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Topics
• Generalized linear models
• GLMs for count data
 Example: PhD publications

• Model diagnostics
 Interactions
 Nonlinearity
 Outliers, leverage & influence

• Overdispersion
 Quasi-poisson models
 Negative binomial models

• Excess zeros
 Zero-inflated models
 Hurdle models
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Count data models: Overview
• Count data models arise when the basic observation is a 

frequency, y = 0, 1, 2, … of some event and we have some 
predictors, x1, x2, … to help explain them.
 Typically, these counts ~ Poisson() → “poisson regression”

• Examples:
 Number of articles published by PhD candidates

• Predictors: Married?, Female?, Kids < 5?, pubs by mentor

 Number of parasites in blood samples of Norwegian cod
• Predictors: Catch area, Year, length of fish

 Female horseshoe crabs: Number of “satellite” males
• Predictors: Female weight, color, spine condition, shell width

• Special circumstances
 Overdispersion: when the variance > mean
 Zero-counts: When excess 0 counts require an extra model
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Generalized linear models
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We have used generalized linear models fit with glm() in two contexts so far

Hmm. Isn’t the problem with frequency data just that of non-constant variance?
Questions:
• Why not just transform y -> log(y) and use standard OLS regression?
• Why should I bother with Poisson anyway? He wasn’t even NORMAL !



Generalized linear models
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Generalized linear models
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GLMs: The light
• No need to consider all those special cases to 

transform y for homogeneity of variance
 EDA approach: ladder of powers, transform to symmetry

7Image from: http://www.unige.ch/ses/sococ/cl//stat/eda/ladder.html

http://www.unige.ch/ses/sococ/cl/stat/eda/ladder.html


GLMs: Families

8Base image from: https://portalacademico.cch.unam.mx/ingles1/people-i-love/family-members

All GLMs are members of a happy 
family

They have different technical names, 
but all share common DNA – The 
Exponential Family includes direct 
descendants, uncles, cousins, …

They all have a  linear predictor, 
η = g(μ) = X β

They differ in their links: how to 
transform from μ → g(μ) = η

They can get back to their roots with 
an inverse transformation,

g-1(η) = μ

Papa normal
Daughter 
BinomialMs. Poisson

Cousin Log-
normal

Inverse 
Gaussian

Uncle 
Gamma

Pet 
GAM

Aunt 
NegBin

https://portalacademico.cch.unam.mx/ingles1/people-i-love/family-members


Link functions for the mean
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• The top section recognizes standard transformations of yi often used with classical
linear models

• The bottom section is for binomial data, where yi represents an observed count in 
ni trials

The link function 
must be invertible
e.g., |μ| is not



Link functions for binomial data
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For binomial data, the 
logit, probit and c-log-log 
all have similar shapes

These take a linear 
predictor on (-∞, +∞)
to the range (0,1) for 
probability

The logit is most widely 
used because of its’ 
simple interpretation as 
log odds



Example: BeetleMortality
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Mortality of adult flour beetle after five hours' exposure to gaseous carbon disulphide.

> data("BeetleMortality", 
package = "glmx")

> BeetleMortality
dose died  n

1 1.6907    6 59
2 1.7242   13 60
3 1.7552   18 62
4 1.7842   28 56
5 1.8113   52 63
6 1.8369   53 59
7 1.8610   61 62
8 1.8839   60 60

links <- c("logit", "probit", "cloglog")
m <- lapply(links, function(type)
glm(cbind(died, n - died) ~ dose, 

data = BeetleMortality, 
family = binomial(link = type)))

names(m) <- links

> t(sapply(m, vcdExtra::LRstats))
AIC  BIC  LR Chisq Df Pr(>Chisq)

logit   41.4 41.6 11.2     6  0.0815    
probit  40.3 40.5 10.1     6  0.12      
cloglog 33.6 33.8 3.45     6  0.751 

The ‘lapply()’ trick: Apply a function w/ 
parameters → a list of fitted models

Then, sapply() LRStats to each model:

In this example, the cloglog link
fits best
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plot(I(died/n) ~ dose, data = BeetleMortality,
ylab = "Proportion died", cex.lab = 1.2, pch = 16)

lines(fitted(m[[1]]) ~ dose, data = BeetleMortality, col = 2, lwd = 2)
lines(fitted(m[[2]]) ~ dose, data = BeetleMortality, col = 3, lwd = 2)
lines(fitted(m[[3]]) ~ dose, data = BeetleMortality, col = 4, lwd = 2)
legend(1.81, 0.4,

title = "Link", legend = links,
col = 2:4,  lty = 1, lwd=2)

Visualize model fits

We can sort of see why the cloglog
link fits best.

But the coefficients in the model do
not have as clear an interpretation as 
log odds in the logit model.

> t(sapply(m, coef))
(Intercept) dose

logit -60.7 34.3
probit -34.9 19.7
cloglog -39.6 22.0

Plot data points

Add fitted lines



Canonical links and variance functions
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• For every distribution family, there is a default, canonical link function
• Each one also specifies the expected relation between the mean and 

variance

Choose a basic family:
• Get a default, canonical link, g(μ)
• Also get a variance function for free!



Variance functions & overdispersion
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What is overdispersion?
Overdispersion often results from failures of assumptions of the 
model
• Supposedly independent observations may be correlated
• The probability of an event may not be constant, or
• It may vary with unmeasured or unmodeled variables

Don’t fear overdispersion – embrace it
• For Poisson (freq) data, parameter estimates are unchanged; 

it affects only the std. errors (& z-tests)
• It tells you something interesting about your data or analysis
• Can lead to better understanding of your model: What did I 

leave out?
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Maximum likelihood estimation
• GLMs are fit by the method of maximum likelihood

 Likelihood () = Pr (data | model), as function of model parameters

• For the Poisson distribution with mean μ, the probability that 
the random variable Y takes the values y = 0, 1, 2, … is

• In the GLM with a log link, the mean, μ, depends on the 
predictors through
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Maximum likelihood estimation
• The log-likelihood function is the probability of the 

data as a function of the parameters, β. It has the 
form (for Poisson)

• Then, find the values of β the maximize log L

17

β

;β)
Unlike OLS, where there is an exact 
solution, MLEs are found by 
iteratively reweighted least squares.

Why log L
- Easier to work with 
- Has the same max value 



Iteratively reweighted least squares
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Goodness of fit
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GLMs for count data
• Typically, these are fit using 

glm(y ~ x1 + x2 + …, family=poisson, data=mydata)

• As in other linear models, the predictors, xi, can be discrete factors, 
quantitative variables, interactions, etc.

• This fixes the dispersion parameter, φ to 1, assuming the count variable y | 
x1, x2, … is Poisson distributed

• It is possible to relax this, and fit a quasi-Poisson model, allowing φ to be 
estimated from the data
 Specify family=quasipoisson. This allows variance to be proportional to the 

mean

 Another possibility is the negative-binomial model, which has
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Example: Publications of PhD candiates
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Example 3.24 in DDAR gives data on the number of publications by PhD candidates in 
biochemistry in the last 3 years of study

> data("PhdPubs", package = "vcdExtra")
> table(PhdPubs$articles)

0   1   2   3   4   5   6   7   8   9  10  11  12  16  19 
275 246 178  84  67  27  17  12   1   2   1   1   2   1   1 

Predictors are:
• gender, marital status
• number of young children
• prestige of the doctoral department
• number of publications by the student’s mentor

Q: Which of these do you think would have strong effects on pubs?



Example: Publications of PhD candidates
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Initially, ignore the predictors
This is equivalent to an intercept-only Poisson model

glm(articles ~ 1, family=poisson, data = PhdPubs)

As a check on the Poisson assumption, calculate the mean and variance

> with(PhdPubs, c(mean=mean(articles), 
var=var(articles), 
ratio=var(articles)/mean(articles)))

mean   var ratio 
1.69  3.71  2.19 

The assumption that mean = variance could be met when we add predictors
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Q: What might some other reasons be?
Think back to assumptions: independent obs; constant probs; unmodelled vars



Fitting the Poisson model
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Fit the model with all main effects; note the ~ . notation for this

> phd.pois <- glm(articles ~ ., data=PhdPubs, family=poisson)
> Anova(phd.pois)
Analysis of Deviance Table (Type II tests)

Response: articles
LR Chisq Df Pr(>Chisq)    

female          17.1  1    3.6e-05 ***
married          6.6  1       0.01 *  
kid5            22.1  1    2.6e-06 ***
phdprestige 1.0  1       0.32    
mentor         126.8  1    < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Only phdprestige is NS; it does no harm to keep it, for now



Interpreting coefficients
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Effect plots
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But note that this just 
displays the fitted model
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Model diagnostics



Model diagnostics
Diagnostic methods for count data GLMs are similar to those 
used for classical linear models
• Test for presence of interactions
 Fit model(s) with some or all two-way interactions

• Non-linear effects of quantitative predictors”
 Component-plus-residual plots– car::crPlot() is useful here

• Outliers? Influential observations?
 car::influencePlot() is your friend

• For count data models we should also check for 
overdispersion
 Similar to homogeneity of variance checks in lm()
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Checking for interactions
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> phd.pois1 <- update(phd.pois, . ~ .^2)
> Anova(phd.pois1)
Analysis of Deviance Table (Type II tests)

Response: articles
LR Chisq Df Pr(>Chisq)    

female                  14.5  1    0.00014 ***
married                  6.2  1    0.01277 *  
kid5                    19.5  1    9.8e-06 ***
phdprestige 1.0  1    0.32655    
mentor                 128.1  1    < 2e-16 ***
female:married 0.3  1    0.60995    
female:kid5              0.1  1    0.72929    
female:phdprestige 0.2  1    0.63574    
female:mentor 0.0  1    0.91260    
married:kid5                  0               
married:phdprestige 1.7  1    0.19153    
married:mentor 1.2  1    0.28203    
kid5:phdprestige         0.2  1    0.68523    
kid5:mentor              2.8  1    0.09290 .  
phdprestige:mentor 3.8  1    0.05094 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

As a quick check for interactions, fit a model with all two-way terms,  . ~ .^2



Compare models
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> anova(phd.pois, phd.pois1, test="Chisq")
Analysis of Deviance Table

Model 1: articles ~ female + married + kid5 + phdprestige + mentor
Model 2: articles ~ female + married + kid5 + phdprestige + mentor + 
female:married + 

female:kid5 + female:phdprestige + female:mentor + married:kid5 + 
married:phdprestige + married:mentor + kid5:phdprestige + 
kid5:mentor + phdprestige:mentor

Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
1       909       1634                       
2       900       1618  9     15.2    0.086 .
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The all main effects and all two-way models are nested, so we can compare 
them with anova()

→ No evidence that the two-way terms result in a significantly better model
→ A more principled analysis would consider which interactions might be interesting 

/ important



Compare models
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> LRstats(phd.pois, phd.pois1)
Likelihood summary table:

AIC  BIC LR Chisq Df Pr(>Chisq)    
phd.pois 3313 3342     1634 909     <2e-16 ***
phd.pois1 3316 3388     1618 900     <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can also compare using AIC/BIC with vcdExtra::LRstats()

• There seems to be no reason to include interactions in this model
• All these interactions increase AIC & BIC

• We might want to revisit this, after examining other models for the basic count 
distribution (quasi-poisson, negative-binomial)

• We might want to consider some specific interaction(s) that seem substantively 
interesting or important to test.



Basic model plots
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Only two of the standard model plots are informative for count data models

plot(phd.pois, which=c(1,5))



Nonlinearity diagnostics
• Nonlinear relations are difficult to assess in marginal plots, 

because they don’t control (or adjust) for other predictors
• Component-plus-residual plots (also called: partial residual 

plots) can show nonlinear relations for numeric predictors
 These graph the value of 𝛽̂𝛽i xi + residuali vs. the predictor xi

 In this plot, the slope of the points is the coefficient 𝛽̂𝛽i in the full 
model

 The residual is 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 in the full model

• A non-parametric (e.g., loess()) smooth facilitates detecting 
nonlinearity
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Nonlinearity diagnostics: crPlot()

35

Is the relation between article published by the student and by the mentor 
adequately represented as linear?
crPlot(phd.pois, "mentor", pch=16, lwd=4, id = list(n=2))

The smoothed curve doesn’t 
differ much from the fitted 
line

A couple of points stand out: 
328, 803, 911, 913



Residuals
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Residuals contain all the information about how a model doesn’t fit, and 
maybe why

For GLMs, there are several types, based on the Pearson and deviance 
goodness-of-fit statistics

These are raw residuals, on the scale of the counts themselves



Residuals
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Don’t worry about the formulas, but do know the difference among raw, 
standardized and studentized residuals



Outliers, leverage & influence
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influencePlot(phd.pois, id = list(n=2))

Influence (CookD) = 
Leverage (Hat) x |Residual|

Several cases (913-915) stand 
out with large + residuals

One observation (328) has a 
large leverage

Why are they unusual? Do they 
affect conclusions?

Examine data & decide what to 
do



Who is influential & why?
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At the very least, you should examine these flagged observations in the data

> PhdPubs[c(328, 803, 913:915),]
articles female married kid5 phdprestige mentor

328        1      0       1    1           2     77
803        4      0       1    2           5     66
913       12      0       1    1           2      5
914       16      0       1    0           2     21
915       19      0       1    0           2     42

case 328: Mentor published 77 papers! Student, only 1
803: High prestige school, mentor published 66; published a bit less than predicted
913-915: Wow! all published >> than predicted



Outlier test
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> outlierTest(phd.pois, cutoff = 0.001)
rstudent unadjusted p-value Bonferroni p

914     5.54           2.99e-08     2.73e-05
913     5.38           7.36e-08     6.74e-05
911     5.21           1.92e-07     1.75e-04
915     5.15           2.60e-07     2.38e-04

For this Poisson model, 4 observations are flagged as large + residuals

What to do?
• Delete them & refit?
• Keep them, but report as unusual?
• Fit a better model, hope these will go away?
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Overdispersion



Overdispersion
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Testing overdispersion
• Statistical tests for overdispersion test H0: Var(y) = μ

vs. the alternative 
H1:  Var(y) = μ + φ × f(μ)

• Implemented in AER::dispersiontest()
 If significant, overdispersion should not be ignored
 You can try fitting a more general model

• Quasi-poisson
• Negative-binomial
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Quasi-poisson models
• The quasi-poisson model allows the dispersion, φ, to 

be a free parameter, estimates with other 
coefficients

• The conditional variance is allowed to be a multiple 
of the mean

Var(yi | ηi) = φ μi

• This model is fit with glm() using family=quasipoisson
 The estimated coefficients �𝛽𝛽 are unchanged
 The standard errors are multiplied by φ½

 Peace, order & good government is restored!
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Quasi-poisson models
• A simple estimate of the dispersion parameter  is the residual 

deviance divided by degrees of freedom φ = D(y, μ ) / df
• A Pearson χ2 statistic has better statistical properties & is 

more commonly used
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For the PhdPubs data, these estimates are quite similar: about 80% 
overdispersion

> with(phd.pois, deviance/df.residual)
[1] 1.8

> sum(residuals(phd.pois, type = "pearson")^2)/phd.pois$df.residual
[1] 1.83



Fitting the quasi-poisson model
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You can fit the quasi-poisson model using glm()

> phd.qpois <- glm(articles ~ ., data = PhdPubs, family = quasipoisson)

The estimate of the dispersion parameter is calculated by the summary() method. You 
can get it as follows:

> (phi <- summary(phd.qpois)$dispersion)
[1] 1.83

This is much better than variance/mean ratio of 2.91 calculated for the marginal 
distribution ignoring the predictors.
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> summary(phd.qpois)

Call:
glm(formula = articles ~ ., family = quasipoisson, data = PhdPubs)

Deviance Residuals: 
Min      1Q  Median      3Q     Max  

-3.488  -1.538  -0.365   0.577   5.483  

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.26562    0.13478    1.97  0.04906 *  
female1     -0.22442    0.07384   -3.04  0.00244 ** 
married1     0.15732    0.08287    1.90  0.05795 .  
kid5        -0.18491    0.05427   -3.41  0.00069 ***
phdprestige 0.02538    0.03419    0.74  0.45815    
mentor       0.02523    0.00275    9.19  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 1.83)

Null deviance: 1817.4  on 914  degrees of freedom
Residual deviance: 1633.6  on 909  degrees of freedom
AIC: NA

Consequently, t
stats are smaller



The negative-binomial model
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The negative-binomial model
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Negative-binomial 
distributions for varying 
p & θ

Overdispersion 
decreases as θ
increases



Fitting the negative-binomial
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> library(MASS)
> unlist(summary(phd.nbin)[c("theta", "SE.theta")])

theta SE.theta
2.267    0.272 

Equivalently: α = 1/θ = 0.44



Visualizing goodness-of-fit
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The countreg package extends rootogram() to work with fitted models:

countreg::rootogram(phd.pois, main="PhDPubs: Poisson")
countreg::rootogram(phd.nbin, main="PhDPubs: Negative-Binomial")

The Poisson model shows a systematic, wave-like pattern with excess zeros, too few 
observed frequencies for counts of 1--3.



Comparing models: What difference does it make?
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The NB is certainly a better fit than the Poisson; the QP cannot be distinguished by 
standard tests

> LRstats(phd.pois, phd.qpois, phd.nbin)
Likelihood summary table:

AIC  BIC LR Chisq Df Pr(>Chisq)    
phd.pois 3313 3342     1634 909     <2e-16 ***
phd.qpois 909               
phd.nbin 3135 3169     1004 909      0.015 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

pois  qpois nbin
(Intercept)  0.266  0.266  0.213
female1     -0.224 -0.224 -0.216
married1     0.157  0.157  0.153
kid5        -0.185 -0.185 -0.176
phdprestige 0.025  0.025  0.029
mentor       0.025  0.025  0.029

pois  qpois nbin
(Intercept) 0.0996 0.1348 0.1327
female1     0.0546 0.0738 0.0726
married1    0.0613 0.0829 0.0819
kid5        0.0401 0.0543 0.0528
phdprestige 0.0253 0.0342 0.0343
mentor      0.0020 0.0027 0.0032

We can also compare coefficients and their standard errors for these models



Visualizing the mean-variance relation
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I call this a “model sensitivity plot” – how much effect do different assumptions 
make?



What have we learned?

54

A summary to this point should use the result of the negative-binomial model

> lmtest::coeftest(phd.nbin)
z test of coefficients:

Estimate Std. Error z value Pr(>|z|)    
(Intercept)  0.21295    0.13274    1.60  0.10866    
female1     -0.21625    0.07259   -2.98  0.00289 ** 
married1     0.15279    0.08194    1.86  0.06224 .  
kid5        -0.17634    0.05279   -3.34  0.00084 ***
phdprestige 0.02934    0.03427    0.86  0.39192    
mentor       0.02868    0.00324    8.86  < 2e-16 ***

For interpretation, examine the coefficients, β, eβ and % change

> round(cbind(beta = coef(phd.nbin),
expbeta = exp(coef(phd.nbin)),
pct = 100 * (exp(coef(phd.nbin)) - 1)), 3)
beta expbeta pct

(Intercept)  0.213   1.237  23.73
female1     -0.216   0.806 -19.45
married1     0.153   1.165  16.51
kid5        -0.176   0.838 -16.17
phdprestige 0.029   1.030   2.98
mentor       0.029   1.029   2.91



What have we learned?
The number of articles published by PhD candidates:
• Most strongly predicted by mentor pubs, but with a modest effect. On average, 

each mentor pub increases PhD articles by 2.9%
• Next, increasing young children (kids5) results in fewer publications. On average, 

each additional kid reduces PhD articles by 16%
• Being married is marginally NS, but intriguing.  Our estimate shows married 

candidates publish 16.5% more articles than non-married.
• Perhaps surprisingly, the prestige of the PhD institution has no significant effect in 

this purely main-effect model. Yet, a unit change in phdprestige is estimated as a 
3% increase in PhD articles

• Yet, we still have doubts:
 Several cases (328, 913-915) appeared unusual in diagnostic plots. Should we refit w/o 

them to see if conclusions change?
 The NB model might not be the best way to account for the zero counts – students who 

never published
 Is there a better way?
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Excess zeros
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0
0

0 0 0



Excess zero counts
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Models for excess zeros
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Two types of models, with different mechanisms for zero counts



Zero-inflated models
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The zero-inflated Poisson (ZIP) model has two components:

In application, the same predictors can be (and often are) used in both 
models (x = z). But not necessarily!



Zero-inflated models: ZIP & ZINB
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Exploring zero-inflated data
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A little insight can be gained by generating random data from Poisson & zero-inflated 
analog. The example uses VGAM::rzipois()
Pois(μ=3) = ZIP(μ=3, π=0)
vs.                ZIP(μ=3, π=.3)

> set.seed(1234)
> data1 <- VGAM::rzipois(200, 3, 0)
> data2 <- VGAM::rzipois(200, 3, .3)

The tables of counts show far more zeros in data2

> table(data1)
data1
0  1  2  3  4  5  6  7  8  9 
10 31 46 54 24 20  7  3  4  1 
> table(data2)
data2
0  1  2  3  4  5  6  7  9 
62 26 33 31 22  9  8  8  1 



Exploring zero-inflated data
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Hurdle models
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The Hurdle model has  also has two components:



Fitting ZIP & Hurdle models
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Visualizing zero counts
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It is often useful to plot the data for the binary distinction between yi = 0 vs. yi > 0 as in 
logistic regression models.

plot(factor(articles==0) ~ mentor, data=PhdPubs,
ylevels=1:2, ylab="Zero articles",
breaks=quantile(mentor, probs=seq(0,1,.2)))

As expected, zero counts 
decrease with mentor 
pubs

NB: This gives a spineplot



Fitting models
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To illustrate, I fit all four models, the combinations of (ZI, hurdle) × (poisson, nbin) to 
the phdpubs data.

For simplicity, I use all predictors for both the zero model and the non-zero model.

phd.zip <- zeroinfl(articles ~ ., data=PhdPubs, dist="poisson")
phd.znb <- zeroinfl(articles ~ ., data=PhdPubs, dist="negbin")

phd.hp <- hurdle(articles ~ ., data=PhdPubs, dist="poisson")
phd.hnb <- hurdle(articles ~ ., data=PhdPubs, dist="negbin")



Comparing models
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Compare the models, sorting by BIC

> LRstats(phd.pois, phd.nbin, phd.zip, phd.znb, phd.hp, phd.hnb, 
sortby="BIC")

Likelihood summary table:
AIC    BIC LR Chisq Df Pr(>Chisq)    

phd.pois 3313.3 3342.3   3301.3 909  < 2.2e-16 ***
phd.hp 3234.5 3292.4   3210.5 903  < 2.2e-16 ***
phd.zip  3233.5 3291.3   3209.5 903  < 2.2e-16 ***
phd.hnb 3130.9 3193.5   3104.9 902  < 2.2e-16 ***
phd.znb 3125.8 3188.4   3099.8 902  < 2.2e-16 ***
phd.nbin 3135.4 3169.1   3121.4 909  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The standard negative binomial model looks best by BIC.
Why do you think this is? (Hint: look at the residual df)
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> lmtest::coeftest(phd.zip)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)    
count_(Intercept)  0.59918    0.11861    5.05  5.3e-07 ***
count_female1     -0.20879    0.06353   -3.29   0.0011 ** 
count_married1     0.10623    0.07097    1.50   0.1348    
count_kid5        -0.14271    0.04744   -3.01   0.0027 ** 
count_phdprestige 0.00700    0.02981    0.23   0.8145    
count_mentor 0.01785    0.00233    7.65  5.3e-14 ***
zero_(Intercept)  -0.56332    0.49405   -1.14   0.2545    
zero_female1       0.10816    0.28173    0.38   0.7011    
zero_married1     -0.35558    0.31796   -1.12   0.2637    
zero_kid5          0.21974    0.19658    1.12   0.2639    
zero_phdprestige -0.00537    0.14118   -0.04   0.9697    
zero_mentor -0.13313    0.04643   -2.87   0.0042 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Nevertheless, it is useful to examine the coefficients in the ZIP model

Only mentor is significant in the ZIP model, simplifying interpretation.

counts > 0

counts = 0
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phd.zip1 <- zeroinfl(articles ~ .| mentor, data=PhdPubs, dist="poisson")
phd.znb1 <- zeroinfl(articles ~ .| mentor, data=PhdPubs, dist="negbin")

Let’s refit the ZIP and ZNB models using only mentor for the zero models

Compare models again

> LRstats(phd.pois, phd.nbin, phd.zip, phd.znb, phd.hp, phd.hnb, 
+         phd.zip1, phd.znb1, sortby="BIC")
Likelihood summary table:

AIC  BIC LR Chisq Df Pr(>Chisq)    
phd.pois 3313 3342     3301 909     <2e-16 ***
phd.hp 3235 3292     3211 903     <2e-16 ***
phd.zip  3234 3291     3210 903     <2e-16 ***
phd.zip1 3227 3266     3211 907     <2e-16 ***
phd.hnb 3131 3194     3105 902     <2e-16 ***
phd.znb 3126 3188     3100 902     <2e-16 ***
phd.nbin 3135 3169     3121 909     <2e-16 ***
phd.znb1 3124 3168     3106 906     <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Now, the phd.znb1 model looks best by BIC. Let’s stick with this.



Model interpretation: Coefficients
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> coef(phd.znb1)[c(1,2,4,6,7,8)]
count_(Intercept)     count_female1        count_kid5      count_mentor

0.3572           -0.2116           -0.1675            0.0241 
zero_(Intercept)       zero_mentor

-0.8169           -0.6080 

Ignoring the NS coefficients in the revised ZNB model (phd.znb1):

Can you describe these in words?



Model interpretation: Coefficients
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> exp(coef(phd.znb1)[c(1,2,4,6,7,8)])
count_(Intercept)     count_female1        count_kid5      count_mentor

1.429             0.809             0.846             1.024 
zero_(Intercept)       zero_mentor

0.442             0.544 

Often easier to interpret exp(β)

Female: Women publish .21 fewer log articles, .81 times that of men (20% decrease)
Kids5: Each additional kid<5 → .17 fewer log articles, a 15% decrease
Mentor: Each additional mentor article → .024 more PhD log pubs (2.4% increase)

Count model: Each additional mentor article decreases log odds PhDpubs = 0 by 
0.608, a 45% decrease

Get your mentor to publish!!



Model interpretation: Effect plots
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What have we learned?
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What have we learned?
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What have we forgotten?
“All models are wrong, but some are useful” --- GEP Box
• Model building and model criticism go hand in hand
• But they don’t form a linear series of steps you can put into a 

flow chart
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What have we forgotten?
• Sometimes, you have to go back and revisit decisions made 

earlier:
Fit → Re-think → Re-fit → Re-interpret
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What I missed
• In the initial model, phdprestige was NS. I decided to keep it
• In the check for two-way interactions, the interaction 

phdprestige:mentor was borderline (p = 0.051)
 I did a global test for all interactions together
 This was NS (p = 0.08), so I decided to dismiss them all
 (I wanted to keep he model simple, to go on to other topics: 

overdispersion, models for excess zeros)
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Back to square TWO
• A question in a former class made me reconsider the phdprestige:mentor

interaction
• Perhaps, the effect of mentor varied with phdprestige?
Try this, starting with the negative-binomial, phd.nbin (update() is 
your friend)
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> phd.nbin2 <- update(phd.nbin, . ~ . + phdprestige:mentor)
> Anova(phd.nbin2)
Analysis of Deviance Table (Type II tests)

Response: articles
LR Chisq Df Pr(>Chisq)    

female                  9.1  1     0.0026 ** 
married                 3.1  1     0.0762 .  
kid5                   10.7  1     0.0011 ** 
phdprestige 0.7  1     0.3921    
mentor                 72.8  1     <2e-16 ***
phdprestige:mentor 5.6  1     0.0179 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Visualize the interaction
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phd.effnb2 <- allEffects(phd.nbin2)
plot(phd.effnb2[4], x.var="mentor", multiline=TRUE, ci.style="bands", ...)



Visualize the interaction– The other way
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phd.effnb2 <- allEffects(phd.nbin2)
plot(phd.effnb2[4], multiline=TRUE, ci.style="bands", ...)



Back to square ONE
Aren’t we done yet?
“All data are wrong, but some are useful” – Sitsofe Tsagbey et al. 
TAS, 2017
• A nagging doubt: what is the coding for phdprestige?
 Email from Scott Long: “the higher the number, the more prestigious 

the program”
 “PS: The data I used did not categorize the continuous phd scale into 

discrete categories”

• Found the original Stata data set:
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library(foreign)
PhdPubs2 <-

read.dta("http://www.stata-press.com/data/lf2/couart2.dta")



Compare distributions
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Histograms with smoothed density estimate of the two versions of phdprestige
They are very different!



What to do?
Re-run the analysis with the new data set, PhdPubs2
• This could be called a sensitivity analysis – does the 

new data alter conclusions?
• Q: Are the results of the phd.nbin2 and phd.znb2 

models about the same. A: YES!
• Q: Is the interaction of phdprestige:mentor about 

the same. A: YES!
• Q: Does the effect plot look about the same? A: YES!

84



What else is there?
The PhdPubs example was rather simple
• There were only a few predictors
 Model selection methods could be based on simple Anova(), 

coeftest(), LRstats()
 No need for more complex model selection methods or cross-

validation
• Of the quantitative predictors, only mentor & kid5 had 

important effects
 The effects of these were sufficiently linear
 No need to try non-linear effects (poly(mentor,2), ns(mentor,2))

• There turned out to be one important interaction
 In Psychology, these are called “moderator” effects
 Interpretation often based on post-hoc tests of simple slopes
 Interpretation is usually simplified in effect plots
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Other methods: Recursive partitioning
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Logistic regression tree fit to the Titanic data with partykit::glmtree()

Who survived 
on the Titanic?



Other methods: Recursive partitioning
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Could there be a simpler or different model for the PhdPubs data?

library(partykit)
phd.tree <- glmtree(articles ~ mentor| female+married+kid5+phdprestige, 

data=PhdPubs, family=poisson)
plot(phd.tree)

Hmm? 
A kid5:mentor 
interaction?



Summary
• GLMs provide a unified framework for linear models
 Different families, all estimated in the same way
 →link function and associated variance function

• For count data, starting from log(μ) = X β, μ|X ~
Poisson:
 Overdispersion → quasi-poisson, negative binomial
 Standard tools for assessing model fit

• Excess zero counts introduce new ideas & methods
 ZIP model: structural model for the 0s
 Hurdle model: random model for 0s, 2nd model for Y>0

• In all this, we rely on data & model plots for 
understanding
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