 1; = xTﬁ that transforms the expected
value of the response to the linear predlctor

e The link function is invertable, so we can go back to the mean function
—1
g~ (m) = pi



GLMs: The light

* No need to consider all those special cases to
transform y for homogeneity of variance

= EDA approach: ladder of powers, transform to symmetry

2 ) 1 1 1 )
Ty y~ y v’ y0 y 72 y] y<
- : =

Ladder of power :GNPCap(l19) GNP per ¢apita
CEbe Sauar‘e saw Sgront o9 Rec.Rt. Recipr. Rec.Sq

Ix E]-aa

oS
o7/ o?
@ L) [I]=)
@2 @
[ x
@5 @
@ @7 o @
@ o3
@ @24 (o] oZ
@ @6 @
s @9
@9 o2 @
== == » » @ @ @

Image from: http://www.unige.ch/ses/sococ/cl//stat/eda/ladder.html 7



http://www.unige.ch/ses/sococ/cl/stat/eda/ladder.html

GLMs: Families

All GLMs are members of a happy
family

Papa normal

They have different technical names,
but all share common DNA — The
Exponential Family includes direct
descendants, uncles, cousins, ...

,' < They all have a linear predictor,
- n=g(u) =Xp

ol Gaussiannv_

They differ in their links: how to
transform from p — g(u) =1

They can get back to their roots with
an inverse transformation,

gln)=n

Base image from: https://portalacademico.cch.unam.mx/ingles1/people-i-love/family-members 8
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Link functions for the mean

Standard GLM link functions and their inverses:

Table 11.1: Common link functions and their inverses used in generalized linear models

N

Link name Function: 1; = g(p;) Inverse: p; = g~ (n;)
identity [bi i

square-root e ?;r;-z

log log. (i) exp(7;)

inverse T n?

inverse-square ,LL;E n; 1/2

logit log, 1—_"‘? WI—W

probit O ) ®(m;)

log-log —log.[—log.(pi)]  exp[—exp(—ni)]

comp. log-log

]-Dgf[_ ]'Dgf[]' T ,U-'.-,'T

1 — exp[— exp(n;)]

The link function
must be invertible
e.g., | 1| is not

* The top section recognizes standard transformations of y, often used with classical
linear models
* The bottom section is for binomial data, where y, represents an observed count in

n; trials



Link functions for binomial data

0.9

0.5

0.7

06

0.5

0.4

Fredicted mean response

0.3

0.2

0.1

lagit
prabit
complementary log-log

log-log

Linear function of predictars

For binomial data, the
logit, probit and c-log-log
all have similar shapes

These take a linear
predictor on (-00, +0)
to the range (0,1) for
probability

The logit is most widely
used because of its’
simple interpretation as
log odds

10



Example: BeetleMortality

Mortality of adult flour beetle after five hours' exposure to gaseous carbon disulphide.

> data ("BeetleMortality",
package = "glmx")
> BeetleMortality

dose died

. 6907
L1242
.7552
.7842
.8113
.8369
.8610
. 8839

W Jo U WwN
e T S e e S e

In this example, the cloglog link

fits best

6
13
18
28
52
53
6l
60

n
59
60
62
56
63
59
62
60

The ‘lapply()’ trick: Apply a function w/
parameters — a list of fitted models

links <- c("logit", "probit", "cloglog")
m <- lapply(links, function (type)
glm(cbind(died, n - died) ~ dose,
data = BeetleMortality,
family = binomial (link = type)))
names (m) <- links

Then, sapply() LRStats to each model:

> t(sapply(m, vcdExtra::LRstats))

AIC BIC LR Chisg Df Pr (>Chisq)
logit 41.4 41.6 11.2 6 0.0815
probit 40.3 40.5 10.1 6 0.12
cloglog 33.6 33.8 3.45 6 0.751

11



Visualize model fits

plot (I (died/n) ~ dose, data = BeetleMortality, .
ylab = "Proportion died", cex.lab = 1.2, pch = 16) FHOtdataFNmntS
lines(fitted(m[[1]]) ~ dose, data = BeetleMortality, col = 2, lwd = 2)
lines (fitted(m[[2]]) ~ dose, data = BeetleMortality, col = 3, lwd = 2) . .
lines (fitted(m[[3]]) ~ dose, data = BeetleMortality, col = 4, lwd = 2) Add fitted lines
legend(1.81, 0.4,
title = "Link", legend = links,

col = 2:4, 1ty =1, 1lwd=2)

We can sort of see why the cloglog 2
link fits best.
@
. . . D
But the coefficients in the model do -
not have as clear an interpretationas 5 _
log odds in the logit model. s °
a
o
> t(sapply(m, coef)) o3 Link
(Intercept) dose — Jogit
logit -60.7 34.3 probit
o4 JR—
probit ~34.9 19.7 o clogiog
cloglog -39.6 22.0
1 I I I
1.70 1.75 1.80 1.85

dose



Canonical links and variance functions

* For every distribution family, there is a default, canonical link function
* Each one also specifies the expected relation between the mean and
variance

Table 11.2: Common distributions in the exponential family used with generalized linear models
and their canonical link and variance functions

Family Notation Canonical link Range of y Variance function, V(| i)
Gaussian N{u,o?) identity: p (—00, +00) ®

Poisson Pois( ) log_(1t) 0.1,...,0 m

Negative-Binomial NBin(p,#) log.(p) 0,1,..., 0 i+ pt /6

Binomial Bin(n,pu)/n  logit(p) 10,1,..., n}/n p(l—p)/n

Gamma G, v) T (0, 4+00) D’

Inverse-Gaussian I G(i, v) > (0, +00) o

Choose a basic family:

* Get a default, canonical link, g(p)
* Also get a variance function for free!

13



Variance functions & overdispersion

@ In the classical Gaussian linear model, the conditional variance is

constant, ¢ = o2.

@ For binomial data, the variance function is V(p;) = pi(1 — pi)/ni, with ¢
fixed at 1

@ In the Poisson family, V(;:;) = ptj and the dispersion parameter is fixed at
o =1.

@ In practice, it is common for count data to exhibit overdispersion, meaning
that V(1) > pi.

@ One way to correct for this is to allow the dispersion parameter to be
estimated from the data, giving what is called the quasi-Poisson family,
with V(i) = opi.

14



What is overdispersion?

Overdispersion often results from failures of assumptions of the
model

* Supposedly independent observations may be correlated
* The probability of an event may not be constant, or
® It may vary with unmeasured or unmodeled variables

Don’t fear overdispersion — embrace it

* For Poisson (freq) data, parameter estimates are unchanged;
it affects only the std. errors (& z-tests)

* |t tells you something interesting about your data or analysis
® (Can lead to better understanding of your model: What did |
leave out?

15



Maximum likelihood estimation

* GLMs are fit by the method of maximum likelihood
= Likelihood (£) = Pr (data | model), as function of model parameters
* For the Poisson distribution with mean y, the probability that
the random variable Y takes the valuesy =0, 1, 2, ... is

* In the GLM with a log link, the mean, U, depends on the
predictors through

l0ge(11i) = xfT.ﬁ

16



Maximum likelihood estimation

* The log-likelihood function is the probability of the
data as a function of the parameters, B. It has the

form (for Poisson)
Why log £

log, L(3) = Z{yj log(14i) — 1i} - Easier to work with

- Has the same max value

* Then, find the values of B the maximize log £

L{:E‘:; L PRPRPR ;B)

Unlike OLS, where there is an exact
solution, MLEs are found by :
iteratively reweighted least squares. :

~
Oarr

B

17



Iteratively reweighted least squares

Initialize
with OLS
b=X'X)1xy

Get current
residuals

" e=y-Xb

New weights

" wev(3)

IN{:
Converged
g

New coefficients
with WLS

b=(X"'WX)" 1 x'wy

18



Goodness of fit

@ The residual deviance defined as twice the difference between the
maximum log-likelihood for the saturated model that fits perfectly and

maximized log-likelihood for the fitted model.
D(y.p) = 2[log, L(y;y) —log, L(Y: ix)] .

@ For classical (Gaussian) linear models, this is just the residual sum of
squares

@ For Poisson models with a log link giving ;« = exp(x'3), the deviance
takes the form

D(y.n) = EZ [J/: loge (?,) (Vi —ﬁf)]

@ For a GLM with p parameters, both the Pearson and residual deviance
statistics follow approximate \2_ p distributions with n — p degrees of
freedom.

20



GLMs for count data

Typically, these are fit using
glm(y ~ x1 + x2 + .., family=poisson, data=mydata)

As in other linear models, the predictors, x,, can be discrete factors,
guantitative variables, interactions, etc.

This fixes the dispersion parameter, ¢ to 1, assuming the count variable y |
x1, x2, ... is Poisson distributed

It is possible to relax this, and fit a quasi-Poisson model, allowing ¢ to be
estimated from the data

= Specify family=quasipoisson. This allows variance to be proportional to the
mean

V(yi|ni) = opi

= Another possibility is the negative-binomial model, which has

Vil ni) = pi + ﬁfr'g.ff("}

21



Example: Publications of PhD candiates

Example 3.24 in DDAR gives data on the number of publications by PhD candidates in
biochemistry in the last 3 years of study

> data ("PhdPubs", package = "vcdExtra")
> table (PhdPubsSarticles)

0 1 2 3 4 5 6 '/ 8 9 10 11 12 16 19
275 246 178 84 o7 27 17 12 1 2 1 1 2 1 1

Predictors are:

* gender, marital status

number of young children

prestige of the doctoral department

number of publications by the student’s mentor

Q: Which of these do you think would have strong effects on pubs?

22



Example: Publications of PhD candidates

Initially, ignore the predictors
This is equivalent to an intercept-only Poisson model

glm (articles ~ 1, family=poisson, data = PhdPubs)

As a check on the Poisson assumption, calculate the mean and variance

> with (PhdPubs, c¢(mean=mean (articles),
var=var (articles),
ratio=var (articles) /mean (articles)))

mean var
1.69 3.71

The assumption that mean = variance could be met when we add predictors

23



First, look at rootograms:

plot (goodfit (PhdPubs$articles), xlab = "Number of Articles",
main = "Poisson")
plot (goodfit (PhdPubsSarticles, type = "nbinomial"),

xlab = "Number of Articles", main = "Negative binomial")

200 FEL ALY =

Poisson Negative binomial

-
15-1"\ \
5 10 - BT
3 3
B 2
(1 5— L
i I_II_I|_||_| 0 —— 0= = -

01234567 8 210M121314151617T1819 01234567 8 2910M1213141516171819

Mumber of Adicles Humber of Arlicles

One reason the Poisson doesn't fit: excess 0s (some never published?)

Q: What might some other reasons be?
Think back to assumptions: independent obs; constant probs; unmodelled vars

24



Fitting the Poisson model

Fit the model with all main effects; note the ~ . notation for this

> phd.pois <- glm(articles ~ ., data=PhdPubs, family=poisson)
> Anova (phd.pois)
Analysis of Deviance Table (Type II tests)

Response: articles
LR Chisg Df Pr (>Chisq)

female 17.1 1 3.6e-05 **x*
married 6.6 1 0.01 =
kid5 22.1 1 2.6e-06 **x*
phdprestige 1.0 1 0.32
mentor 126.8 1 < 2e-16 **x*

Signif. codes: 0 ‘***r (0,001 ‘**’ 0.01 ** 0.05 '.” 0.1 Y " 1

Only phdprestige is NS; it does no harm to keep it, for now

25



Interpreting coefficients

5j is the increment in log (articles) for a 1 unit change in x;; exp(/5;) is the
multiple of articles:

round (cbind (beta = coef (phd.pois),
exXxpbeta = exp(coef (phd.pois}),
pct = 100 * (exp(coef(phd.pois)) - 1)), 3)
i beta expbeta pct
## (Intercept) 0.266 1.304 30.425
## femalel -0.224 0.799 -20.102
## marriedl 0.157 1.170 17.037
## kidb -0.185 0.831 -16.882
## phdprestige 0.025 1.026 2.57
## mentor 0.025 1.026 2.555
Thus:

@ females publish -0.224 fewer log (articles), or 0.8 x that of males

@ married publish 0.157 more log (articles); or 1.17 x unmarried (17%
iIncrease)

@ each additional young child decreases this by 0.185; or 0.831 x articles
(16.9% decrease)

@ each mentor pub multiplies student pub by 1.026, a 2.6% increase
26



Effect plots

As usual, we can understand the fitted model from predicted values for the
model effects:

library (effects);

1.8
1.8
1.7 1
1.8

1.8

Mumber of articles

1.4 1

1.8
1.7 7
1.6 1
1.5 1

1.4 H

Mumber of articles

female

married

1.8
1.7
1.8
1.5

MNumber of articles

Mumber of articles
.

1.4

1015 20 25 30 3.5 40 45 50

phdprestige

0 10 20 30 40 50 60 TO

mentor

Mumber of articles

plot (allEffects (phd.pois))

1.8
1.8
1.4
1.2
1.0

I*I*I

o0 05 10 15 20 25 30
kid5

But note that this just
displays the fitted model

These are better visual summaries for a model than a table of coefficients.
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Model diagnostics




Model diaghostics

Diagnostic methods for count data GLMs are similar to those
used for classical linear models

* Test for presence of interactions
= Fit model(s) with some or all two-way interactions

°* Non-linear effects of quantitative predictors”
= Component-plus-residual plots— car::crPlot() is useful here

* Qutliers? Influential observations?
= car::influencePlot() is your friend

* For count data models we should also check for
overdispersion
= Similar to homogeneity of variance checks in Im()

29



Checking for interactions

As a quick check for interactions, fit a model with all two-way terms, .~ ."2

> phd.poisl <- update (phd.pois, . ~ ."2)
> Anova (phd.poisl)
Analysis of Deviance Table (Type II tests)

Response: articles
LR Chisqg Df Pr (>Chisq)

female 14.5 1 0.00014 **x
married 6.2 1 0.01277 *
kid5 19.5 1 9.8e—-06 ***
phdprestige 1.0 1 0.32655
mentor 128.1 1 < 2e=lG W
female:married 0.3 1 0.60995
female:kid5 0.1 1 0.72929
female:phdprestige 0.2 1 0.63574
female:mentor 0.0 1 0.91260
married:kid5 0
married:phdprestige 1.7 1 0.19153
married:mentor 1.2 1 0.28203
kid5:phdprestige 0.2 1 0.68523
kid5:mentor 2.8 1 0.09290
phdprestige:mentor 3.8 1 0.05094

Signif. codes: 0 ‘***r (0,001 ‘**’ (0.01 ‘*’ 0.05 '.” 0.1 Y"1



Compare models

The all main effects and all two-way models are nested, so we can compare
them with anova()

> anova (phd.pois, phd.poisl, test="Chisqg")
Analysis of Deviance Table

Model 1: articles ~ female + married + kid5 + phdprestige + mentor

Model 2: articles ~ female + married + kid5 + phdprestige + mentor +

female:married +
female:kid5 + female:phdprestige + female:mentor + married:kid5 +
married:phdprestige + married:mentor + kidb:phdprestige +
kid5:mentor + phdprestige:mentor

Resid. Df Resid. Dev Df Deviance Pr (>Chi)
1 909 1634
2 900 1618 9 15.2 0.086

Signif. codes: 0 ‘***r (0,001 ‘**’ 0.01 > 0.05 ‘. 0.1 Y " 1

— No evidence that the two-way terms result in a significantly better model
— A more principled analysis would consider which interactions might be interesting
/ important
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Compare models

We can also compare using AIC/BIC with vedExtra: :LRstats ()

> LRstats (phd.pois, phd.poisl)
Likelihood summary table:

ATIC BIC LR Chisg Df Pr (>Chisq)
phd.pois 3313 3342 1634 909 <2e-16 **x*
phd.poisl 3316 3388 1618 900 <2e-16 **x*

Signif. codes: O ‘***’ (0.001 ‘**’ 0.01 ‘** 0.05 . 0.1 Y " 1

 There seems to be no reason to include interactions in this model
e All these interactions increase AIC & BIC
*  We might want to revisit this, after examining other models for the basic count
distribution (quasi-poisson, negative-binomial)
* We might want to consider some specific interaction(s) that seem substantively
interesting or important to test.
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Basic model plots

Only two of the standard model plots are informative for count data models

plot (phd.pois, which=c(1,5))

Residuals vs Fitted Residuals vs Leverage
o \\ \
o138 9140 o 0 —‘Qmm‘\
<+ - 0915 . .
T © - )
wn -
0 0 ik
g s ¥ 7 -{05
i) 9
wn 4y] o —
g o- &
T o
o n
| AN
|
T - © « _| - Cooksdistance %205
| | | | | S | | 1 |
00 05 10 15 20 0.00 005 010 0145 0.20

Predicted values Leverage



Nonlinearity diagnostics

°* Nonlinear relations are difficult to assess in marginal plots,
because they don’t control (or adjust) for other predictors

°* Component-plus-residual plots (also called: partial residual
plots) can show nonlinear relations for numeric predictors
= These graph the value of 5, xi+ residual, vs. the predictor x

" |n this plot, the slope of the points is the coefficient ,[?i in the full
model

" Theresidualis y; — ¥; in the full model

°* A non-parametric (e.g., loess()) smooth facilitates detecting
nonlinearity

34



Nonlinearity diagnostics: crPlot()

Is the relation between article published by the student and by the mentor
adequately represented as linear?

crPlot (phd.pois, "mentor", pch=1l6, 1lwd=4, id = list(n=2))

011
*913 The smoothed curve doesn’t

© 7 differ much from the fitted
. line

A couple of points stand out:
328, 803,911, 913

Component+Residual(articles)

0 20 40 60 80

mentor publications 35



Residuals contain all the information about how a model doesn’t fit, and
maybe why

For GLMs, there are several types, based on the Pearson and deviance
goodness-of-fit statistics

@ the Pearson residual is the case-wise contribution to Pearson \?

@ the deviance residual is the signed square root of the contribution to the

deviance G?
rP = sign(y; — i)/ d;

These are raw residuals, on the scale of the counts themselves

36



@ Both of these have standardized forms that correct for conditional
variance and leverage, and have approx. N (0, 1) distributions.

P
~ I
'rr'P _ — i
Vol —h)
D rD

.":; — — j
Vo — h)

@ The most useful is the studentized residual (or deletion residual),

rstudent () in R. This estimates the standardized residual resulting
from omitting each observation in turn. An approximation is:

7S = sign(y; — i)y /(1 = h)(FP)2 + hi(FP)? .

Don’t worry about the formulas, but do know the difference among raw,
standardized and studentized residuals
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Studentized Residuals

Outliers, leverage & influence

influencePlot(phd.pois, id = list(n=2))

803
&
| | |
0.00 0.05 0.10 015 0.20
Hat-Values

Influence (CookD) =
Leverage (Hat) x |Residual |

Several cases (913-915) stand
out with large + residuals

One observation (328) has a
large leverage

Why are they unusual? Do they
affect conclusions?

Examine data & decide what to
do

38



Who is influential & why?

At the very least, you should examine these flagged observations in the data

> PhdPubs[c (328, 803, 913:915),]
articles female married kid5 phdprestige mentor

328 1 0 1 1 2 77
803 4 0 5 06
913 12 0 1 1 2 5
914 16 0 1 0 2 21
915 19 0 1 0 2 42

case 328: Mentor published 77 papers! Student, only 1
803: High prestige school, mentor published 66; published a bit less than predicted
913-915: Wow! all published >> than predicted

39



Outlier test

@ A formal test for outliers can be based on the studentized residuals,
rstudent (model), using the standard normal distribution for p-values

@ A Bonferroni correction should be applied, because interest focuses on
the largest n absolute residuals.

For this Poisson model, 4 observations are flagged as large + residuals

> outlierTest (phd.pois, cutoff = 0.001)
rstudent unadjusted p-value Bonferroni p

914 5.54 2.99e-08 2.73e-05
913 5.38 7.30e-08 6.74e-05
911 5.21 1.92e-07 1.75e-04
915 5.15 2.00e-07 2.38e-04
What to do?

* Delete them & refit?
* Keep them, but report as unusual?
* Fit a better model, hope these will go away?

40
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Overdispersion

@ The Poisson model for counts assumes V(p;) = p;, 1.e., the dispersion
parameter ¢ = 1

@ But often, the counts exhibit greater variance than the Poisson
distribution allows, V(i) > pjor ¢ > 1
e The observations (counts) may not be independent (clustering)

e The probability of an “event” may not be constant
e There may be unmeasured influences, not accounted for in the model

o These effects are sometimes called “unmodeled heterogeneity”

@ The consequences are:
e Standard errors of the coefficients, s-;e(_;?}) are optimistically small
e Wald tests, z; = 3 /se(3;), are too large, and thus overly liberal.
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Testing overdispersion

* Statistical tests for overdispersion test H,: Var(y) =
vs. the alternative

Hi: Var(y) = u+ ¢ x f(u)
°* Implemented in AER: :dispersiontest ()

= |f significant, overdispersion should not be ignored

" You can try fitting a more general model
° Quasi-poisson
* Negative-binomial
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Quasi-poisson models

* The quasi-poisson model allows the dispersion, ¢, to
be a free parameter, estimates with other
coefficients

°* The conditional variance is allowed to be a multiple
of the mean

Var(y; | mi) = o1
* This model is fit with glm() using family=quasipoisson
= The estimated coefficients 8 are unchanged

" The standard errors are multiplied by ¢
" Peace, order & good government is restored!
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Quasi-poisson models

* Asimple estimate of the dispersion parameter is the residual
deviance divided by degrees of freedom ¢ =D(y, u ) / df

* A Pearson ¥? statistic has better statistical properties & is

more commonly used
- \2

g XE' _Zn (Vi — i)

) — -
Hi

= 5= /(n—p)

i=1

For the PhdPubs data, these estimates are quite similar: about 80%
overdispersion

> with (phd.pois, deviance/df.residual)
[1] 1.8

> sum(residuals (phd.pois, type = "pearson")”"2)/phd.pois$df.residual
[1] 1.83
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Fitting the quasi-poisson model

You can fit the quasi-poisson model using gim()

> phd.gpois <- glm(articles ~ ., data = PhdPubs, family = quasipoisson)

The estimate of the dispersion parameter is calculated by the summary() method. You
can get it as follows:

> (phi <- summary (phd.gpois) Sdispersion)
[1] 1.83

This is much better than variance/mean ratio of 2.91 calculated for the marginal
distribution ignoring the predictors.
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Coefficients unchanged; std. errors multiplied by ¢'/2

> summary (phd.gpois)

Call:
glm(formula

articles ~

Deviance Residuals:

Min 10 Median
-3.488 -1.538 -0.365
Coefficients:

Estimate Std.
(Intercept) 0.26562 0
femalel -0.22442 0
marriedl 0.15732 0
kid5 -0.18491 0
phdprestige 0.02538 0
mentor 0.02523 0
Signif. codes: 0 Y*x**’' (

(Dispersion parameter for

1817.4
1633.6

Null deviance:
Residual deviance:
ATC: NA

v 1.83 = 1.35.

., family = quasipoisson, data = PhdPubs)
30 Max
0.577 5.483

Error t wvalue Pr(>|t])
Consequently, t

.13478 1.97 0.04906 *
.07384  -3.04 0.00244 ** stats are smaller
.08287 1.90 0.05795

.05427 -3.41 0.00069 ***

.03419 0.74 0.45815

.00275 9.19 < 2e-16 **x

.001 “**r Q.01 ‘*’/ 0.05 ‘.’ 0.1 ‘' 1

quasipoisson family taken to be 1.83)

on 914
on 909

degrees of freedom
degrees of freedom

a4/



The negative-binomial model

@ The negative-binomial model is a different generalization of the Poisson
that allows for over-dispersion

@ Mathematically, it allows the mean .| X; to vary across observations as a
gamma distribution with a shape parameter 6.

@ The variance function, V(y;) = p; + (12 /6, allows the variance of y to
iIncrease more rapidly than the mean.

@ Another parameterization uses oo = 1/¢
V(yi) = pi + 4 /0 = pi + apif

@ As o — 0, V(y;) — n1j and the negative-binomial converges to the
Poisson.
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Probability

The negative-binomial model
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Fitting the negative-binomial

@ For fixed A, the negative-binomial is another special case of the GLM
@ This is handled in the MASS package, with

family=negative.binomial (theta)
@ But most often, ¢ is unknown, and must be estimated from the data

@ Thisis implemented in glm.nb () in the MASS package.

> library (MASS)

> unlist (summary (phd.nbin) [c ("theta", "SE.theta")])
theta SE.theta
2.267 0.272

Equivalently: a=1/6 = 0.44
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Visualizing goodness-of-fit

The countreg package extends rootogram() to work with fitted models:

countreg: :rootogram(phd.pois, main="PhDPubs: Poisson")
countreg::rootogram(phd.nbin, main="PhDPubs: Negative-Binomial")

PhDPubs: Poisson PhDPubs: Negative-Binomial
T Pl w0 T Feary
— 7] ol — B
— [
g : 3 N
2 4 e 5 o -
3 . S -
g "3 T
& uw — H‘“': LII_:'_ H‘"‘-\._
£ "‘H.H £ w e
d [ —— d
o ml—:ﬁ._:l .
= — — —
I T T T 1 I T T T T T 1
] 2 4 G g ] 2 4 5] B 10 12
articles articles

The Poisson model shows a systematic, wave-like pattern with excess zeros, too few
observed frequencies for counts of 1--3.
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Comparing models: What difference does it make?

The NB is certainly a better fit than the Poisson; the QP cannot be distinguished by
standard tests

> LRstats (phd.pois, phd.gpois, phd.nbin)
Likelihood summary table:
AIC BIC LR Chisg Df Pr(>Chisq)

phd.pois 3313 3342 1634 909 <2e-16 **x*
phd.gpois 909
phd.nbin 3135 3169 1004 909 0.015 =

Signif. codes: 0 ‘***r (0,001 ‘**’ 0.01 ** 0.05 . 0.1 Y " 1

We can also compare coefficients and their standard errors for these models

pois gpois nbin pois gpois nbin
(Intercept) 0.206 0.2060 0.213 (Intercept) 0.0996 0.1348 0.1327
femalel -0.224 -0.224 -0.216 femalel 0.0546 0.0738 0.0726
marriedl 0.157 0.157 0.153 marriedl 0.0613 0.0829 0.0819
kid5 -0.185 -0.185 -0.176 kid5 0.0401 0.0543 0.0528
phdprestige 0.025 0.025 0.029 phdprestige 0.0253 0.0342 0.0343
mentor 0.025 0.025 0.029 mentor 0.0020 0.0027 0.0032
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Visualizing the mean-variance relation

One way to see the difference among models is to plot the variance vs. mean

for grouped values of the fitted linear predictor.
@ The smoothed (loess)

curve gives the empirical
mean—variance
relationship

@ Also plot the theoretical
mean—variance from
different models

@ For PhdPubs, the data is
most similar to the
negative-binomial

e o e ** @ The models differ most for

e meoTaness those with > 3 articles

Varnance
&
]

| call this a “model sensitivity plot” — how much effect do different assumptions
make?
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What have we learned?

A summary to this point should use the result of the negative-binomial model

> Imtest::coeftest (phd.nbin)
z test of coefficients:
Estimate Std. Error z value Pr(>|z])

(Intercept) 0.21295 0.13274 1.60 0.10866
femalel -0.21625 0.07259 -2.98 0.00289 =*x*
marriedl 0.15279 0.08194 1.86 0.06224
kidb -0.17634 0.05279 -3.34 0.00084 **~*
phdprestige 0.02934 0.03427 0.86 0.39192
mentor 0.02868 0.00324 8.86 < 2e-1l6 ***

For interpretation, examine the coefficients, 3, eP and % change

> round (cbind(beta = coef (phd.nbin),
expbeta = exp (coef (phd.nbin)),

pct = 100 * (exp(coef (phd.nbin)) - 1)), 3)
beta expbeta pct

(Intercept) 0.213 1.237 23.73

femalel -0.216 0.806 -19.45

marriedl 0.153 1.165 16.51

kid5 -0.176 0.838 -16.17

phdprestige 0.029 1.030 2.98

mentor 0.029 1.029 2.91
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What have we learned?

The number of articles published by PhD candidates:

* Most strongly predicted by mentor pubs, but with a modest effect. On average,
each mentor pub increases PhD articles by 2.9%

° Next, increasing young children (kids5) results in fewer publications. On average,
each additional kid reduces PhD articles by 16%

* Being married is marginally NS, but intriguing. Our estimate shows married
candidates publish 16.5% more articles than non-married.

* Perhaps surprisingly, the prestige of the PhD institution has no significant effect in
this purely main-effect model. Yet, a unit change in phdprestige is estimated as a
3% increase in PhD articles

* Yet, we still have doubts:

= Several cases (328, 913-915) appeared unusual in diagnostic plots. Should we refit w/o
them to see if conclusions change?

" The NB model might not be the best way to account for the zero counts — students who
never published

" |sthere a better way?
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Excess zeros
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Excess zero counts

@ A common problem in count data models is that many sets of data have
more observed zero counts than the (quasi) Poisson or NB models can
handle.

@ In the PhdPubs data, 275 of 915 (30%) candidates published zilch, bupkis
@ The expected count of 0 articles in the Poisson model is only 191 (21%)

@ Maybe there are two types of students giving zero counts:

e Those who never intend to publish (non-academic career path?)
e The rest, who do intend to publish, but have not yet done so
o This suggests the idea of zero inflation

@ An alternative idea is that there is some hurdle to overcome before
attaining a positive count, e.g., external pressure from the mentor.

Beyond simply identifying this as a problem of lack-of-fit, understanding the
reasons for excess zero counts can contribute to a more complete explanation
of the phenomenon of interest.
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Models for excess zeros

Two types of models, with different mechanisms for zero counts

@ Zero-inflated models: The responses with y; = 0 arise from a mixture of

structural, always 0 values, with Pr(y; = 0) = 7; and the rest, which are
random Os, with Pr(y; =0) =1 —m;

e hurdle models: One process determines whether y; = 0 with

Pr(y; = 0) = m;. A second process determines the distribution of values
of positive counts, Pr(y; |y > 0)

Zero-inflated Hurdle
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Zero-inflated models

The zero-inflated Poisson (ZIP) model has two components:

@ A logistic regression model for membership in the unobserved (latent)
class of those for whom y; is necessarily zero

. 1
logit(7;) = Z' v = Yo + V121 + V2Zi2 + - -+ + VqZiq -

@ A Poisson model for the other class (e.g., “publishers”), for whom y; may
be 0 or positive.

log, p(yi| Xi) = x,-T_;_'i = Bo + [B1Xin + BaXig + -+ - + BgXip -

In application, the same predictors can be (and often are) used in both
models (x = z). But not necessarily!
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Zero-inflated models: ZIP & ZINB

In the ZIP model, the probabilities of observing counts of y; = 0and y; > 0
are:

Prlyi=0|x.,2) = m x(1—m)e
!_.]"r.fe_.u'.f
PI’(}{;|X.Z) = (1—?1’;)>< [hT] yi= 0.
i

The conditional expectation and variance of y; then are:

Ei) = (1 —mi)p
V(yj) — (1 —T-T;) ;1,‘(1 —I—;f.;?ﬂ‘] .

When 7; > 0, the mean of y is always less than y;; the variance of y is greater
than its mean by a dispersion factor of (1 + pjm;).

The model for the count variable could also be negative-binomial, giving a
zero-inflated negative-binomial (ZINB) model using NBin(;:, ¢)
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Exploring zero-inflated data

A little insight can be gained by generating random data from Poisson & zero-inflated
analog. The example uses VGAM::rzipois()

Pois(u=3) = ZIP(p=3, =0)

VS. ZIP(u=3, n=.3)

> set.seed(1234)
> datal <- VGAM::rzipois (200, 3, 0)
> data?2 <- VGAM::rzipois (200, 3, .3)

The tables of counts show far more zeros in data2

> table (datal)
datal

o 1 2 3 4 5 o 7 8 9
10 31 46 54 24 20
> table (data2?)
data?

o 1 2 3 4 5 6 7 9
62 26 33 31 22 9 8 8 1

~J
w
i
—
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Exploring zero-inflated data

Bar plots of the counts:
Z| Poisson(3, = .3)

FPoisson(3)
g -
E _
E -
2 mean = 2,92
var = 3.08 g 1 mean = 2.15
> ey var =4.25
C 3 c
k] @
3 =3 ﬂ -
8 o
£ = s
H —
=
2 —‘ o
= = | = o - [ —
Count Count

The 30% extra zeros decrease the mean and inflate the variance
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Hurdle models

The Hurdle model has also has two components:
@ A logistic regression model, for the probability that y; =0 vs. y; > 0

Pr(y; = 0)
Pr(y; > 0)

- T
logit [ = Z; Y = Yo T+ V1Zit + Yedi2 + -+ Vqliq -

@ A model for the positive counts, taken as a left-truncated Poisson or
negative-binomial, excluding the zero counts

@ Comparing the ZIP and Hurdle models:

o In ZIP models, the first (latent) process generates extra zeros (with
probability ;).

e In Hurdle models, y; = 0 and y; > 0 are fully observed. The first process
generates all the zeros.
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Fitting ZIP & Hurdle models

In R, these models can be fit using the pscl and countreg packages.

countreg is more mature, but is only available on R-Forge, not on CRAN. Use:

install.packages ("countreg", repos="http://R-Forge.R-project.org")

The functions have the following arguments:

zeroinfl (formula, data, subset, na.action, weights, offset,

dist = c("poisson", "negbin", "geometric", "binomial"),
.)
1 O 11a, ta, subset, na.action, wei s, O ,
hurdle (formul da ubset a.action, weight ffset
dist = c("poisson", "negbin", "geometric", "binomial"),
. )

The formula, vy = x1 + x2 + ... usesthe same predictors for both
models.

Usingy =~ x1 + x2 + ...| z1 + z2 + ... allows separate predictors
for the 0 submodel.
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Visualizing zero counts

It is often useful to plot the data for the binary distinction between y,=0vs. y,>0as in
logistic regression models.

plot (factor (articles==0) ~ mentor, data=PhdPubs,
ylevels=1:2, ylab="Zero articles",
breaks=quantile (mentor, probs=seq(0,1,.2)))

As expected, zero counts
- 2 decrease with mentor
pubs

FALSE

NB: This gives a spineplot

Zero articles

TRUE

0 2 5 8 14 [

mentor 65



Fitting models

To illustrate, | fit all four models, the combinations of (ZI, hurdle) x (poisson, nbin) to
the phdpubs data.

For simplicity, | use all predictors for both the zero model and the non-zero model.

phd.zip <-
phd.znb <-

phd.hp <-
phd.hnb <-

zeroinfl (articles ~ ., data=PhdPubs, dist="poisson")
zeroinfl (articles ~ ., data=PhdPubs, dist="negbin")
hurdle (articles ~ ., data=PhdPubs, dist="poisson")
hurdle (articles ~ ., data=PhdPubs, dist="negbin")
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Comparing models

Compare the models, sorting by BIC

> LRstats (phd.pois, phd.nbin, phd.zip, phd.znb, phd.hp, phd.hnb,
sortby="BIC")
Likelihood summary table:
AIC BIC LR Chisg Df Pr (>Chisq)

phd.pois 3313.3 3342.3 3301.3 909 < 2.2e-16 ***
phd.hp 3234.5 3292.4 3210.5 903 < 2.2e-16 **~*
phd.zip 3233.5 3291.3 3209.5 903 < 2.2e-16 **~*
phd.hnb 3130.9 3193.5 3104.9 902 < 2.2e-16 **~*
phd.znb 3125.8 3188.4 3099.8 902 < 2.2e-16 ***
phd.nbin 3135.4 3169.1 3121.4 909 < 2.2e-16 ***

Signif. codes: 0 ‘***r (0,001 ‘**’ 0.01 > 0.05 ‘. 0.1 Y " 1

The standard negative binomial model looks best by BIC.
Why do you think this is? (Hint: look at the residual df)
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Nevertheless, it is useful to examine the coefficients in the ZIP model

> Imtest::coeftest (phd.zip)

t test of coefficients:

Estimate Std. Error t wvalue Pr(>|t]) —
count (Intercept) 0.59918 0.11861 5.05 5.3e-07 **x*
count femalel -0.20879 0.06353 -3.29 0.0011 =*~*
count marriedl 0.10623 0.07097 1.50 0.1348 ~— counts >0
count kidb -0.14271 0.04744 -3.01 0.0027 **
count phdprestige 0.00700 0.02981 0.23 0.8145
count mentor 0.01785 0.00233 7.65 5.3e-14 *** —
zero (Intercept) -0.56332 0.49405 -1.14 0.2545 ]
zero femalel 0.10816 0.28173 0.38 0.7011
zero marriedl -0.35558 0.31796 -1.12 0.2637 = counts = 0
zero kidb 0.21974 0.19658 1.12 0.2639
zero phdprestige -0.00537 0.14118 -0.04 0.9697
zero _mentor -0.13313 0.04643 -2.87 0.0042 ** —_

Signif. codes: 0 ‘***r (0,001 ‘**’ (0.01 ‘*’ 0.05 '.” 0.1 Y"1

Only mentor is significant in the ZIP model, simplifying interpretation.
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Let’s refit the ZIP and ZNB models using only mentoxr for the zero models

phd.zipl <- zeroinfl (articles ~ .| mentor, data=PhdPubs, dist="poisson")
phd.znbl <- zeroinfl (articles ~ .| mentor, data=PhdPubs, dist="negbin")

Compare models again

> LRstats (phd.pois, phd.nbin, phd.zip, phd.znb, phd.hp, phd.hnb,
+ phd.zipl, phd.znbl, sortby="BIC")
Likelihood summary table:

AIC BIC LR Chisg Df Pr(>Chisq)

phd.pois 3313 3342 3301 909 <2e-16 ***
phd.hp 3235 3292 3211 903 <2e-16 ***
phd.zip 3234 3291 3210 903 <2e-16 ***
phd.zipl 3227 3266 3211 907 <2e-16 ***
phd.hnb 3131 3194 3105 902 <2e-16 ***
phd.znb 3126 3188 3100 902 <2e-16 ***
phd.nbin 3135 3169 3121 909 <2e-16 ***
phd.znbl 3124 3168 3106 906 <2e-1l6 ***

Signif. codes: 0 ‘***r (0,001 ‘**’ 0.01 ** 0.05 ‘. 0.1 Y " 1

Now, the phd. znbl model looks best by BIC. Let’s stick with this.



Model interpretation: Coefficients

lgnoring the NS coefficients in the revised ZNB model (phd. znb1l):

> coef (phd.znbl) [c(1,2,4,6,7,8)]

count (Intercept) count femalel count kidb count mentor
0.3572 -0.2116 -0.1675 0.0241
zero_ (Intercept) zero _mentor
-0.81069 -0.6080

@ Count model:

log(articles) = 0.357 — 0.21 female — 0.17 kids5 + 0.024 mentor

@ Zero model:

logit(articles = 0) = —0.817 — 0.608 mentor

Can you describe these in words?
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Model interpretation: Coefficients

Often easier to interpret exp(B)

> exp (coef (phd.znbl) [c(1,2,4,6,7,8)])

count (Intercept) count femalel count kidb count mentor
1.429 0.809 0.846 1.024
zero_ (Intercept) zero _mentor
0.442 0.544

Female: Women publish .21 fewer log articles, .81 times that of men (20% decrease)
Kids5: Each additional kid<5 — .17 fewer log articles, a 15% decrease
Mentor: Each additional mentor article — .024 more PhD log pubs (2.4% increase)

Count model: Each additional mentor article decreases log odds PhDpubs = 0 by
0.608, a 45% decrease

Get your mentor to publish!!
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Model interpretation: Effect plots

@ The effects package cannot yet handle zero-inflated or hurdle models.

@ But the fitted values don't differ very much among these models
@ Here, | use the phd.nbin model, and just show the effects for the

important terms

plot (allEffects (phd.nbin) [c(1,3,5)], rows=1l, cols=3)

female effect plot kid5 effect plot mentor effect plot
] ] ] ] ] ] ] ] ] ] ] ] ] ]
20 B
‘19 n B ‘]B ] - 15 ] -
1.8 n B 16 n B .H] _ -
g ' [ g 14 - g
- 16 B = © . =
© g 127 - g
m ‘]5 — = L} m
14 - - 107 i
P e 06 m  mm_ ma u
0 1 000510152025 30 0 20 40 60 &80

female kid5 mentar
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The ZIP sub-model for the zero counts (“did not publish”) can also be
interpreted visually

@ As an approximation, fit a separate logistic model for articles==
@ The effect plot for that gives an interpretation of the zero model.

phd.zero <- glm((articles==0) ~ mentor, data=PhdPubs, family=binomial)
plot (allEffects (phd.zero), main="Mentor effect on not publishing")

Mentor effect on not publishing

! ! !
05 B
04 B
0.3 -

0.2+ B

0.1 7 B

(articles == 0)

T TR T TR N | |
0 20 40 60 a0
mentor 73




What have we learned?

@ The simple Poisson regression model fits very badly

e Standard errors do not reflect overdispersion
e Inference about model effects is compromised by overly liberal tests

@ The quasi-poisson model corrects for overdispersion.
o But doesn't account for excess Os

@ The negative-binomial model provides valid tests and fits the 0 counts
well.

e But it doesn't provide any insight into why there are so many 0Os

@ The ZIP and ZNB models fit well, and account for the Os.

e But they lose here on BIC (and AlC) measures, because they have 2 x the
number of parameters.
e For simplicity, | have slighted the analogous hurdle models

74



What have we learned?

@ The revised ZNB model (phd. znb1), with only mentor predicting 0s,
wins on parsimony, and has a simple interpretation.
e The log odds that a student does not publish decrease by 0.61 for every
article published by the mentor
e Each mentor pub increases student publications by about 2.5%
e = Encourage or help your supervisor to publish!
@ (Or, choose a high publishing one.)

@ For this data set, the main substantive interpretation and predicted effects
are similar across models. But details matter!

@ In data sets where there are substantive reasons for excess 0s, the ZI|
and hurdle models provide different explanations.

o ltis not always just a matter of model fit!
o Hurdle models make the distinction between 0 and > 0 more explicit
o In Zl models, the interpretation of the mean count is clearer.
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What have we forgotten?

“All models are wrong, but some are useful” --- GEP Box
* Model building and model criticism go hand in hand

* But they don’t form a linear series of steps you can put into a
flow chart

Start: Constant term only, ho
variable terms yet

Sufficient? o

No
l Yes J Delete insignificant —*

variable terms ]

‘- Model selected; done. ‘

Stage Il : test erms added }—»
Cross-product terms

Cross-product te
@ added
Yes

Stage lll : test Higher order

- = -
Univariate 2", 3@, 4t grder terms Yes terms added
No

Model & Re-test All Terms

Re-f;

@esslw Model Enhancemeng
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What have we forgotten?

°* Sometimes, you have to go back and revisit decisions made
earlier:

Fit & Re-think — Re-fit — Re-interpret

{Inference errors. } [ Errcrs due to data misinberpretation }

\i

Understanding

\,

Model
Knowledge processing

.
¥
#
/
L

[ Data and empirical model error }

"
LY
A
{ Data and madel prodessing ermor §

77



What | missed

* Inthe initial model, phdprestige was NS. | decided to keep it

* In the check for two-way interactions, the interaction
phdprestige:mentor was borderline (p = 0.051)
= | did a global test for all interactions together
= This was NS (p = 0.08), so | decided to dismiss them all

= (I wanted to keep he model simple, to go on to other topics:
overdispersion, models for excess zeros)
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Back to square TWO

* A question in a former class made me reconsider the phdprestige:mentor
interaction

° Perhaps, the effect of mentor varied with phdprestige?

Try this, starting with the negative-binomial, phd.nbin (update () is
your friend)

> phd.nbin?2 <- update(phd.nbin, . ~ . + phdprestige:mentor)
> Anova (phd.nbin?2)
Analysis of Deviance Table (Type II tests)

Response: articles
LR Chisg Df Pr (>Chisq)

female 9.1 1 0.0026 **
married 3.1 0.0762
kid5 10.7 1 0.0011 =~
phdprestige 0.7 1 0.3921
mentor 72.8 1 <2e-16 **x*
phdprestige:mentor 5.6 1 0.0179 *

Signif. codes: 0 ‘***r (0,001 ‘**’ 0.01 ** 0.05 ‘. 0.1 Y " 1
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Visualize the interaction

articles

phd.effnb2 <- allEffects(phd.nbin2)
plot(phd.effnb2[4], x.var="mentor", multiline=TRUE, ci.style="bands", ...)

phdprestige*mentor effect plot
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0 20 40
mentor

60

T
g0

@ An effect plot for
phdprestige+mentor shows
the average over other predictors

@ This plot, with mentor on the
X-axis shows that the slope for
mentor increases with higher
prestige of the student’s university
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articles

Visualize the interaction— The other way

phd.effnb2 <- allEffects(phd.nbin2)
plot(phd.effnb2[4], multiline=TRUE, ci.style="bands", ...)

phdprestige*mentor effect plot
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phdprestige

@ This plot, with phdprestige on
the X-axis shows that the slopes
change sign depending on the
value of mentor.

@ |t explains why the main effect of
phdprestige is near 0.

@ The widths of the confidence
bands indicate model
uncertainty— they get wider as
mentor pubs increase, and
phdprestige differs from
average.
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Back to square ONE

Aren’t we done yet?

IH

“All data are wrong, but some are usefu
TAS, 2017

°* A nagging doubt: what is the coding for phdprestige?

= Email from Scott Long: “the higher the number, the more prestigious
the program”

— Sitsofe Tsagbey et al.

= “PS: The data | used did not categorize the continuous phd scale into
discrete categories”

* Found the original Stata data set:

library (foreign)
PhdPubs2 <-
read.dta ("http://www.stata-press.com/data/1f2/couart2.dta")
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Compare distributions

Histograms with smoothed density estimate of the two versions of phdprestige

They are very different!

2.5

n

2.0

0.51

0.0

PhdPubs dataset

3
phdprestige

1.00 7

=

0.751

0.251

0.00

PhdPubs? dataset

phdprestige




Re-run the analysis with the new data set, PhdPubs2

* This could be called a sensitivity analysis — does the
new data alter conclusions?

°* Q: Are the results of the phd.nbin2 and phd.znb2
models about the same. A: YES!

°* Q: s the interaction of phdprestige:mentor about
the same. A: YES!

°* Q: Does the effect plot look about the same? A: YES!
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What else is there?

The PhdPubs example was rather simple

°* There were only a few predictors

= Model selection methods could be based on simple Anova(),
coeftest(), LRstats()

"= No need for more complex model selection methods or cross-
validation

* Of the quantitative predictors, only mentor & kid5 had
important effects
" The effects of these were sufficiently linear
= No need to try non-linear effects (poly(mentor,2), ns(mentor,2))
°* There turned out to be one important interaction

= |n Psychology, these are called “moderator” effects
" |nterpretation often based on post-hoc tests of simple slopes
" |nterpretation is usually simplified in effect plots
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Other methods: Recursive partitioning

@ Recursive partitioning, or regression trees are often an attractive
alternative to linear models

e Interactions are handled by partitioning the ranges of variables
@ Or, models can be fit to subsets of the data defined by recursive partitioning

AT
{/ Class \}
Lk S Who survived
e
/ ~ o o
o] T 7nd. Crow on the Titanic*
/ T~
/ xh"x,_,--""m\
/ (" Class
y , )
/ 1:5 < D'DT\ |/
N
/"r /’/ e
/ 2nd 1st, Crew
/ v N
Node 2 (n = 706) ; Mode 4 (n = 285) ; Node 5 (n=1210)

02 na 0.8
< 06 o , 06 = 0.6

0.4 0.4 0.4

02 02 . 0.2
s S — £
= p £ 0 0
Male&Adult  Female|Child Male&Adult Female|Child Male&Adult Female|Child

Logistic regression tree fit to the Titanic data with partykit::glmtree()
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Other methods: Recursive partitioning

Could there be a simpler or different model for the PhdPubs data?

library (partykit)
phd.tree <- glmtree(articles ~ mentor| femalet+married+kidb+phdprestige,
data=PhdPubs, family=poisson)

plot (phd.tree)

Hmm?
A kid5:mentor
interaction?

MNode 2 (n = 599) Node 4 (n=195) MNode 5 (n=121)
20 o 20 20

1.7 847 7.7 847 1.7 64.7
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GLMs provide a unified framework for linear models
= Different families, all estimated in the same way
" —link function and associated variance function

For count data, starting from log(p) =X B, u|X ~
Poisson:

= QOverdispersion — quasi-poisson, negative binomial
" Standard tools for assessing model fit

Excess zero counts introduce new ideas & methods
= ZIP model: structural model for the Os
= Hurdle model: random model for Os, 2"4 model for Y>0

In all this, we rely on data & model plots for
understanding
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