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Today’s topics

* We’'ve come a long way, but there is more...

* Logit models — general models for log odds
= Two-way tables
" Three-way + tables
® Log odds plots
* Models for generalized odds ratios
® Log odds ratios
® Bivariate response models

@ Familiar case— Binary responses:
o Every loglinear model for a binary response has an equivalent form in terms
of log odds [*logit” models]
e Log odds models have simple interpretations
e Data + model plots give simple descriptions of data and models

@ Extend to two-way (/ x J) and three-way + (/ x J x K;...) tables:
e Log odds as contrasts in log(n)
@ Variety of simple models for log odds (ANOVA-like)

@ Easily incorporate ordinal variables
e Data + model plots give simple descriptions of data and models

@ Generalized log odds ratios capture associations between two focal
variables

@ Simple linear models for LOR
@ Direct visualization (Data + model plots) = more sensitive comparisons

Based on my CARME (2015) presentation, https://www.datavis.ca/papers/CARME2015-2x2.pdf

Logit models — Log odds models

° Inan/x 2 table for variables[A B], where B is a binary response, the logit
model expresses the log odds that B=1 vs. B=2

l//[A = IOg[ﬂj
miZ
= Models pertain to the one-way log odds
* This generalizes to | x J tables, where we consider (J-1) log odds for each

level of A, e.g.,
= Adjacent categories

= m..

w" = log[ J J j=12,...,J-1
My

® |ngeneral,/ xJ— (J-1) log odds contrasts of the B categories for each level of A

= Similar to how polytomous responses treated in logistic regression

= (Can also use comparisons with a baseline category




J responses — J-1 contrasts/logits

Adjacent-category logits
BRI For 4 y? =log(m,)~log(m,,..)
1 -1

1 =l
1 =1l

Reference-level logits
DERRERENIIN For4: y? =log(m,)—log(m, )
1 -1

1 -1

1 L Generalized logit models extend the
advantages of the standard one to a
polytomous response

2-way example: Hospital visits

How does the length of stay in hospital differ among schizophrenic patients,
classified by the frequency of visiting by friends and relatives?

data (HospVisits, package="vcdExtra")
HospVisits

## stay

## visit 2-9 10-19 20+

## Regular 43 16 3

#4 Infrequent 6 11 10

4 Never 9 18 16

* Length of stay is the response, and it is ordered
* Can model the adjacent odds or log odds that stay is category j vs (j+1)
* E.g., stay=2-9vs. 10-19; stay=10-19 vs. 20+

* Ingeneral, I xJ— I x(J-1) adjacent comparisons

* visit is also ordered. Can consider simpler (e.g., linear) models for the log
odds

Exploratory plots: Doubledecker

2-8

Doubledecker plot

doubledecker (HospVisits)

10-19

@ Shows directly the conditional
distributions of stay given visit

@ Length of stay is shorter with
frequent visits
@ Infrequent and Never don't differ 2
very much
I

[Beguar ——  (nfrequent IMever ] visit

Exploratory plots: ca

What does CA tell us?
plot (ca (HospVisits))

o
o

0.2

_ @ Association is entirely 1D!

@ Infrequent and Never category
points don't differ much

@ Greater visit frequency
associated with shorter stay

[2-9 Never  2p4

0 A 5 o
Réqular 10-19 |nfrequent

Dimension 2 (0%)
0.0

But, how can we test and and visu-
alize these ideas with models?

-0.4

T T T T T
-04 02 00 02 04 06

Dimension 1 {100%)




Models for log odds

@ Start with the saturated loglinear model for the two-way table

log myj = 1+ X + AP + X8

@ For adjacent categories of the response variable B, the odds, w;j‘B and log

odds, -:;";f‘é, that the response is in category j rather than j + 1 are:

T mi; B mj; .

odds: wj® = —2—  log odds: ¢{® = log (—”) gJ=1,..., J—1
mj j44 M j+1

@ For the hospital visits data, this gives:

> t(lodds (HospVisits, response = "stay")
log odds for stay by visit

stay
visit 2-9:10-19 10-19:20+
Regular 0.989 1.6740
Infrequent -0.606 0.0953
Never -0.693 0.1178

Models for log odds

A variety of simple models can be specified in terms of log odds:

Table: Models for adjacent log odds in an / x J table with B as the response

Model log odds parameters degrees of freedom
null log odds B =0 I(J—1)

constantlog odds ¥ = ¢ I(J—1)—1

uniform B log odds ~ ¢£8 = ¢! I(J—2)

parallel log odds vRE =yl + B (I=1)(J-2)
saturated ¢#? unspecified

@ The log odds, a:’*;j‘g can be viewed as entriesinan / x (J — 1) table
@ These models are analogous to ANOVA tests of the A, Band A« B
effects in this table.

Fit some models

I’'m simply using Im() here. Should use WLS: weights = 1/ASE?

mod.null <- 1lm(logedds ~ -1, data=hosp.lodds) # null
mod.const <- Im(logedds =~ 1, data=hosp.lodds) # constant
mod.unif <- Im(logedds ~ visit, data=hosp.lodds) # uniform

mod.par <— Im(logedds ~ visit + stay, data=hosp.lodds) # parallel
Compare models:
anova (mod.null, mod.const, mod.unif, mod.par)

#% Analysis of Variance Table

##

## Model 1: logodds ~ -1

## Model 2: logodds ~ 1

## Model 3: logodds ~ visit

## Model 4: logodds ~ visit + stay

#4 Res.Df RSS Df Sum of Sg F Pr (>F)

## 1 6 4.65

## 2 5 4.24 1 0.41 177 0.0056 =%
## 3 4 3.43 1 0.81 345 0.0029 =*=
## 4 2 0.00 2 3.43 734 0.0014 ==«
## ——

#% Signif. codes: 0 'x%x' 0.001 "*x+' 0.01 '+"'" 0.05 '.' 0.1 " " 1

Ordinal variables

When the levels of A are ordinal, we can also test for linear effects.
modla <— lm(logodds ~ as.numeric(visit), data=hosp.lodds)

mod2a <- lm(logodds ~ as.numeric(visit) + stay, data=hosp.lodds)
# compare parallel log odds models

anova (mod. const, modZa, mod.par)

## Analysis of Variance Table

##

## Model 1: logodds ~ 1

## Model 2: logodds ~ as.numeric(visit) + stay

## Model 3: logodds ~ visit + stay

## Res.Df RS5 Df Sum of Sg F Pr (>F)

## 1 5 4.24

# 2 2 0.00 3 4.23 604 0.0017 ==

## 3 2 0.00 0O 0.00

#F ———

## Signif. codes: 0O "xx+' 0.001 '#*' 0.01 '«' 0.05 '.' 0.1 " ' 1

Effects of visit are certainly not linear.




Visualizing log odds and models

Visualizing log odds and models

Plots of observed and fitted log odds: easy interpretation of data and models

. Length of stay Length of stay
y & 2-9:10-19 *2-9:110-19
@/ 10-19:20+ & 10-19:20+
= 1 > 4
g T g
s s
7] o
5 5 Log odds
L
@ 0 Model
5 k-]
% . % consiant
E’ -. . L ] E \\. parallel
o 0 S 0
uniform
...
""""" ® parallel
Reguiar "~ Infrequent Never Regular Infrequent Never
Visit frequency Visit frequency

Data plot: Observed log odds Data + Model plot (fitted log odds)

Basic plot:

gg <- ggplot (hosp.lodds, aes(x=visit, y=logodds,
group=stay, color=stay)) +
geom point (size=5) +
geom line(size=1.2, linetype="dotted")
ylab("log odds of shorter stay\n") +
xlab ("Visit frequency") + theme bw() + ..

Add lines for predicted values from the models

grid <- hosp.lodds[,1:2]

gg_lines <- function(grid, mod, size=1.2, color=NULL, ...) {
grid$logodds <- stats::predict(mod, grid)
if (is.null (color)) geom line(data=grid, size=size, ...)
else geom line(data=grid, size=size, color=color, ...)

}

grid, mod.null, color="gray", size=1, linetype="dashed")
grid, mod.const, color=gray(.5), size=1l) +

grid, mod.unif, color="black", size=1l) +

grid, mod.par)

gg + gg_lines
gg_lines
gg_lines
gg_lines

L

Three-way+ tables: Log odds

Three-way+ tables: Log odds

These methods naturally extend to three- and higher-way tables:

@ Consider a three-way [ x J x K table of variables A, B and C, where C is
the response (or focal variable)
@ The standard loglinear model is:

log mjc = pn+ AF + AP + AL + M8 + ME + ARC + &

e For categories k and k + 1 the adjacent log odds for C are

log odds: t_-:‘"f,(BE = log (mm—”k1) . k=1, K -1
i.j+

@ These log odds can be viewed as entries in a two-way, [J x (K — 1) table.

@ The parallel log odds model is
ABC _ yAB_ . C
d - ujg + Qk
= i+ U,A + L')-B + L_"‘f'B + tf

where the IU;;‘B are unspecified and the «» parameters obey standard
(sum-to-zero) constraints.

@ Simpler models:

'f,.‘"‘kc = 0
AB
Wit =y

uniform log odds:
joint independence:

@ Even simpler models: null effects of A (a.:"-j-'" =0) )
@ Linear effects models: An ordinal A can use v = i x /34 to test for
linearity

or B (8 = 0)




3-way example: Mice depletion data

@ Kastenbaum and Lamphiear (1959) gave a 3 x 5 x 2 table of the number
of deaths (0, 1, 2+) in 657 litters of mice, classified by litter size (7—11)
and treatment (A", “B")

@ How does number of deaths depend on litter size and treatment?

data (Mice, package="vcdExtra")
mice.tab <— xtabs(Freqg - litter + treatment + deaths, data=Mice)
ftable(litter + treatment ~ deaths, data=mice.tab)

## litter 7 8 9 10 11

## treatment A B A B A B A B A B
## deaths

## 0 58 75 49 58 33 45 15 39 4 5
## 1 11 19 14 17 18 22 13 22 12 15
#H# 2+ 5 7 10 8 15 10 15 18 17 8

— Adjacent categories:
e Odds or log odds of 0 vs. 1 deaths
* Odds or log odds of 1 vs. 2+ deaths

How do these differ with litter size & treatment?

Mice data: mosaic plot

Fit and display the model of joint independence, [litter, treatment] [deaths]
mosaic(mice.tab, expected= " litter * treatment + deaths)

treatment

: I

& @ What can we see?

@ Small litters more likely to have 0
deaths

@ Large litters more likely to have 2+
deaths

@ More deaths with treatment A

- -20 than B

0

2+ 1

deaths

\

]
T

|

24102+ 1 0 2+ 1

|
l

I
Il

1

Mice data: MCA

mice.mca <- mjca(mice.tab)
plot (mice.mca)

03

Factor
® |ilter

4 treatment\ \A'hat can we see?

+ deaths

02
I

@ Larger litter size
associated with more

» deaths
o 11
- \' @ More deaths with
treatment A than B

e @ What model? How to

. : . . simplify?
-02 0.0 02 04 06

Dimension 2 (5.1%)
0.0 0.1
1
-
m

Dimension 1 (69.1%)

Calculating log odds

For a three-way table, a simple way to calculate all (log) odds is to reshape
the data as a two-way matrix, T, with / x J rows and K columns.

+# 0 1 2+
## 7:L 58 11 5
## 8:A 49 14 10
#% 9:A 33 18 15
##%# 10:A 15 13 15

## 11:A 4 12 17

The IJ x (K — 1) table of adjacent log odds can then be calculated as
log(T)C, where Cis the K x K — 1 matrix of contrasts,

1 0 1 1 In general, any set of
C=1]-1 1 C=[-1 0 K-1{1, 0, -1} contrasts
0 -1 0 -1 can be used

Adjacent categories Reference level =0




Calculating log odds

mice.tab <- xtabs(Freq ~ litter + treatment + deaths, data=Mice)

# reshape table to matrix
T <- matrix(mice.tab,
nrow=prod (dim(mice.tab) [1:2]),
ncol=dim(mice.tab) [3])
colnames (T) <- dimnames (mice.tab) [[3]]
rn <- expand.grid(dimnames (mice.tab) [1:2]
rownames (T) <- apply(rn, 1, paste, collapse=":")

C <- matrix(c(l, -1, O, > lodds
0, 1, -1), nrow=3) 0:1 1:2+
lodds <- log(T) %*% C

7:A  1.663 0.788
colnames (lodds) <- c("0:1", "1:2+") 8:A 1.253 0.336
9:A 0.606 0.182
10:A 0.143 -0.143
11:A -1.099 -0.348
7:B  1.373 0.999
8:B 1.227 0.754
9:B  0.716 0.788
10:B 0.573 0.201
11:B -1.099 0.629

Calculating log odds

More generally,

@ Consider an R x K x Kz x ... frequency table nj..., with factors Ki. Kz . ...
considered as strata.
@ Let n = vec(n;...) be the N x 1 vectorization of the table.
@ Then, all log odds and their asymptotic covariance matrix S can be
calculated as:
e ¢ = Clog(n)
e §=Var[yy] = Cdiagn™' C"
where C is an N-column matrix containing all zeros, except for one +1
elements and one —1 elements in each row.
@ With strata, C can be calculated as the Kronecker product
C=Cralk ol -
@ Linear models for log odds: ¢ = X3

Mice data: Log odds

Mice data: Fit models

The vcd package contains a general implementation of these ideas:

" odds () andlodds () : calculate odds orlog odds for 1 variable in an
n-way table

=  Provides methods (coef (), vcov (), confint (), ..)for“lodds”
objects

> (mice.lodds <- as.data.frame (lodds (mice.tab, response="deaths")))
deaths litter treatment logodds ASE
1 0:1 7 A 1.663 0.329
2 1:2+ 7 A 0.788 0.539
3 0:1 8 A 1.253 0.303
4 1:2+ 8 A 0.336 0.414
5 0:1 9 A 0.606 0.293
6 1:2+ 9 A 0.182 0.350
7 0:1 10 A 0.143 0.379
8 1:2+ 10 A -0.143 0.379
9 0:1 11 A -1.099 0.577
10 1:2+ 11 A -0.348 0.377

Use WLS, with weights ~ ASE—2

mod0 <—- 1lm(logodds ~ 1, weights=1/ASE"2, data-=mice.lodds)

modl <— lm(logodds ~ litter + treatment, weights=1/ASE"2, data-mice.lodds)
mod2 <- Im(logodds ~ litter « treatment, weights=1/ASE"2, data-mice.lodds)
mod3 <- lm{logodds ~ litter % treatment + deaths, weights=1/ASE"2, data-mi

Compare models:
anova (mod0, modl, mod2, mod3)

## Analysis of Variance Table

#

## Model 1: logodds ~ 1

## Model 2: logodds ~ litter + treatment

## Model 3: logodds ~ litter « treatment

## Model 4: logodds ~ litter * treatment + deaths
## Res.Df RS5S5 Df Sum of Sg F  Pr(=F)

## 1 19 65.0

## 2 14 17.8 5 47.2 18.22 0.00018 #==x
## 3 10 6.7 4 11.1 5.36 0.01737 =

## 4 9 4.7 1 2.1 3.98 0.07723

i ==

## Signif. codes: 0 'xxx' 0.001 '"++' 0.01 '"«' 0.05 ".' 0.1 ' ' 1




Visualize log odds & models: Data plot

e Data plot: log odds with error bars: ¢45° + 1ASE,,
@ This is equivalent to the saturated model for log odds

treatment: A treatment: B

deaths
01
12+

log odds of fewer deaths

18 9 10 11 78
Litter size

w0
Y
[=]
—

Basic plot:

gg <- ggplot (mice.lodds, aes(x=litter, y=logodds,
color=deaths, group=deaths)) +
geom point (size=4) +
ylab("log odds of fewer deaths") +
xlab ("Litter size") +
theme bw(base size = 16) +
theme (legend.position = ¢ (.9, .85),
legend.background = element rect (colour = "black")) +
facet grid(. ~ treatment, labeller=label both) +
theme (strip.text = element text(size = rel(1.2)))

Add error bars, dodged

bars <- aes(ymin=logodds-ASE, 2
ymax=logodds+ASE)
gg + geom line(size=1.2) +
geom_errorbar (bars,
width=0.25, size=1,
position=position_dodge (width=.2))

treatment: A treatment: B

deaths

+ 01
. - 12+

log odds of fewer deaths

ggpIOt thinking: 7 8 9 10 1" 7 8 9 10 1"
* ggis my basic plot of points Liter size
* | can add other layers to it

Visualize log odds & models: Smoothing

@ Apply a linear smoother (weighed linear regression) to each

@ This is equalvalent to a model with a three-way term,
as.numeric(litter) *treatment+deaths

@ Error bands show model uncertainty

treatment: A treatment: B

deaths

24 o1
12+

log odds of fewer deaths

|789101_|1.7891011
Litter size

Visualize log odds & models: Data + Model

o Display the fit of the parallel log odds model, ¢3¢ = W78 + ¢
5 treatment: A freatment: B
deaths
0:1
= 12+
5
° 11
g
£
G
g o
©
o
o
o
One
-1 «— unusual
, : : : : : : : . . point
7 8 9 10 11 7 8 9 10 11

Litter size




Visualize log odds & models: Data + Model

@ Simplify the model: fit only linear effects of 1itter
@ Im(logodds ~ as.numeric(litter)xtreatment + deaths)
@ Error bands show smaller model uncertainty

treatment: A treatment: B

deaths
01
12+

log odds of fewer deaths

7 8 o 10 11 7 & 9 10 i
Litter size

Generalized log odds ratios

@ In any two-way, R x C table, all associations can be represented by a set
of (R—1) x (C — 1) odds ratios,
M/ ity _ M X it o

Nij+1/ NMis j+1 Njgqj X Nj g

O =

Simpler in terms of log odds ratios:
T
log(p) = (1 —1 =1 1 )log( nj Ni1j Nijer Nipajsr )

i i C

1 1 . 1 -1
NS = Vb
P

i+1

Py K
-1 1

ref='last’ odds ratios

R

local odds ratios

Generalized log odds ratios

@ log#j ~ N'(0,0?), with estimated asymptotic standard error:
~ -1 —1 —1 —1
d(logty) = (nj " + Ny j+ Nijuy + ”;+1.j+1)1/2

@ This extends naturally to ;| in higher-way tables, stratified by one or
more “control” variables.

@ Many models have a simpler form expressed in terms of log(j).
@ e.g., Uniform association model

log(my) = i+ A + A7 + vaiby = log(6y) =

@ Direct visualization of log odds ratios permits more sensitive comparisons
than area-based displays.

Models for log odds ratios: Computation

@ Consider an R x C x Ky x Kz x ... frequency table nj..., with factors
Ki.K> ... considered as strata.
@ Let n = vec(n;...) be the N x 1 vectorization of the table.
@ Then, all log odds ratios and their asymptotic covariance matrix S can be
calculated as:
e log(8) = Clog(n)
e S = Var[log(8)] = Cdiagn=' CT
where C is an N-column matrix containing all zeros, except for two +1
elements and two —1 elements in each row.
@ With strata, C can be calculatedas C=Cpe @ I, @ I, @ - - -

@ loddsratio () in ved provides generic methods (coef (), veov (),
confint (), ...)
@ plot () method gives reasonable data and model plots.




Models for log odds ratios: Computation

For example, for a 2 x 3 table, there are two adjacent odds ratios

+# Age

## Sex Yng Mid 0l1d
H# M [30 |20 10
+# F 5115] 25
## log oddy rafjios for Sex and Age
##
## Yng:Mid MidYold
+# 1.504 1.204

These are calculated as:

M
N21
N2
N1
M3
Nz3

l0g(8) = Clog(n) = | | log

Models for log odds ratios: Estimation

@ A log odds ratio linear model for the log(®@) is
log() = X3

where X is the design matrix of covariates
@ The (asymptotic) ML estimates _E are obtained by GLS via

3= (sz—'x) T XTs ' log (é‘)

where S = Var[log(@)] is the estimated covariance matrix
@ — Standard graphical and diagnostic methods can be adapted to this
case.

e visualization: full-model plots, effect plots, . ..
e diagnostics: influence plots, added-variable plots, . ..

Technical note: for simplicity, | use 1m () for WLS, with S = diag(1/ASE?)
Should probably use nlme: :gls () instead

Example: Breathlessness & wheeze in coal miners

@ Ashford & Sowden (1970) gave data on the association between two
pulmonary conditions: breathlessness and wheeze, in a large sample of
coal miners

@ Age is the primary covariate

@ How does the association between breathlessness and wheeze vary with
age”?

ftable (CoalMiners)

## Age 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-
## Breathlessness Wheeze

## B W 23 54 121 169 269 404 406 3
## NoW 9 19 48 54 88 117 152 1
## NoB W 105 177 257 273 324 245 225 1
## NoW 1654 1863 2357 1778 1712 1324 967 G|

Example: Breathlessness & wheeze in coal miners

fourfold(CoalMiners, mfcol=c(2,4), fontsize=18)

e 40-44

Age: 25-29
eeze: W heeze: W

oo i g

i

heeze: W

e 35-39 A\g
6!

9 19 48 54

;B
;B

N
A

D
G

177
Wheeze: NoW

Av%e: 50-54
0

Breathlessness: B
Breathlessness: NoB
Breathlessne
Ereathlessness: NoB
Breathlessne
Ereathlessness: NoB
Breathlessness: B
Breathlessness: NoB

105
Wheeze: NoW
Age: 45-49

eeze: W

26! 88

257
Wheeze: NoW

A\%e: 55-59
0

273
Wheeze: NoW

A‘%e: 60-64
3T,

heeze: W
17

heeze: W
106

heeze: W
152

4

B
;B

Breathlessness: B
Breathlessnes
Breathlessne:
Breathlessness: B

245 2 225
Wheeze: NoW Wheeze: NoW

132
Wheeze: NoW

Breathlessness: NoB
Breathlessness: NoB
Breathlessness: NoB
Breathlessness: NoB

324 1
Wheeze: NoW

@ There is a strong + association at all ages
@ But can you see the trend?




Coal miners: Log odds & models

(lor.CM <- loddsratio (CoalMiners))

## log odds ratios for Breathlessness and Wheeze by Age
i

#4% 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64

## 3.695 3.398 3.141 3.015 2.782 2.926 2.441 2.638

How does LOR vary with Age?
@ Uniform association: In(#) = 5
@ Linear association: In(#) = 3y + /3; Age
@ Quadratic association: In(f) = 5 + 51 Age + 2 Age2

Fit models using WLS:

lor.CM.df <- as.da:a.fraﬁe(lor.cw)
age <- seq(25, 60, by = 5)

CM.mod0 <= Im(LOR = 1, weights=1/ASE"2, data=lor.CM.df)
CM.modl <-— 1m(LOR ~ age, weights=1/ASE"2, data=lor.CM.df)
CM.mod2 <- Im(LOR ~ poly(age,2), weights=1/ASE"2, data=lor.CM.df)

Coal miners: LOR plot

Plot log odds ratios and fitted regressions: The trend is now clear!

CoalMiners data: Log odds ratio plot

4.0

Log odds ratio: Wheeze x Breathlessness

25

T T T T T T T T
25-29 30-34 35-39 4044 45-49 50-54 55-59 60-64

Going further: Bivariate response models

Coal miners: Model comparisons

Standard ANOVA procedures allow tests of nested competing models:
anova (CM.mod0, CM.mcdl, CM.mod2)

##% Analysis of Variance Table

##

## Model 1: LOR ~ 1

## Model 2: LOR ~ age

## Model 3: LOR ~ poly(age, 2)

#4 Res.Df RSS Df Sum of Sg F Pr (>F)

#+ 1 7 25.61

## 2 6 6.34 1 19.28 17.23 0.0089 =*=

## 3 5 5.60 1 0.74 0.66 0.4525

## ——

##% Signif. codes: 0 '#*x' 0.001 '*x' 0.01 '+x' 0.05 '.' 0.1 ' " 1

(vedExtra::LRstats () gives direct tests of each model, and AIC, BIC)
The linear model, In(#) = 5o + /31 Age, gives the best fit.

@ In this example, breathlessness and wheeze are two binary responses
@ A bivariate logistic response model fits simultaneously

e the marginal log odds of each response, v, 1 vs. predictors (x)
o the joint log odds ratio, ¢4z, vs. X

@ This model has the form

M log odds, (X) Uy x| 31
nx)=| n |=| logodds,(x) | =| v |=| xp
12 log ORy2(X) log th2 X{,p12

where Xi, Xz, Xi2 C X
@ For example, with one x, the following model allows linear effects on log
odds, with a constant log odds ratio

M a1+ Bix
| = a2+ px| (1)
2 log(#)




Calculating...

Logits and log odds for a bivariate response can be calculated with vcdExtra::blogits()

data (coalminers, package = "VGAM")
coalminers <- transform(coalminers, Age = (age - 42) / 5)

logitsCM <- vcdExtra::blogits(coalminers[, 1:4], add = 0.5)
colnames (logitsCM) [1:2] <- c("logitB", "logitW")
logitsCM <- cbind(logitsCM,
coalminers[, c("age", "Age")])
logitsCM

logitB logitW logOR age Age

1 -4.736 -2.868 3.20 22 -4
2 =3.977 =2.557 3.66 27 =3
3 -3.317 -2.094 3.38 32 -2
4 -2.733 -1.848 3.13 37 -1
5 -2.215 -1.420 3.01 42 0
6 -1.739 -1.109 2.78 47 1
7 -1.101 -0.797 2.92 52 2
8 -0.758 -0.572 2.44 57 3
9 -0.319 -0.226 2.63 62 4

Log Odds or Odds Ratio

Linear model for log odds and log odds ratios

. . Log odds & LORs have
* lbgOR ° similar scales, so it is
(BIWY(BIw) . not terrible to plot
them together
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Linear model for log odds and log odds ratios

M . . .
BIWYBW) . This data + model plot has a simple in-
terpretation:
@ Prevalence of breathlessness and
wheeze both increase with age
@ Breathlessness is less prevalent
at young age, but increases faster
@ Their association decreases
approx. linearly, but is still strong
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@ Allowing quadratic fits in age
serves as a sensitivity check
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@ The story is pretty much the same
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Plotting ...

With the data in this form, we can use matplot () to plot each column against age

matplot (age, logitsCM[, 1:3], type = "p",
col = col, pch = pch, cex = 1.2, cex.lab = 1.25,
xlab = "Age", ylab = "Log Odds or Odds Ratio")
abline (lm(logitsCM[,1l] ~ age), col = col[l], lwd = 2)
abline (Im(logitsCM[,2] ~ age), col = col[2], 1lwd = 2)
abline (Im(logitsCM[,3] ~ age), col = col[3], 1lwd = 2)
To plot the quadratic fit, simply use Tm""———rﬁ;\_
(BIW)(BIw) -

Im(logitsCM[,1] ~ poly(age,?2)

But: this is NOT a model. It simply fits
each set of odds separately

Log Odds or Odds Ratio

Probability

Fitting: VGAM::vgim()

VGAM::vgim() can fit a wide class of models for a vector of multivariate responses

* The family binom?2 () is used for bivariate logistic models

* Anargument zero= allows the logit or odds ratio submodels to be constrained to
intercept-only

cm.vglm <- vglm(cbind (nBnW, nBW, BnW, BW) ~ Age,
binom2.or (zero = NULL), data = coalminers)

exp (coef (cm.vglm, matrix = TRUE))

logitlink (mul) logitlink (mu2) loglink(oratio)
(Intercept) 0.104 0.226 20.530
Age 1.673 1.385 0.877

Each 5 years of age:

* Multiplies odds of breathlessness by 1.67, a 67% increase
* Multiplies odds of wheeze by 1.38, a 38% increase

* Multiplies the OR for association by 0.88, a 12 % decrease

Other possibilities

VGAM::fitted() returns the fitted values on the probability scale
VGAM::depvar() returns the observed values on the probability scale

> P <- fitted(cm.vglm)
> colnames (P) <- c("bw", "bwWw",

The plot is made using matplot()

"Bw", "BW")
> P "
bw bW Bw BW TroAe _—
1 0.94 0.049 0.0046 0.0085 i Tl
2 0.91 0.064 0.0070 0.0148 08 (R
3 0.88 0.080 0.0105 0.0254 o
4 0.84 0.097 0.0158 0.0428 ~ 06 r.\SYmPtD""S
5 0.79 0.114 0.0239 0.0704 = ™,
c'% \‘N_qne
e} 1
E 04 7 Both
You can get these on the logit scale using
the inverse logit function, glogis()
LP <- glogis (P)

LY <- glogis (Y)

(age-42)/5

We can also model the relations with age as a quaderatic, cubic, ...

cm.vglm?2 <- vglm(cbind(nBnW, nBW, BnW, BW) ~ poly(Age,2),
binom2.or(zero = NULL), data = coalminers)

VGAM also implements vector generalized additive models, fit using vgam()

cm.vgam <- vgam(cbind(nBnW, nBW, BnW, BW) ~ s(Age, df = 2),
binom2.or(zero = NULL), data = coalminers)




Example: Attitudes toward corporal punishment

A four-way table, classifying 1,456 persons in Denmark (Punishment data in
ved).
@ Attitude: approves moderate punishment of children (*"moderate”), or
refuses any punishment (“no”)

@ Memory: Person recalls having been punished as a child?
@ Education: highest level (elementary, secondary, high)
@ Age group: (15-24, 25-39, 40+)

Age 15-24 25-39 40+
Education  Attitude Memory Yes No Yes No Yes No
Elementary No 1 26 3 46 20 109
Moderate 21 93 41 119 143 324
Secondary  No 2 23 8 52 4 44
Moderate 5 45 20 84 20 56
High No 2 26 6 24 1 13
Moderate 1 19 4 26 8 17

Attitudes: Questions

Interest focuses on several questions:
@ How does Attitude toward punishment depend on Memory, Education
and Age?
@ Model log odds approve of moderate corporal punishment
e Standard logit model:

glm(attitude ~ memory + education + age, data=Punishment,
weight=Freqg, family=binomial)

@ How does association between Attitude and Memory vary with Education
and Age?
e Model log odds ratio (Attitude, Memory)
@ Visualize: LOR plots

Log odds model for attitude

Fit the main-effects model for Attitude on other predictors:
pun.logit <- glm(attitude ™ memory + education + age,
data=Punishment, weight=Freq, family=binomial)

Anova (pun. logit)

#% Analysis of Deviance Table (Type II tests)

##

## Response: attitude

## LR Chisg Df Pr(>Chisq)

## memory 295 1 5.6e-08 =%+

#% education 50.3 2 1.28-11 *#x

#% age 0.6 2 0.73

-

## Signif. codes: 0 '#*xx' 0.001 "x%' 0.01 '%' 0.05 '.' 0.1 ' ' 1

@ Only Memory and Education have significant effects
@ A more complex model with all two-way interactions showed no
improvement

Attitude: Effect plots

@ Model plots, showing fitted values for high-order terms in any model
@ Other predictors averaged over in each plot
@ Simple interpretation:
@ Those who remembered punishment as children more likely to approve
o Approval decreases with education

@ No effect of age
memory effect plot education effect plot age effect plot
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Association of attitude with memory: Fourfold plots Log odds ratio plot

(lor.pun <- loddsratio(punish))

age = 15-24 age = 15-24 age = 15-24
Edummfﬂ.:.e_:memw e e Sducition ~hieh How does the association of attitude ## log odds ratios for memory and attitude by age, education
. fooE s and memory vary with education ##
. /fﬁ.; . ./f% f “/?ﬁ\ i and age? ## education
2 /, T8 | AT 5| A . i ge: ## age elementary secondary high
k// i KJ/ g \&%2 ##  15-24 -1.7700  -0.2451 0.3795
S . M= P g icuali ##  25-39 ~1.6645  —0.4367 0.4855
—=_ — —r Each fou.rfold plot visualizes the log e e s U
education = elementary education = secondary education = high Odds rat|0 bEtween them
Ty o T e log odds ratios for attitude and memory by education, age
3 = What'’s going on here? e
fﬁff\\ going =
F 1 s | & | Ts 40+
W | \&J *
1 El Y B PR T @ Structure now completely clear
iy =iy | ot = iy | it =i i o Little diff between younger groups
\’\5 g ] @ Opposite pattern for the 40+
3 x . .
il ﬁ_\ i 2 @ Fitan LOR model to confirm
J/ -2 appearences (SEs large)!
A T T T
elementary  seconda ry high

* Logit models for a binary response generalize readily
to a polytomous response
®= —Models for log odds, familiar interpretation
® Handles 3+ way table, ordinal variables
= Simple plots for interpretation

* Generalized odds ratios handle bivariate responses
= Simple linear models for LOR

® Easy to model log odds for each response and the LOR
simultaneously

® Easy to visualize results




