The Last Waltz

Psy 6136
Categorical Data
Analysis

°here did we stat? f]
* What have I tried to teach?
* What d|d you Iearn?
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Start with descriptive, hypothesis testing
methods, then progress to model-based methods

Sieve plots, mosaic plots, spineplots,
Visual tools for thinking &
Correspondence analysis: best 2D

understanding summary
Effect plots, Data + Model plots

Build from simple, loglinear models to more
complex ones

* Categorical data involves some new ideas
® Discrete variables: unordered or ordered
® Counts, frequencies as outcomes
* New / different data structures & functions
® tables — 1-way, 2-way, 3-way, ... table(), xtabs()
® similar in matrices or arrays matrix (), array()

= datasets:
* frequency form
* case form

* Graphical methods: often use area ~ Freq
® Consider: graphical comparisons, effect order
* Models: Most are = natural extensions of Im()




Categorical data: Structures

Categorical (frequency) data appears in various forms
* Tables: often the result of table () orxtabs ()

= 1-way ando comparo  ranvicess
= 2-way—2x2,rxc = R?: 2 L margine
" 3-way LREBE
= Matrices: matrix (), with row & col names  »2——]
* Arrays: array (), With dimnames () l e “

* Data frames
® Case form (individual observations)

= Frequency form

Effect ordering: Frequency tables

o Effect ordering and high-lighting for tables

Table: Hair color - Eye color data: Eflect ordered

Hair color
Eye color | Black Brown Red Blond
awn EE 119 2% 7
Hazel | s 54 14 10
Green 5 29 14 16
Blue 20 B4 17 ESE
Model: fnd ndorlco \Ha.r|[Eyo|\ B 138 25
|"Color coding: =1
nin eachcell; [ - e:pecled n er.peﬂed

The pattern is clearer when the eye colors are permuted: light hair goes with
light eyes & vice-versa

1-way tables: graphs

For a particular distribution in mind:
= Plot the data together with the fitted frequencies

= Better still: hanging rootogram: freg on sqrt scale; hang bars from
fitted values
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Data, pictures, models & stories
Now, tell the story!
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02: Discrete distributions

* Discrete distributions are the building blocks for
categorical data analysis

= Typically consist of basic counts of occurrences, with
varying frequencies
" Most common: binomial, Poisson, negative binomial
® QOthers: geometric, log-series
* Fit with goodfit(); plot with rootogram()
® Diagnostic plots: Ord_plot(), distplot()
* Models with predictors
® Binomial — logistic regression
® Poisson — poisson regression; logliner models
® These are special cases of generalized linear models

Examples: binomial

Human sex ratio (Geissler, 1889)- Is there evidence that Primale) = 0.5%

Saxony families

Saxony families with 12 children having k = 0.1,...12 sons

k ‘0 1 2 3 4 5 [ 7 8 8 101112
m |3 24 104 286 670 1033 1343 1112 829 478 181 45 7

é_?g=U HU—:

st of males

NumBer of tamises

Common discrete distributions

Counts, k PriX=k) Mean,
E(X)

Bemoullip)  Successinl k={0,1}  pF(L—p)*¥ P p-p)
trial

snomialnp) #successes 0,10 (g)eti-ptE np np(l—p)
in n trials

Geometric(p]  #oftriglsto 0,12, .. pQ —p)Ji i i-p
14 success » I

) Boftialsto 0,12 (“*F-lwa-pr k(-p)  k(-p)

binomiallk,p) K success . ) Ci

Paisson(i) #ofevents 0,12, .. Aeg=h R N
in interval 7

Logseries(pl  Hoftypes 0,12, 7
observed nlog(l- 5)

Graphing discrete distributions Ord plots: Examples

Robust
distribution
plots

Rootograms

l Ord plots

%

Ord plots for the Saxony and Federalist data

> 0rd_plotisaxony, main = "Families in Saxany”, gp=gparicer=1), peh=1]
> Grd_ploteederalist, main = "Instances of 'may’in Federalist papers”, gp=gpar|cex=1), pch=18)

[e— enkirnces o ey i el papers

PR—
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03: Two-way tables

* Two-way tables summarize frequencies of two
categorical factors

® 2 x 2:aspecial case, with odds ratio as a measure

® rx c: factors can be unordered or ordered

B rx ¢ x k: stratified tables, r x ¢ with groups or circumstances
* Tests & measures of association

= Pearson x?, LR G2: general association

= More powerful CMH tests for ordered factors
* Visualization

= 2 x 2: fourfold plots

® rx c: sieve diagrams, tile plots, ...

®= More graphical methods to come ...




Measures of association

® 2x2tables
= Odds ratio

Visualizing association

[EE————

_ odds(B, | 4,) oyl Jroe——
T odds(B, | 4,)  my, /iy
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= Analog of correlation P i,
= g?= % of variance

* rxctables

® Cramer’s V — generalization of phi

Cramer V. = __ -
iy Lo |
® Pearson contingency coef
-
7
Pearson C =
rin =

CMH tests for ordinal factors

Three types of CMH tests:

Observer agreement

@ Inter-observer agreement often used as to assess reliability of a
subjective classification or assessment procedure
@ — square table. Rater 1 x Rater 2
» Levels: diagnostic categories (normal, mildly impaired, severely impaired)

Non-zero correlation
@ Use when both row and column variables are ordinal.
@ CMH 2 = (N — 1)r?, assigning scores (1, 2, 3, ...}
@ most powerful for linear association

@ Agreement vs. Association: Ratings can be strengly associated without
strong agreement

Row/Col Mean Scores Differ
@ Use when only one variable is ordinal

@ Analogous to the Kruskal-Wallis non-parametric test (ANOVA on rank
scores)

@ Marginal homogeneity: Different frequencies of category use by raters
affects measures of agreement

@ Measures of Agreement:
@ Intraclass correlation: ANOVA framework— multiple raters!
@ Cohen’s x: compares the observed agreement, Ps = 5~ py, to agreement
CRnETalAssatiaion expected by chance if the two observer's ratings were indspendsnt,
; Po= TP puie
@ Use when both row and column variables are nominal. T

P, - P,
@ Similar to overall Pearson y? and Likelihood Ratio G°. "= 107_}7‘5

0= &G, 4) [y . "
i [ A
= Phi coefficient e Pty =gty i/ ¥ .

04: Loglinar models, mosaic displays

* Mosaic plots use sequential splits to show marginal and
conditional frequencies in an n-way table
= Shading: sigh and magnitude of residuals — contributions to x?
= Shows the pattern of association not accounted for
= Permuting rows/cols often helps
* Loglinear models
= Express associations with ANOVA-like interaction terms: A*B, A*C
* Joint independence: [AB][C]=A*B+C
* Conditional independence: [AC][BC]=ALB | C
= Fitting models = “cleaning the mosaic”
= Response models: include all associations among predictors
* Sequential / partial plots & models
= Sequential: Decompose all associations: V,; V,|V;; V5[{V,, V), ...
= Partial: Decompose conditional associations: [V, V, ]| V;={a, b, ...}

Loglinear models: Perspectives Model-based methods: Fitting & graphing
Loglinear models grew up and developed from three
residuals{mod) e

different ideas and ways of thinking about notions of
independence in frequency data

Loglinear approach: analog of ANOVA; associations are ™

e i

interactions iopLt %;é“w model
= glm() approach: analog of general regression model, for deta el object |

log(Freq), with Poisson dist™of errors —
* Logit models: Loglinear, simplified for a binary response (

model .
data . object method output
function

Reduced models Fitting & visualizing models

* For a three-way table there is a range of medels between mutual In the model formulas, I'm
independence, [A][B][C], and the saturated model, [ABC] mesaic[med, main="Titanic: Mede! [C][G][AI[SI") using variable numbers 1-4
for Class, Gender, Age and
Survived

= Each model has an independence interpretation:
[A][B] = ALB = Aindependentof B
Special names for various submodels

Titanic: Model [C)[GI[A][S]

o ”_l I_ ; o The independence model

serves only as a
background for the total
Table: Log-linear Models for Three-Way Tables associations in the table

E—— B

Model Model symbol  Interpretation . . .
Mutual independence TAIBICT ALBLC i i Let's clean this mosaicl
Joint independence 1AB|[C] EN R
Conditional independence  |AC]|EC] (ALB)|C

118C] m:° o = 42611
All two-way associations  [AB|[AC|[BC]  homegeneous assoc, R ‘
Saturated model |ABC| ABC interaction i {

r—

05: Correspondence analysis

@ CA is an exploratory method designed to account for association
(Pearson \?) in a small number of dimensions

@ Row and column scores provide an optimal scaling of the category levels
@ Plots of these can suggest an explanation for association

@ CA uses the singular value decomposition to approximate the matrix of
residuals from independence

@ Standard and principal coordinates have different geometric properties,
but are essentially re-scalings of each other

@ Multi-way tables can be handled by:

e Stacking approach— collapse some dimensions interactively to a 2-way
table
e Each way of stacking — a loglinear model

o MCA analyzes the full n — way table using an indicator matrix or the Burt
matrix

Given a new 2-way table, my first thought is nearly always: plot (ca (mytable))




plot (haireye.ca, lines=TRUE)

Black

-~ o |a
g ° ) B
] - ue jond
ES A .

= Brown e
a 2 .
§ ° 1
S Hhzel
7 o 2Pz
E T

Red="
= - Gree
L

o - &

3

T T
-04 02 00 02 04 06 08

Dimension 1 (89.4%)

.

Rough interpretation: row//col paints “near” each other are positively
assediated (independence residuals d, »» 0)

Dim 1: 88.4% of 32 (dark — light)

Dim 2: 9.5% of ¥* [Red/Green vs. others)

Multi-way tables: Stacking

A 3-way table of size > Jx K can be sliced and stacked as a two-way table in
several ways

.

.

@ The variables combined are
treated “interactively”
@ Each way of stacking
corresponds to a loglinear model
o (1% J) % K — [ABJ[C]
1 o | x (Jx K) = [A][BC]
e J o (I K) - [BIIAC]

J @ Only the associations in separate
[ 1terms are analyzed and
displayed

@ The stacked table is analyzed
with ordinary CA of the two-way
stacked table

(1 )x K table
1xJ x K table o

Singular value decomposition

The singular value decomposition (SVD) is a basic technique for factoring a matrix and
for matrix approximation
For an m x n matrix X of rank r < min{m, n) the SVD of Xis:

X=UAVT

Shrenvaions Singular Varigbies
A n u n a 3
X U ke
P!
n
g
m m 1
men mn men nin
data Row scores. Singular Col scores

wallies

Multiple correspondence analysis

@ Extends CA to n-way tables
@ Useful when simpler stacking approach doesn’t work well, e.g.. 10
categorical atlitude items
@ Analyzes all pairwise bivariate associations. Analogous to:
o Correlation matrix (numbers)
e Scatterplot matrix (graphs)
o All pairwise 17 tests (numbers)
& Mosaic matrix (graphs)

@ Provides an optimal scaling of the category scores for each variable
@ Can plot all factors in a single plot

@ An extension, joint correspondence analysis, gives a better account of
inertia for each dimension

06: Logistic regression

* loglm() provides only overall tests of model fit

* Model-based methods, glm(), provide hypothesis
tests, Cls & tests for individual terms
* Logistic regression: A glm() for a binary response
® |inear model for the log odds Pr(Y=1)
= All similar to classical ANOVA, regression models
* Plotting
® Conditional, full-model plots show data and fits
= Effect plots show predicted effects averaged over others
* Model diagnostics
® |nfluence plots are often informative

Modeling approaches: Overview

Association models
* Loglinear models *  Binary response
[contingency table farm) *  Categorical predictors: logit models
[admit][Gender Dept] Iogit{Admit) ~ 1
/‘ [Admit Dept][Gender Dept] logit{Admit) ~ Dept
( [AdmitDapt][AdmitGender][GenderDent] |/ logit{Admit] ~ Dept + Gender
\
= Poisson GLMs
\ [Frequency data frame)
Freq ™ Admit + Gendsr * Dept
Freq ™ Admit*Dept + Gender*Dept
Freq ™ Admit*(Dept + Gender] +
ender® Dept

Response models

= Continuous/mixed predictors
Logistic regression models [
Pr{Admit] ~ Dept + Gender Az + GRE

Polytomous response
*  Ordinal: proportional odds madel
Improve ~ Age + Sex + Trestment
= Ordinal variables = General multinomial model
Freq  right + left + Diag{rizht, left] | WamenWork ™ kids + Husbandincome
Freq ~ right + left + Symmiright, left) | |

Full-model plot

Plotting on the logit scale shows the additive effects of age, treatment and sex
NB: easier to compare the treatment groups within the same panel

'
|
|
|

Female Male
t el
G 25
K
@ / . Treatment
2 oo — Placebn
B — = Treated
2, :
- ~

These plots show model uncertainty (confidence bands)
Jittered points show the data

Linear regression vs Logistic regression

OLS regression: Logistic regression:
+ Assume y|x ~ N(0, o%) = Assume Pr(y=1|x) ~ binomial(p)
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} { A
1
T 11 Gt i o e o e 13, o o s e i i
y linear with x ¥ ~ logit (x)

constant residual variance

non-constant residual variance ~ p (1-p)

robability(releasad]”,

)

citizan effect plot chacks effect plot

07: Logistic regression: Extensions

* Polytomous responses

" m response categories — (m-1) comparisons (logits)
= Different models for ordered vs. unordered categories

° Proportional odds model

= Simplest approach for ordered categories
= Assumes same slopes for all logits

* Fit with MASS::polr()

* Test PO assumption with VGAM::vgim()

* Nested dichotomies

= Applies to ordered or unordered categories
= Fit m— 1 separate independent models — Additive G2 values

* Multinomial logistic regression

= Fit m—1 logits as a single model
= Results usually comparable to nested dichotomies, but diff interpretation
= R:nnet::multinom()




Exploratory plots

Before fitting models, it is useful to explore the data with conditional ggplots

. Survival decreases with age for
sex both men and women
= Femsle
- M Wamen more likely to survive,
particularly the young

Conf. bands show the data is thin
at older ages

Survived

® Consider a logistic regression model for each logit:

logit(#y) = ey + x;.ﬁ None vs. Some/Marked

logit(tiz) = oz + Xj 32 None/Some vs. Marked
@ Proportional odds assumption: regression functions are parallel on the
logit scale ie., 3, = 3,

Proportional Odds Model

when response
catagorias are

{_‘ Ordered |»w‘ |Uncrdered |.‘\

\ N improenen 3 | HoR
Far zzmple | some | r

the analysis canuse |
v

Proportional
odds model !
Mested
dichotomies e
we model these logits = o= =
[ ) Emamner] i [ amind
[ croma (ke | [Eoms ] (i ]

Nested dichotomies: Interpretation

Write out the predictions for the two logits, and compare coefficients:
I Priworking)
Pr{not working)

log ( Pr{fulltime) ) ~ 3.478—0.107H$ — 2.652kids
Pr(parttime)

Better yet, plot the predicted log odds for these equations:

= 1336 - 0.042H$ — 1576 kids

Chidren absent Chikiron prozont

------

Fimed kg cdde
13 i
1/
Fimed log odde

08: Extending loglinear models

Loglinear models, as originally formulated, were quite general, but
treated all table variables as unordered factors
= The GLM perspective is more general, allowing quantitative predictors and

handling ordinal factors
= The logit model give a simplified approach when one variable is a

response
Models for ordered factors give more powerful & focused tests

= LxL,R,CandR+C models assign scores to the factors
® RC(1) and RC(2) models estimate the scores from the data
Models for square tables allow testing structured questions
= Quasi-independence: ignoring diagonals
= symmetry & quasi-symmetry
= theory-specific “topological” models
These methods can be readily combined to analyze complex tables

Logit models

For a binary response, each loglinear model is equivalent to a logit model
(logistic regression, with categorical predictors)
@ e.g., Admit L Gender |Dept (conditional independence = [AD][DG])
log myge = i+ M+ AP + AF + A0 + AD6
So, for admitted (i = 1) and rejected (i = 2), we have:
log myy = (il + A% + A+ A +MP Age 1)

log may = [l + 38 + AP+ AF + 4P + AD8 (2)

Thus, subtracting (1)-(2), terms not involving Admit will cancel:

Lic = logmy —log Mg = log(my/Max ) = log odds of admission
= (M- M)+ (P - M0
= o+ ‘J_D“" (renaming terms)

where, o overall log odds of admission; <.°e"' affect on admissions of

department :

Square tables Model comparison plots

Square tables arise when the row and celumn variables have the same categories,

often ordered
Spedial loglinear models allow us to tease apart different reasons for association

Wnoided distant vision dota

Hauser social mobility data

Visual acuity data

Models for ordered categories

Consider an A x C table having ordered categories
@ In many cases, the RC association may be described more simply by
assigning numeric scores 1o the row & column categories
@ For simplicity, we consider only integer scores, 1, 2, ... here
@ Thase models are easily extended to stratified tables

R:C model e df Formula
["Uniferm association | 7/~ | 1 13
Row effects a %) (-1
Col effects Pxb (J=-1)
Row+Caol eff Ja+iby [1+J4-23
RC(1) e N E .
e (I-1)(J—1) | mic

Unstructured (R:C) | ]

‘When there are more than a few models, a model comparison plot can show the
trade-off between goodness-of-fit and parsimony
= This sorts the models by both fit & complexity

Plot BIC vs. off

Can also use AIC, or
G2/ df in this plot

Plot on log scale to
emphasize diffs

2 ! quas among better

® . . models

)
2000

BIC (log scale

x . Rdisg G Quasi-symmetry!

Degrees of freedom

And, the winner is:

09: GLMs for Count Data

* GLMs provide a unified framework for linear models
= Different families, all estimated in the same way
® —link function and associated variance function

° For count data, starting from log(u) = X3, p| X~

Poisson:
® Qverdispersion — quasi-poisson, negative binomial

® Standard tools for assessing model fit
* Excess zero counts introduce new ideas & methods
= ZIP model: structural model for the Os
® Hurdle model: random model for Os, 2" model for Y>0
* In all this, we rely on data & model plots for
understanding




Canonical links and variance functions

= For every distribution family, there is a default, canonical link function
= Each one also specifies the expected relation between the mean and
variance

Comnon distributions i the exponcntial family wed with peneralized linear models

Choose a basic family:
+ Get a default, canonical link, g{u)
* Also get a variance function for free!

Quasi-poisson models

* The quasi-poisson model allows the dispersion, ¢, to
be a free parameter, estimates with other
coefficients

* The conditional variance is allowed to be a multiple
of the mean

Varly, [ )= dm

* This model is fit with glm() using family=guasinoisson

" The estimated coefficients Eare unchanged
= The standard errors are multiplied by ¢*

" Peace, order & good government is restored!

First, look at rootograms:

Foisson Negative binomial

One reason the Poisson doesn't fit: excess 0s (some never published?)

Q: What might some other reasons be?
Think back to assumptions: independent obs; constant probs; unmodelled vars

Models for excess zeros

Two types of models, with different mechanisms for zero counts

@ zero-inflated models: The responses with y; = 0 arise from a mixture of
structural, always 0 values, with Pr(y; = 0) = =; and the rest, which are
random Os, with Pr(y; = 0) =1 - =

@ hurdle models: One process determines whether y; = 0 with
Pr(y; = 0) = 7;. A second process determines the distribution of values
of positive counts, Pr(y; | yi > 0)

Zero-inflated Hurdle
¥ v
,7//\\1 - r N ex
™
“ ™y P 5
0 ¥ [ Y[v>0

10: Models for log odds & LORs

* Logit models for a binary response generalize readily
to a polytomous response
®= —>Models for log odds, familiar interpretation
® Handles 3+ way table, ordinal variables
= Simple plots for interpretation
* Generalized odds ratios handle bivariate responses

= Simple linear models for LOR

® Easy to model log odds for each response and the LOR
simultaneously

® Easy to visualize results

22

Your turn: Feedback?

23

What did you like/dislike about 61367

* Topics: what were the:

®" most interesting?
® most boring?
® Most challenging?

* What did you learn most from?
* What gave you the most difficulty?
* How does this relate to your own work?

24




Tips for next time ...

* What should I try to differently the next time?
®= More of X?
" Lessof Y?
= Aspects of how the course is structured?
® Evaluation?




