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Today’s topics

°* We’ve come a long way, but there is more...

* Logit models — general models for log odds
" Two-way tables
" Three-way + tables
" |og odds plots

°* Models for generalized odds ratios
" Log odds ratios
" Bijvariate response models



@ Familiar case— Binary responses:

e Every loglinear model for a binary response has an equivalent form in terms
of log odds ["logit” models]

o Log odds models have simple interpretations

e Data + model plots give simple descriptions of data and models

@ Extend to two-way (/ x J) and three-way + (/ x J x Kj ...) tables:

e Log odds as contrasts in log(n)

o Variety of simple models for log odds (ANOVA-like)

e Easily incorporate ordinal variables

e Data + model plots give simple descriptions of data and models

@ Generalized log odds ratios capture associations between two focal
variables

e Simple linear models for LOR
e Direct visualization (Data + model plots) = more sensitive comparisons

Based on my CARME (2015) presentation, https://www.datavis.ca/papers/CARME2015-2x2.pdf



https://www.datavis.ca/papers/CARME2015-2x2.pdf

Logit models — Log odds models

°* |Inan/x 2 table for variables[A B], where B is a binary response, the logit
model expresses the log odds that B=1 vs. B=2

i = log( m;, )
m;,

= Models pertain to the one-way log odds

° This generalizes to | x J tables, where we consider (J-1) log odds for each
level of A, e.g.,

= Adjacent categories

_ m..
t//;leog( ! ] j=12,...,J-1

M)

"= |ngeneral, | xJ— (J-1) log odds contrasts of the B categories for each level of A
= Similar to how polytomous responses treated in logistic regression
= (Can also use comparisons with a baseline category



J responses — J-1 contrasts/logits

Adjacent-category logits
DRI For 4, y? =log(m,)—log(m, ;,,)
1 -1

1 -1
1 -1

Reference-level logits
DN Ford,: y? =log(m,)~log(m,,,)
1 -1

1 -1

1 -1 Generalized logit models extend the

advantages of the standard one to a
polytomous response



2-way example: Hospital visits

How does the length of stay in hospital differ among schizophrenic patients,
classified by the frequency of visiting by friends and relatives?

data (HospVisits, package="vcdExtra")
HospVisits

#¥# stay

## visit 2—-9 10-19 20+

#¥ Regular 43 16 3

#¥# Infrequent 6 11 10

#¥# Never 9 18 16

* Length of stay is the response, and it is ordered
 Can model the adjacent odds or log odds that stay is category j vs (j+1)
* E.g., stay=2-9vs. 10-19; stay=10-19 vs. 20+

* Ingeneral, | xJ— Ix(J-1) adjacent comparisons

* visitis also ordered. Can consider simpler (e.g., linear) models for the log
odds



Exploratory plots: Doubledecker

Doubledecker plot

doubledecker (HospVisits)

@ Shows directly the conditional
distributions of stay given visit

@ Length of stay is shorter with
frequent visits
@ Infrequent and Never don't differ 201
very much
1

[Eegular ] [Infrequent | ] wisit




Exploratory plots: ca

What does CA tell us?

plot (ca (HospVisits))

Dimension 2 (0%)

=
o

-02 0.0 0.2

-0.4

2-9

eqular

Never

10-19 nfrequent

20+

el e e .................. gl &

|
-0.4

-02 00 02 04 06

Cimension 1 (100%)

@ Association is entirely 1D!

@ Infrequent and Never category
points don't differ much

@ Greater visit frequency
associated with shorter stay

But, how can we test and and visu-
alize these ideas with models?



Models for log odds

@ Start with the saturated loglinear model for the two-way table

log mjj = ju+ X + AP + NP

@ For adjacent categories of the response variable B, the odds, % B and log

if

odds, v f‘B that the response is in category j rather than j + 1 are:

m j}'

odds: wTB —

log odds: 1/} _Iog( i ) g=1...., J— 1

M j+1 UUNES

@ For the hospital visits data, this gives:

> t (lodds (HospVisits, response = "stay"))
log odds for stay by wvisit

stay
visit 2-9:10-19 10-19:20+
Regular 0.989 1.6740
Infrequent -0.606 0.0953

Never -0.693 0.1178



Models for log odds

A variety of simple models can be specified in terms of log odds:

Table: Models for adjacent log odds in an / x J table with B as the response

Model log odds parameters degrees of freedom
null log odds B =0 I(J—1)

constant log odds 7% = v I(J—1)—1

uniform B log odds 4% = ¢} I(J —2)

parallel log odds VB = + P (I—1)(J —2)
saturated ¢7° unspecified

@ The log odds, ;:‘*;f'ﬁ can be viewed as entriesinan [ x (J — 1) table
@ These models are analogous to ANOVA tests of the A,Band A« B
effects in this table.

10



Fit some models

I’'m simply using Im() here. Should use WLS: weights = 1/ASE?

mod.null <- Im(logodds =~ -1, data=hosp. lodds) =
mod.const <— lm(logodds = 1, data=hosp. lodds)
mod.unif <- Im(logodds =~ wvisit, data=hosp.lodds)
mod.par <- Im(logodds ~ wvisit + stay, data=hosp.lodds)
Compare models:

anova (mod.null, mod.const, mod.unif, mod.par)

## Analysis of Variance Table

i

## Model 1: logodds = -1

## Model 2: logodds ™ 1

## Model 3: logodds ~ wvisit

## Model 4: logodds ~ wvisit + stay

i Res.Df RSS Df Sum of Sg F Pr (>F)

##F 1 6 4.65

¥F 2 5 4.24 1 0.41 177 0.0056 ==

¥F 3 4 3.43 1 0.81 345 0.0029 =*+«

¥7 4 2 0.00 2 3.43 734 0.0014 =*+«

i

## Signif. codes: 0 "#%x'" 0.001 "x«' 0.01 "+' 0.05 '."'" 0.1

null

=
()
o
5
[

i

0

¥

;

# unif
¥ p;rallel

11



Ordinal variables

When the levels of A are ordinal, we can also test for linear effects.

modla <-— lm(logodds -~ as.numeric(visit), data=hosp.lodds)

modZ2a <— lm(logodds = as.numeric(visit) + stay, data=hosp.lodds)
# compare parallel log odds models

anova (mod.const, modZa, mod.par)

## Analysis of Variance Table

i

## Model 1: logodds ™~ 1

## Model 2: logodds ~ as.numeric(visit) + stay

## Model 3: logodds "~ wvisit + stay

#i# Res.Df RSS Df Sum of Sqgq F Pr (>F)

7 1 5 4.24

## 2 2 0.00 3 4.23 604 0.0017 ==

% 3 2 0.00 O 0.00

i B

## Signif. codes: 0 "x*x' 0.001 "' 0.01 '"+' 0.05 '." 0.1 " ' 1

Effects of visit are certainly not linear.

12



Visualizing log odds and models

Plots of observed and fitted log odds: easy interpretation of data and models

. Length of stay Length of stay
: »2-310-19 i 2-010-19
& 101920+ & 10-1920+
a1 . & 1
& g %
@ ' g
5 E Log odds
@ @ Model
k= B
71} wy
o a p= constant
3 ¢ 8 \ '
PR ] ® parallel
g o 3 o
uniform
+II .....
"""" ® ® paraliel
Regular Infrequent Never Regular  Infrequent Never
Visit frequency Visit frequency
Data plot: Observed log odds Data + Model plot (fitted log odds)

13



Visualizing log odds and models

Basic plot:

gg <- ggplot (hosp.lodds, aes(x=visit, y=logodds,
group=stay, color=stay)) +
geom point (size=5) +
geom line(size=1.2, linetype="dotted")
ylab ("log odds of shorter stay\n") +
xlab ("Visit frequency") + theme bw() + ..

Add lines for predicted values from the models

grid <- hosp.lodds[,1:2]

gg lines <- function(grid, mod, size=1.2, color=NULL, ...) {
grid$logodds <- stats::predict(mod, grid)
if(is.null (color)) geom line(data=grid, size=size, ...)
else geom line(data=grid, size=size, color=color, ...)
}

gg + gg lines(grid, mod.null, color="gray", size=1l, linetype="dashed") +

(
gg lines(grid, mod.const, color=gray(.5), size=1l) +
gg lines (grid, mod.unif, color="black", size=1l) +
gg lines (grid, mod.par)

14



Three-way+ tables: Log odds

These methods naturally extend to three- and higher-way tables:

@ Consider a three-way |/ x J x K table of variables A, B and C, where C is
the response (or focal variable)
@ The standard loglinear model is:

log mjx = 11 + A 4 )\}5 + A+ /‘\}?B +NC )\EC + )\fkgc

@ For categories k and k + 1 the adjacent log odds for C are

log odds: -;-:’rgj}(BE — log ( Mk ) k=1, K —1

@ These log odds can be viewed as entries in a two-way, IJ x (K — 1) table.

15



Three-way+ tables: Log odds

@ The parallel log odds model is

ABC _ AB ,C
!jk — ]‘Uﬁ + Py

— Syt AB __,\C

+tu + Uk

where the tla';-j'B are unspecified and the 1) parameters obey standard
(sum-to-zero) constraints.

@ Simpler models:

uniform log odds:  )f =0
joint independence: U!}?B =3
@ Even simpler models: null effects of A ( 0) or B (v = 0)

Y]
@ Linear effects models: An ordinal A can use « ’4 — | X 34 to test for
linearity

16



3-way example: Mice depletion data

@ Kastenbaum and Lamphiear (1959) gave a 3 x 5 x 2 table of the number
of deaths (0, 1, 2+) in 657 litters of mice, classified by litter size (7—11)
and treatment (“A”, “B”)

@ How does number of deaths depend on litter size and treatment?

data (Mice, package="vcdExtra")

mice.tab <- xtabs(Freq -~ litter + treatment + deaths, data=Mice)
ftable(litter + treatment -~ deaths, data=mice.tab)

T litter 7 8 9 10 11

T treatment A B A B A B A B A B

## deaths

## 0 58 75 49 58 33 45 15 3% 4 5

7 1 11 19 14 17 18 22 13 22 12 15

% 2+ 5 7 10 8 15 10 15 18 17 8

— Adjacent categories:
* (Odds or log odds of 0 vs. 1 deaths
 (Odds or log odds of 1 vs. 2+ deaths

How do these differ with litter size & treatment? .



Mice data: mosaic plot

Fit and display the model of joint independence, [litter, treatment] [deaths]
mosaic (mice.tab, expected= " litter *» treatment + deaths)

treatment

Pearson
residuals:

[ 4.8
4.0

L=

| -

@ What can we see?
@ Small litters more likely to have 0

a

| I | - deaths
P ’ ' ;‘E @ Large litters more likely to have 2+
. i | I deaths |
| . @ More deaths with treatment A
- 20 than B

= -35
p—value =
1.1321e-14

21 0 2+ 1 i} 2% 1

18



Mice data: MCA

mice.mca <— mjca(mice.tab)
plot (mice.mca)

Dimension 2 (5.1%)

o

o Factor
: e |itter

o - A treatment
5 + deaths

-0.2
|

-0.2 0.0 02 04 06

Dimension 1 (69.1%)

What can we see?

@ Larger litter size
associated with more
deaths

@ More deaths with
treatment A than B

@ What model? How to
simplify?

19



Calculating log odds

For a three-way table, a simple way to calculate all (log) odds is to reshape
the data as a two-way matrix, T, with / x J rows and K columns.

##
##
##
##
##
##

0
58
49
33
15

4

1 2+
11 5
14 10
18 15
13 15
12 17

The IJ x (K — 1) table of adjacent log odds can then be calculated as
log(T)C, where C is the K x K — 1 matrix of contrasts,

e[ ] c=|-1 o]

Adjacent categories

In general, any set of
K-1{1, O, -1} contrasts
can be used

0 -1 0 -1

Reference level =0

20



Calculating log odds

mice.tab <- xtabs(Freq ~ litter + treatment + deaths, data=Mice)

# reshape table to matrix

T <- matrix(mice.tab,
nrow=prod (dim (mice.tab) [1:2]),
ncol=dim(mice.tab) [3])

colnames (T) <- dimnames (mice.tab) [[3]]

rn <- expand.grid(dimnames (mice.tab) [1:2])

rownames (T) <- apply(rn, 1, paste, collapse=":")

C <- matrix(c(l, -1, O, > lodds
0, 1, -1), nrow=3) 0:1 1:2+
lodds <- log(T) %*% C 7:A  1.663 0.788
colnames (lodds) <- c("0:1", "1:2+") 8:A 1.253 0.336
9:A 0.0606 0.182
10:A 0.143 -0.143
11:A -1.099 -0.348
7:B 1.373 0.999
8:B 1.227 0.754
9:B 0.716 0.788
10:B 0.573 0.201
11:B -1.099 0.629

21



Calculating log odds

More generally,

@ Consider an A x Ky x Kz x ... frequency table nj..., with factors Ky, K> . .
considered as strata.
@ Let n = vec(n;...) be the N x 1 vectorization of the table.

@ Then, all log odds and their asymptotic covariance matrix S can be
calculated as:

e 1) = Clog(n)

o S=Var[y)] = Cdiagn—"' C'
where C is an N-column matrix containing all zeros, except for one +1
elements and one —1 elements in each row.

@ With strata, C can be calculated as the Kronecker product
@ Linear models for log odds: v» = X3

22



Mice data: Log odds

The vcd package contains a general implementation of these ideas:

" odds () and lodds () : calculate odds orlog odds for 1 variable in an
n-way table

= Provides methods (coef (), vcov (), confint (), ..)for“lodds”
objects

> (mice.lodds <- as.data.frame(lodds (mice.tab, response="deaths")))
deaths litter treatment logodds ASE
1 0:1 7 A 1.663 0.329
2 1:2+ 7 A 0.788 0.539
3 0:1 8 A 1.253 0.303
4 1:2+ 8 A 0.336 0.414
5 0:1 9 A 0.606 0.293
6 1:2+ 9 A 0.182 0.350
7 0:1 10 A 0.143 0.379
8 1:2+ 10 A -0.143 0.379
9 0:1 11 A -1.099 0.577
10 1:2+ 11 A -0.348 0.377

23



Mice data: Fit models

Use WLS, with weights ~ ASE 2

mod0
modl
mod?2
mod3

< —
< —
e
< —

m(l
m(l
m(l
m(l

Compare models:

anova (mod0,
## Analysis
T

## Model 1:
## Model 2:
## Model 3:
## Model 4:
ik Res.Df
## 1 19
¥F 2 14
7% 3 10
#¥ 4 9
F ———

## Signif.

logodds - 1, weights=1/ASE"2,
logodds - litter + treatment,
logodds ~ litter * treatment, weights=1/A
logodds = litter * treatment + deaths,
modl, mod2, mod3)
of Variance Table
logodds = 1
logodds = litter + treatment
logodds © litter =« treatment
logodds = litter * treatment + deaths
R5S Df Sum of Sqg F  Pr(>F)
65.0
17.8 5 47.2 18.22 0.00018 #*=*=
6.7 4 11.1 5.36 0.01737 =«
4.7 1 2.1 3.98 0.07723
codes: 0 "#+x' 0,001 "++' 0.01 '+' 0.

0

data=-mice. l1odds)
weights=1/ASE" 2,

SE™ 2,

welghts=1

=y
-

data=-mice. lodds)
data=mice. lodds)
/ASE™ 2,

data-mi

24



Visualize log odds & models: Data plot

@ Data plot: log odds with error bars: :,:*;j.}(BE + 1ASE,;
@ This is equivalent to the saturated model for log odds

treatment: A

treatment: B

log odds of fewer deaths

deaths
0:1
12+

11 7 8 9 10 11
Litter size

25



Basic plot:

gg <- ggplot(mice.lodds, aes(x=litter, y=logodds,
color=deaths, group=deaths)) +
geom point (size=4) +
ylab ("log odds of fewer deaths") +
xlab("Litter size") +
theme bw(base size = 16) +
theme (legend.position = c(.9, .85),
legend.background = element rect (colour = "black")) +
facet grid(. ~ treatment, labeller=label both) +
theme (strip.text = element text(size = rel(l.2)))

Add error bars, dodged
treatment: A treatment: B

bars <- aes (ymin=logodds-ASE, 21 deaths
ymax=1logodds+ASE) 01

gg + geom line(size=1.2) + N i ] e

geom errorbar (bars,
0- H

log odds of fewer deaths

width=0.25, size=1,
position=position dodge (width=.2))

ggplot.thlnkmgi . N A T A

e ggis my basic plot of points Litter size

* | can add other layers to it



Visualize log odds & models: Smoothing

@ Apply a linear smoother (weighed linear regression) to each

@ This is equalvalent to a model with a three-way term,
as.numeric(litter) *treatment*deaths

@ Error bands show model uncertainty

treatment: A treatment: B

deaths
0:1
12+

o]
1

—
|

log odds of fewer deaths
<

r 8 9 10 11 7 8 9 10 11
Litter size
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Visualize log odds & models: Data + Model

o Display the fit of the parallel log odds model, ¢/,7¢ = W8 + /¢
5 treatment: A treatment: B
deaths
01

E 12+

3

s 11

g

£

©

5 07

ge;

o

)

o

One
-1 1 «— unusual
I | I I I I I I I I pOint
7 8 9 10 1 i 8 9 10 11
Litter size
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Visualize log odds & models: Data + Model

@ Simplify the model: fit only linear effects of 1itter
@ Im(logodds ~ as.numeric(litter)*treatment + deaths)
@ Error bands show smaller model uncertainty

treatment: A treatment: B

deaths
01
12+

—
|

log odds of fewer deaths

7 8 9 10 11 7 8 9 10 11
Litter size
29



Generalized log odds ratios

@ In any two-way, R x C table, all associations can be represented by a set
of (R—1) x (C — 1) odds ratios,

Mi/Nig1j N X Nigq jo

H,f“ J— p—
nr,_r—|—1,.fxnr-|—1._;—|—1 Ni1j X N j+1

Simpler in terms of log odds ratios:

;
log(fj) = (1 —1 =1 1 )log( nj N1 Nijer Nt jer )

o+ j C
i 1 -1 i 1 -1
" N Vel
1 P
! 11 )
™
R -1 1
local odds ratios ref="last’ odds ratios

30



Generalized log odds ratios

@ log#j ~ N(0, c?), with estimated asymptotic standard error:
N —1 —1 —1 —1 1/2
fT(ng HE!) — (nr}' T ni—|—1,j T nj.J._H + ”F—|—1.j—|—1) /

@ This extends naturally to ¢
more “control” variables.

il k In higher-way tables, stratified by one or

@ Many models have a simpler form expressed in terms of log(#jj).
@ e.g., Uniform association model
log(my) = pu+ MY + A7 +yaib; = log(0;) =

@ Direct visualization of log odds ratios permits more sensitive comparisons
than area-based displays.
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Models for log odds ratios: Computation

@ Consideran R x C x Ky x Kz x ... frequency table nj..., with factors
Ki.K> ... considered as strata.

@ Let n=vec(n;...) be the N x 1 vectorization of the table.

@ Then, all log odds ratios and their asymptotic covariance matrix S can be
calculated as:

e

e log(@) = Clog(n)
o S = Var[log(8)] = Cdiagn—' CT
where C is an N-column matrix containing all zeros, except for two +1

elements and two —1 elements in each row.
@ With strata, C can be calculatedas C = Cpec @ Ix, @ I, @ - - -

@ loddsratio () in ved provides generic methods (coef (), veov (),
confint (), ...)

@ plot () method gives reasonable data and model plots.

32



Models for log odds ratios: Computation

For example, for a 2 x 3 table, there are two adjacent odds ratios

¥ Age

## Sex Yng Mid 0Old
## M |30 |20 10
## F 5 115] 25
## log oddd rafjios for Sex and Age

44
44 Yng:Mid MidNold
44 1.504 1.204

These are calculated as:

21
~1 - 0 0 n
log(0) = Clog(n) = | o ¢ 11 q | g

33



Models for log odds ratios: Estimation

@ A log odds ratio linear model for the log(#) is

log(f) = X3

where X is the design matrix of covariates
@ The (asymptotic) ML estimates ﬁ are obtained by GLS via

3= (sz—‘x) T XTSlog (é‘)

where S = Var[log(0)] is the estimated covariance matrix

@ — Standard graphical and diagnostic methods can be adapted to this
case.

e visualization: full-model plots, effect plots, ...
e diagnostics: influence plots, added-variable plots, ...

Technical note: for simplicity, | use 1m () for WLS, with S-1 = diag(1/ASE?)
Should probably use nlme: :gls () instead

34



Example: Breathlessness & wheeze in coal miners

@ Ashford & Sowden (1970) gave data on the association between two
pulmonary conditions: breathlessness and wheeze, in a large sample of
coal miners

@ Age is the primary covariate

@ How does the association between breathlessness and wheeze vary with

age”?

ftable (CoalMiners)

ik Age 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-
## Breathlessness Wheeze

## B W 23 54 121 169 269 404 406 3
ik NoW 9 19 48 54 88 117 152 1
## NoB W 105 177 257 273 324 245 225 1
ik NoW 1654 1863 2357 1778 1712 1324 967 5

35



Example: Breathlessness & wheeze in coal miners

fourfold (CoalMiners, mfcol=c(Z,4), fontsize=18)

Age: 25-29

heeze: W

Age: 30-34

heeze: W

e 35-30
hesze: W

i

m m m m
m o =] o m =]
7 <= < < =
= = = = % £
2 3 3 - 3
o o 5 257 5 @ 273 5
Wheeze: NoW Wheeze: NoW Wheezs: NoW Wheeze: NoW
ﬁge:45—49 ﬁge:SD—ﬁd ﬁﬂe:ﬁﬁ—ﬁﬁ ﬁ%ezﬁﬂ—ﬁd
heeze: W heeze: W heeze: W ‘heeze: W

w| 26 8s B 40 I 40 B o 37 106 |B
p = .. = .. =z .. =
g 2 g g 2 g
7] C [t C w c
{7+ ol
= = = = & y =
: 3 2 R :
m 4 = — = m =
324 12 |5 o 5 132 26 |5
Wheeze: NoW Wheeze: NoW Wheeze: NoW Wheeze: NoW

@ There is a strong + association at all ages
@ But can you see the trend?
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Coal miners: Log odds & models

(lor.CM <-— loddsratio(CoalMiners))

## log odds ratios for Breathlessness and Wheeze by Age
ki

## 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64

## 3.695 3.398 3.141 3.015 2.782 2.926 2.441 2.638

How does LOR vary with Age?
@ Uniform association: In(#) = 3
@ Linear association: In(#) = 3o + 3; Age
@ Quadratic association: In(#) = 5y + 31 Age + 32 AQEE

Fit models using WLS:

a.frame (lor.CM)
age <- seqg(25, 60, by = 5)
CM.mod0 <-— Im(LOR = 1, weights=1/ASE"2, data=lor.CM.df)
CM.modl <- 1m(LOR = age, weights=1/ASE"2, data=lor.CM.df)

CM.mod2 <- Im(LOR ~ poly(age,2), weights=1/ASE"2, data=lor.CM.df)
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Coal miners: LOR plot

Plot log odds ratios and fitted regressions: The trend is now clear!

CoalMiners data: Log odds ratio plot

40

35

Log odds ratio: Wheeze x Breathlessness
3.0
|

2.5

I I I [ [ I I I
25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64
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Coal miners: Model comparisons

Standard ANOVA procedures allow tests of nested competing models:
anova (CM.mod0, CM.modl, CM.modZ)

## Analysis of Variance Table

ik

## Model 1: LOR " 1

## Model 2: LOR ~ age

## Model 3: LOR = poly(age, 2)

¥ Res.Df RSS Df Sum of Sqgq F Pr(>F)

¥ 1 7 25.61

% 2 6 6.34 1 19.28 17.23 0.0089 =*=

¥ 3 5 5.60 1 0.74 0.66 0.4525

¥ ——

## Signif. codes: 0 "x%x' 0.001 "x+' 0.01 '+' 0.05 '"." 0.1 " "' 1

(vedExtra::LRstats () gives direct tests of each model, and AIC, BIC)
The linear model, In(#) = 5o + 51 Age, gives the best fit.
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Going further: Bivariate response models

@ In this example, breathlessness and wheeze are two binary responses
@ A bivariate logistic response model fits simultaneously

e the marginal log odds of each response, 14, ¢ vs. predictors (x)
e the joint log odds ratio, @42, vs. X

@ This model has the form

n log odds; (x) U1 X! 31
n(x)=1| 12 | = logodds,(x) | = o = | Xx)3
M2 Iog OR12(J{) |CIQ 12 X1T2|i312

where X1, Xz, X12 C X
@ For example, with one x, the following model allows linear effects on log
odds, with a constant log odds ratio

1 a1+ B1X

7)o = | a4+ [Fox ‘ (1)
M2 IDQ{H)
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Calculating...

Logits and log odds for a bivariate response can be calculated with vcdExtra::blogits()

data (coalminers, package = "VGAM")
coalminers <- transform(coalminers, Age = (age - 42) / 5)

logitsCM <- vcdExtra::blogits(coalminers[, 1:4], add = 0.5)
colnames (logitsCM) [1:2] <- c("logitB", "logitW")
logitsCM <- cbind(logitsCM,
coalminers|[, c("age", "Age")])
logitsCM

logitB logitW logOR age Age

1 -4.736 -2.868 3.20 22 -4
2 =-3.977 -2.557 3.66 27 -3
3 -3.317 -2.094 3.38 32 -2
4 -2.733 -1.848 3.13 37 -1
5 -2.215 -1.420 3.01 42 0
6 -1.739 -1.109 2.78 47 1
7 -1.101 -0.797 2.92 52 2
8 -0.758 -0.572 2.44 57 3
9 -0.319 -0.226 2.63 62 4
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Linear model for log odds and log odds ratios

Log Odds or Odds Ratio

log OR

(BIW)/(Blw)

Log odds & LORs have
o similar scales, so it is

* not terrible to plot
them together

0.5

0.25
Probability

0.05

Io.01

40 a0 60
Age
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Log Odds or Odds Ratio

Linear model for log odds and log odds ratios

M
(

BIWN(EIw)

025 a5

005

oo

This data + model plot has a simple in-
terpretation:

@ Prevalence of breathlessness and
wheeze both increase with age

@ Breathlessness is less prevalent
at young age, but increases faster

Probability

@ Their association decreases
approx. linearly, but is still strong
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Quadratic model for log odds and log odds ratios

Log Odds or Odds Ratio

log OR
(BIWN(Bw)

005 01 0.25 a5

Probability

0.m

@ Allowing quadratic fits in age
serves as a sensitivity check

@ The story is pretty much the same
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Plotting ...

With the data in this form, we can use matplot () to plot each column against age

matplot (age, logitsCM[, 1:3], type = "p",

col = col, pch = pch, cex = 1.2, cex.lab = 1.25,

xlab = "Age", ylab = "Log Odds or Odds Ratio")
abline (Im(logitsCM[,1] ~ age), col = col[l], 1lwd = 2)
abline (Im(logitsCM[,2] ~ age), col = col[2], 1lwd = 2)
abline (Im(logitsCM[,3] ~ age), col = col[3], 1lwd = 2)
To plot the quadratic fit, simply use ‘-‘“w———g——'——_._ﬁ,,___r__ .

(BIWN(BIw) T

Im(logitsCM[,1] ~ poly(age,?2)

05

025

But: this is NOT a model. It simply fits
each set of odds separately

Log Odds or Odds Ratio

Probability

005

0.0

«+5



Fitting: VGAM::vgIim()

VGAM::vglm() can fit a wide class of models for a vector of multivariate responses

e The familybinom?2 () is used for bivariate logistic models

* Anargument zero= allows the logit or odds ratio submodels to be constrained to
intercept-only

cm.vglm <- vglm(cbind (nBnW, nBW, BnW, BW) ~ Age,
binom2.or (zero = NULL), data = coalminers)
exp (coef (cm.vglm, matrix = TRUE))

logitlink (mul) logitlink(mu2) loglink (oratio)
(Intercept) 0.104 0.226 20.530
Age 1.673 1.385 0.877

Each 5 years of age:

* Multiplies odds of breathlessness by 1.67, a 67% increase
* Multiplies odds of wheeze by 1.38, a 38% increase

* Multiplies the OR for association by 0.88, a 12 % decrease
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Plotting the model fit

VGAM::fitted() returns the fitted values on the probability scale
VGAM::depvar() returns the observed values on the probability scale

> P <- fitted(cm.vglm) The plot is made using matplot()
> colnames (P) <= c("bw", "bW",
"Bw", "BW")
> P
bw bW Bw BW

1 0.94 0.049 0.0046 0.0085 .
2 0.91 0.064 0.0070 0.0148 '
3 0.88 0.080 0.0105 0.0254
4 0.84 0.097 0.0158 0.0428 - 06
5 0.79 0.114 0.0239 0.0704 =

2

O 04
You can get these on the logit scale using o
the inverse logit function, glogis() 0o -
LP <- glogis (P) 0.0 -

LY <- glogis(Y) | | | I |

(age -42)/5 47



Other possibilities

We can also model the relations with age as a quadratic, cubic, ...

cm.vglm?2 <- vglm(cbind(nBnW, nBW, BnW, BW) ~ poly(Age,2),
binom2.or(zero = NULL), data = coalminers)

VGAM also implements vector generalized additive models, fit using vgam()

cm.vgam <- vgam(cbind(nBnW, nBW, BnW, BW) ~ s(Age, df = 2),
binom2.or(zero = NULL), data = coalminers)
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Example: Attitudes toward corporal punishment

A four-way table, classifying 1,456 persons in Denmark (Punishment data in
ved).

@ Attitude: approves moderate punishment of children (“moderate”), or
refuses any punishment (“no”)

@ Memory: Person recalls having been punished as a child?
@ Education: highest level (elementary, secondary, high)
@ Age group: (15-24, 25-39, 40+)

Age 15-24 25—-39 40+

Education  Attitude Memory Yes No Yes No Yes No
Elementary No 1 26 3 46 20 109
Moderate 21 93 41 119 143 324

Secondary  No 2 23 8 52 4 44
Moderate 5 45 20 84 20 56

High No 2 26 6 24 1 13
Moderate 1 19 4 26 8 17
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Attitudes: Questions

Interest focuses on several questions:

@ How does Attitude toward punishment depend on Memory, Education
and Age”?

o Model log odds approve of moderate corporal punishment
e Standard logit model:

glm(attitude ~ memory + education + age, data=Punishment,
weight=Freq, family=binomial)

@ How does association between Attitude and Memory vary with Education
and Age?
e Model log odds ratio (Attitude, Memory)
e Visualize: LOR plots
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Log odds model for attitude

Fit the main-effects model for Attitude on other predictors:
pun.logit <- glm(attitude ™ memory + education + age,
data=Punishment, weight=Freq, family=binomial)

Anova (pun. logit)

## Analysis of Deviance Table (Type II tests)

ki

## Response: attitude

i LR Chisqg Df Pr(>Chisq)

## memory 29.5 1 5.6e—-08 **%*

## education 50.3 2 1.2e-11 ##=%

## age 0.6 2 0.73

#H -

## Signif. codes: 0 '"x*x' 0.001 '"=x+' 0.01 '+' 0.05 '.'" 0.1 " " 1

@ Only Memory and Education have significant effects
@ A more complex model with all two-way interactions showed no
improvement
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Attitude: Effect plots

@ Model plots, showing fitted values for high-order terms in any model
@ Other predictors averaged over in each plot
@ Simple interpretation:

@ Those who remembered punishment as children more likely to approve

o Approval decreases with education
o No effect of age

memeory effect plot education effect plot age effect plot
| 1 | | | | 1 |
—~ 085 = —~ 085 = —~ 085 - =
o [ o
T ) T
o 080 - - o 0.80 - - @ 080 - -
= = =
o o o
E 075 4 - E 075 1 - E o075 4 -
i il i .-\.————.
5 070 = o 070 = 3 070 =
= 3 =
£ 065 - = £ 065 = £ 065 =
< 060 - < 060 - < 060 -
o o o
055 - = 055 = 055 - =
050 - , 050 - | | 050 , |
yes no glementary  secondary high 15-24 25-39 40+
memory education age
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Association of attitude with memory: Fourfold plots

age = 15-24 age = 15-24 age = 15-24
education = elementary education = secondary education = high
mory . pas T PR TRy R

2

atihida na

2

AT O T O B

W
2

II
21
I3 ] 4k

aititude: maderate

aititude: maderate

age = 25-39

age = 25-39

age = 25-39

education = elementary

education = secondary

education = high

Ty s

THRTICY. RS

THTIENY | RS

T Oa 00 At

aititude: moder abe

aititude: moder abe

age = 40+

age = 40+

education = elementary

education = secondary

[E——

T T O ras

THRTIEN Y. RS

madarabe

atiude

madarabe

atiude

How does the association of attitude
and memory vary with education
and age?

Each fourfold plot visualizes the log
odds ratio between them

What’s going on here?
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Log odds ratio plot

(lor.pun <- loddsratio(punish))

## log odds ratios for memory and attitude by age, education
*

W education

## age elementary secondary high
* 15-24 -1.7700 -0.2451 0.3795
ik 25-39 —-1.6645 -0.4367 0.4855
* 40+ —0.8777 -1.3683 -1.8112

log odds ratios for attitude and memory by education, age

age
& 15-24
W 2530
& 404

@ Structure now completely clear
@ Little diff** between younger groups
@ Opposite pattern for the 40+

@ Fit an LOR model to confirm
appearences (SEs large)!

LOR({atttude / memary)

I I I
elementary secondary high

education



* Logit models for a binary response generalize readily
to a polytomous response

= —>Models for log odds, familiar interpretation
®" Handles 3+ way table, ordinal variables
= Simple plots for interpretation

* Generalized odds ratios handle bivariate responses
= Simple linear models for LOR

= Easy to model log odds for each response and the LOR
simultaneously

= Easy to visualize results

55



	Models & graphs for log odds and log odds ratios
	Today’s topics
	Main ideas
	Logit models  Log odds models
	J responses  J-1 contrasts/logits
	2-way example: Hospital visits
	Exploratory plots: Doubledecker
	Exploratory plots: ca
	Models for log odds
	Models for log odds
	Fit some models
	Ordinal variables
	Visualizing log odds and models
	Visualizing log odds and models
	Three-way+ tables: Log odds
	Three-way+ tables: Log odds
	3-way example: Mice depletion data
	Mice data: mosaic plot
	Mice data: MCA
	Calculating log odds
	Calculating log odds
	Calculating log odds
	Mice data: Log odds
	Mice data: Fit models
	Visualize log odds & models: Data plot
	Slide Number 26
	Visualize log odds & models: Smoothing
	Visualize log odds & models: Data + Model
	Visualize log odds & models: Data + Model
	Generalized log odds ratios
	Generalized log odds ratios
	Models for log odds ratios: Computation
	Models for log odds ratios: Computation
	Models for log odds ratios: Estimation
	Example: Breathlessness & wheeze in coal miners
	Example: Breathlessness & wheeze in coal miners
	Coal miners: Log odds & models
	Coal miners: LOR plot
	Coal miners: Model comparisons
	Going further: Bivariate response models
	Calculating…
	Linear model for log odds and log odds ratios
	Linear model for log odds and log odds ratios
	Quadratic model for log odds and log odds ratios
	Plotting …
	Fitting: VGAM::vglm()
	Plotting the model fit
	Other possibilities
	Example: Attitudes toward corporal punishment
	Attitudes: Questions
	Log odds model for attitude
	Attitude: Effect plots
	Association of attitude with memory: Fourfold plots
	Log odds ratio plot
	Summary

