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My goals

(1]

2,

-

Start with descriptive, hypothesis testing
methods, then progress to model-based methods

Sieve plots, mosaic plots, spineplots,

Visual tools for thinking & |
Correspondence analysis: best 2D

understanding summary
Effect plots, Data + Model plots

Build from simple, loglinear models to more
complex ones



* Categorical data involves some new ideas
= Discrete variables: unordered or ordered
" Counts, frequencies as outcomes

* New / different data structures & functions
" tables — 1-way, 2-way, 3-way, ... table (), xtabs()
" similar in matrices or arrays matrix (), array()

= datasets:
* frequency form
* case form

* Graphical methods: often use area ~ Freq
" Consider: graphical comparisons, effect order

°* Models: Most are = natural extensions of Im()



Categorical data: Structures

Categorical (frequency) data appears in various forms
* Tables: often the result of table () or xtabs()

m 1—W3‘f Gender compansd ko handedness

= Joway—2x2, rxc Famas ';;i' &, margins

= 3-way "
* Matrices: matrix (), with row & col names —
* Arrays: array (), with dimnames () J e H

* Data frames —
® (Case form (individual observations) :

® Frequency form

1-way tables: graphs

For a particular distribution in mind:

= Plot the data together with the fitted frequencies

fitted values
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Data, pictures, models & stories

Now, tell the story!

Effect ordering: Frequency tables

@ Effect ordering and high-lighting for tables

Table: Hair color - Eye color data: EMect ordered

Hair color

Eye color | Black Brown Red Blond

Brown &8 118 26 ¥

Hazel | 15 54 14 10

Green 5 29 14 16

Blue 20 &4 17 EEN

Modal; Independence; [Hair][Eye] +* (9)= 138,29

[Color coding: Dl =2 =-1 0O 1 =2 el
R in each cell; n < expecilad n = expected

The pattern is clearer when the eye colars are permuted: light hair goes with
light eyes & vice-versa




02: Discrete distributions

* Discrete distributions are the building blocks for
categorical data analysis

= Typically consist of basic counts of occurrences, with
varying frequencies

" Most common: binomial, Poisson, negative binomial
" Others: geometric, log-series
* Fit with goodfit(); plot with rootogram()
= Diagnostic plots: Ord_plot(), distplot()
°* Models with predictors
= Binomial — logistic regression

" Poisson — poisson regression; logliner models
" These are special cases of generalized linear models



Examples: binomial

Human sex ratio (Geissler, 1883): |s there evidence that Primale) = 0.57

Saxony families

Saxony families with 12 children having ¥ = 0.1,...12 sons.
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Common discrete distributions

Bernoulli{p)

Einomialin,p)

Geometric(p]

MEE.
binomizl{k,p)

Poisson(i}

Log series(p}

Successinl
trial

H successes
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# of trials to
1% success

# of trials to
k' success
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¥ of types
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Graphing discrete distributions Ord plots: Examples

Ord plots for the Saxony and Federalist data

Robust
Rootograms Ord plots distribution
plots
:‘I I-,._ - - 1 "-'.__ —
allli, s |}

=Ord_plot{Saxony, main = "Families in Saxony”, gp=gparjcex=1|, pch=15]

= Ord_plot{Federalist, main = "Instances of 'may’ in Federalist papers”, gp=gpar|cex=1), pch=18)
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03: Two-way tables

°* Two-way tables summarize frequencies of two
categorical factors
= 2 x 2:aspecial case, with odds ratio as a measure
= rxc: factors can be unordered or ordered
" rxcxk:stratified tables, r x ¢ with groups or circumstances

* Tests & measures of association
= Pearson ¥?, LR G?: general association
"= More powerful CMH tests for ordered factors

* Visualization
= 2 x 2:fourfold plots
= rxc:sieve diagrams, tile plots, ...
®" More graphical methods to come ...



Measures of association

* 2 x 2 tables
® Odds ratio

= Phi coefficient
= Anzlog of correlation
= @?= % of variance

* rxctables

® Cramer’s V — generalization of phi

CMH tests for ordinal factors

Three types of CMH tests:

Mon-zero correlation

_odds(B,| 4,) m,/m,

G= =1L
0dds(B, | 4;) 1,/ ny

{ﬁ:?ﬁﬁ:_?ﬁ.:”n —=.

L W R

Cramer V. = ’7—
nminfr —1, ¢ -1)
Pearson C = / -
rn

a Use when both row and column variables are ardinal.
@ CMH x® = (N — 1)r2, assigning scores (1, 2, 3. ...}
@ most powerful for fnear association

Row/Col Mean Scores Differ

@ Use when only one varnable is ordinal

@ Analogous to the Kruskal-Wallis non-parametric test (ANOVA on rank

sCores)

General Association

@ Use when both row and column variables are nominal.
@ Similar to overall Pearson 2 and Likelihood Ratio G2,
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Visualizing association
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Observer agreement

@ Inter-observer agreement often used as to assess reliability of a
subjective classification or assessment procedure
& — square table, Rater 1 x Rater 2
e Levels: diagnostic categories (normal, mildly impaired, severaly impained)

a Agreement vs. Association: Ratings can be strongly associated without
strong agreement

@ Marginal homogeneity: Different frequencies of category use by raters
affects measures of agreement

@ Measures of Agreament:
o Intraclass cormalation: ANCVA framework— multipla raters!
e Cohen's x; compares the observed agreament, P = % oy, to agreement
expected by chance if the two observer's ralings were indapendant,
P: . E."—"- Pii-
_ B -F
"TACF



04: Loglinar models, mosaic displays

Mosaic plots use sequential splits to show marginal and
conditional frequencies in an n-way table
= Shading: sigh and magnitude of residuals — contributions to x>
= Shows the pattern of association not accounted for
= Permuting rows/cols often helps

Loglinear models

= Express associations with ANOVA-like interaction terms: A*B, A*C
* Joint independence: [AB][C]=A*B+C
* Conditional independence: [AC][BC]=ALB | C

= Fitting models = “cleaning the mosaic”

= Response models: include all associations among predictors

Sequential / partial plots & models
= Sequential: Decompose all associations: V; V,|V,; V;5|{V,, V., ...
= Partial: Decompose conditional associations: [V, V, ]| V5;=1{a, b, ...}

10



Loglinear models grew up and developed from three
different ideas and ways of thinking about notions of

Loglinear models: Perspectives

independence in frequency data

Reduced models

Loglinear approach: analog of ANOVA; associations are ™

interactions

glm() apprﬂach' analng cif general regression model, for

Logit models: Loglinear, simplified for a binary response

For a three-way table there is 3 range of models between mutual
independence, [A][B][C], and the saturated model, [ABC]

Each model has an independence interpretation:

[A][B] = ALB = Aindependent of B

Table: Log-linear Models for Three-Way Tables

Model-based methods: Fitting & graphing

imput
data

Model Model symbol  Interpretation
Mutual independence [AlB][E] ALBLC
Joint independence |AE]C] (AB) L

Conditional independence  [AC|[BC]
All two-way associations |AB||AC]|BC]
Saturated model |ABC]

(ALB)C

ABC interaction

homogeneous assoc,

data

/ residusls{mad)|—s "

imi) h
bol LT protimed)
multinom) object . l
coef{mad) .
confintimod)
model :
function object method output

Fitting & visualizing models

mosaicimodD, main="Titanic: i'.ﬂ{:-l:lel [C][G][A][S]”]

In the model formulas, I'm
using variable numbers 1-4
for Class, Gender, Age and

Titanic: Model [C[G][A1[S] Survived
Sax
I—” | [_ s 'f* The independence madel
serves only as a
l l- background for the total

associations in the table

Let's clean this mosaic!!

45
<%

Idote the woale of residuals:
+26---11

ko e



05: Correspondence analysis

@ CA is an exploratory method designed to account for association
(Pearson y?) in a small number of dimensions

e Row and column scores provide an optimal scaling of the category levels
o Plots of these can suggest an explanation for association

@ CA uses the singular value decomposition to approximate the matrix of
residuals from independence

@ Standard and principal coordinates have different geometric properties,
but are essentially re-scalings of each other

@ Multi-way tables can be handled by:

e Stacking approach— collapse some dimensions interactively to a 2-way
table

e Each way of stacking| — a loglinear model

o MCA analyzes the full n — way table using an indicator matrix or the Burt
matrix

Given a new 2-way table, my first thought is nearly always: plot (ca (mytable))

12



plot (haireye.ca, lines=TRUE)

Singular value decomposition

The singular value decomposition [EVD) is a basic technique for factoring a matrix and

for matrix approximation

— .y Elack
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§ o .
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L Hazel -
2 o al
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E ! Red
= P Graen
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Dimension 1 (89.4%)

+  Rough interpretation: row'col points “near” each other are positively
associated [independence residuals d, >=>0)

+ Dim 1: 89 4% of * (dark — light)

+ Dim 2: 9.5% of ¥* (Red/Green vs. others)

Multi-way tables: Stacking

& F-way table of size 1 = J = K can be sliced and stacked as & two-way table in
several ways

@ The variables combined are
treated “interactively”
@ Each way of stacking
corresponds to a loglinear model
o (I=J) =K = [ﬂB]lCJ
o 1% (J % K) = [A]BC)]
e Jx (= K) = [B]AC]

i1 Jox K Fable
I xJ x K table J

1 @ J
J @ Only the associations in separate
| ] terms are analyzed and
X J displayed

@ The stacked table is analyzed
with ordinary CA of the two-way
stacked table

For an m x n matrix X of rank r = min{m, n) the 5VD of Xis:

X=UAV’

Chsenafone Singular ariabies
i Walue a
- 4 JI_ u, L A L
‘
r
nl 0
g
me ] m
iR L] H*R e
data Row scores Singular Col scores
walies

Multiple correspondence analysis

@ Extends CA to n-way tables

@ Useful when simpler stacking approach doesn’t work well, &.g., 10
categorical attitude items

@ Analyzes all pairwise bivariate associations. Analogous to:

Correlation matrix (numbers)

Scatterplot matnx (graphs)

All pairwise +* tests (numbers)

Maosaic matrix (graphs)

@ Provides an optimal scaling of the category scores for each variable
@ Can plot all factors in a single plot

@ An extension, joint correspondence analysis, gives a better account of
inertia for each dimension



06: Logistic regression

loglm() provides only overall tests of model fit

Model-based methods, glm(), provide hypothesis
tests, Cls & tests for individual terms

Logistic regression: A glm() for a binary response
= |linear model for the log odds Pr(Y=1)
= All similar to classical ANOVA, regression models

Plotting
" Conditional, full-model plots show data and fits
= Effect plots show predicted effects averaged over others

Model diagnhostics
" |Influence plots are often informative

14



Linear regression vs Logistic regression

Modeling approaches: Overview

Association models Response models
. i del A OLS regression Logistic regression
Loglinear madels Binary response ' « Assume y|x ~ N[0, o) s Assume Priy=1|x) ~ binomial(p)
[contingency table form) *  Categornical predictors: logit models |
[admit][Sender Dept] logit[admit) ~ 1
[admit Dept][cender Dept] logit(admit) ~ Dept "
admitDept][Admitcender][senderDept I/ logit[admit) ~ Dept + Gend - 1
[ miEep: A EGEnden| [EE = Ept] jf ) B G BT | s

*  Poiszon GLMs / II *  Continuous/mixed predictors ;;'__ 7

[Frequency data frame) f(({ I e . ky,-"'f ¥ { SU

Freq ~ Admit + Gender * Dept I, madmit] ~ Dept + Gender + &g + GRE | i ’z | .-

Freq ™ admit*Dept + Gender*Dept | -: o™ - ! !

. A2
Freq ~ Admit*{Dept + Gender] + [* Polytomous response | il A
Gender* Dept |I *  ordinal: proportional odds modsel |, : [ e
IMprove ™ AgZe + Sex + Trestment | L __..:I;' = ] e =

- 'Drd“'lal 'u'arlEIbIﬂ | - GErIErEI mUItlanIEI deEI Fig- L1, Craphical repressnratcd of & aimpls sl Rodirad regrosser Fig 11, Graphicad roessntaion o & umps res bgak ereioen

Freq ™ right + b=ft + Diagiright, left] \ WamenWork ™ Kids + Husbandincome

Freq ™ right + left + Symm{right, left) f | . . .

L | y linear with x ¥~ logit (x)
constant residual variance non-constant residual variance ~ g (1-p)

Full-model plot

Plotting on the logit scale shows the additive effects of age, treatment and sex
MNE: easier to compare the treatment groups within the same panel

Femaks [ Mala . ot (arrests.effects, ylab="Frokbability(zelea=ad]™; ..]
. v aahaigs - . O employed effect plot citizen effect plot chechs effect plog
B 25- I .|
= -
T B
2] / Treatment £
.
& 0.0 Placebo Fomi® . j . .
B == Treabed M ™ Ve
iy aen ark
2 s
— colouryear effect plot colourage eflect plot
" , y - . . - L B A5 M35 S8 B)45
" N 3 Ccioer = Bk | cotpar = ‘Whis | T | Compes = Bl | cosger = Visie |
i 0 | [ 70 1 40 G0 ] % 0% | g
' =
Age H . £

These plots show model uncertainty (confidence bands)
Jittered points show the data

s 5025 WS B

P g



07: Logistic regression: Extensions

Polytomous responses
" m response categories — (m-1) comparisons (logits)
= Different models for ordered vs. unordered categories
Proportional odds model
= Simplest approach for ordered categories
= Assumes same slopes for all logits
* Fit with MASS::polr()
* Test PO assumption with VGAM::vgIm()
Nested dichotomies
= Applies to ordered or unordered categories
" Fit m— 1 separate independent models — Additive G2 values
Multinomial logistic regression
" Fit m—1 logits as a single model
= Results usually comparable to nested dichotomies, but diff interpretation
= R:nnet::multinom()

16



Exploratory plots
when response
Ordered |, Unordered |-
)
/
f
/

Before fitting models, it is useful to explore the data with conditional ggplots
categories are l(—
100] @] M apmz Tt s T Survival decreases with age for \ Mo inprouesnsnt [ NDP
seR both men and women Far examplz | Some ( Lieral
== Famak '.I tarked | Canseryative
- Mo Women more likely to survive, { Green J‘I
r particularly the young Y |'
the analysis can use \ f Multinomial logistic
Conf. bands show the data is thin . i
E at older ages SOEEIIEANE 'II e
= 0507 odds model J
@
Mested
dichoctomies | 3 oy
437 we model these logits l = — Ir:_:
[ [Hare) Eomeormens | ral=Tz——1
0001 pf I | oo ersome ] [ased | (o) (e

0 20

Nested dichotomies: Interpretation

@ Consider a logistic regression model for each logit:

logit{#g; ) = oy + x,l’, e Mone vs. Some'Marked
. , Writ t the predictions for th logits, an mpar flicients:
logit(#z) = 0z + X} B None/Some vs. Marked e out the predictions for the two logits, and compare coefficients
) . . . P rkin
@ Proportional odds assumption: regression functions are parallel on the (%) = 1.336 - 0.042H% — 1.576 kids
logit scale ie., & = 3, r{no wcr. ing)
Proportional Odds Modek | ( F': ;2:'::::"&}] ) ~ 3478 — 0.107H$ — 2,652 kids

Brpval)

d

Better yet, plot the predicted log odds for these equations:
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08: Extending loglinear models

Loglinear models, as originally formulated, were quite general, but
treated all table variables as unordered factors

" The GLM perspective is more general, allowing quantitative predictors and
handling ordinal factors

"= The logit model give a simplified approach when one variable is a
response

Models for ordered factors give more powerful & focused tests
= |LxL,R, CandR+C models assign scores to the factors
"= RC(1) and RC(2) models estimate the scores from the data
Models for square tables allow testing structured questions
® Quasi-independence: ignoring diagonals
= symmetry & quasi-symmetry
= theory-specific “topological” models

These methods can be readily combined to analyze complex tables

18



Logit models Models for ordered categories

For a binary response, each loglinear model is equivalent to a logit model Consider an A = C table having ordered categories

(logistic regre S,Sinj" with categarical ple,'dicmrﬁ:' @ In many cases, the AC association may be described more simply by
@ e.g., Admit L Gender | Dept {conditional independence = [AD][DG]) assigning numeric scores to the row & column categories.

log mp =+ A0 + AP + AF + M0 + a0¢ @ For simplicity, we consider only integer scores, 1, 2, ... here

So, for admitted {7 = 1) and rejected (i = 2), we have: @ These models are easily extended to stratified tables

logmyu =il + M + AP + A8 + \AD ;. )\DG (1)
" ' _ X ! K R:C model e df Farmula
log Moy = [l + A8 + ,:LJD F 8 4 A4P 4 )‘EG (2) [ Uniform association | §x=j =~ | 1 i:9
' Row effects a8 x| (=1 R j
L ) . I Col effects ixb (J—1) i:c
. . i
Thusg, subtracting (1)-(2), terms not involving Admit will cancel: Row+Col eff jai+iby | 1+J—3 Rij + 1:c
L = logmyg — log me = log(myy/mex ) = log odds of admission RC(1) d xy [ F+J-3 Mult (R, C)
= (M- 2M)+ (NP - AP | Unstructured (R:C) | off (f=1)(Jd =1 | m:c
= m+ *-P‘*‘” (renaming terms)

whera, o overall log odds of admission; : effect on admissions of

department

Square tables Model comparison plots

Square tables arise when the row and column variables have the same categories ‘When there are more than a few models, a model comparison plot can show the
often ordered trade-off between goodnass-of-fit and parsimaony

Spedial loglinear models allow us to tease apart different reasons for association * This sorts the models by both fit & complexity

Dept.

Y7 PlotBICvs. df

5000

g
Wnalded distant vislon daia Bon :'

........................... LM LM Lol Fam Can also use AIC, or
B | I ey Ui
g4 | B ]
3
b=

i
L]

] _
Ea i & Plot on log scale to
H | 2 emphasize diff:
; fitee E 5 B ! wa among better
g9 "3 & - . . madels
High 2 a Lo = vmm :Rdiag [laats - 1
T et e cunte f ! . ] Quasi-symmetry!
Visual acuity data Hauser social maobility data
E 8 10 12 14 16

Degrees of freedom



09: GLMs for Count Data

GLMs provide a unified framework for linear models
= Different families, all estimated in the same way
"= —link function and associated variance function

For count data, starting from log(p) = X B, u|X ~
Poisson:

= QOverdispersion — quasi-poisson, negative binomial
" Standard tools for assessing model fit

Excess zero counts introduce new ideas & methods
= ZIP model: structural model for the Os
= Hurdle model: random model for Os, 2"4 model for Y>0

In all this, we rely on data & model plots for
understanding
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Canonical links and variance functions

For every distribution family, there is a default, canonical link function

Each one also specifies the expected relation between the mean and
variance

Talde 10.2: Common distributions m the exponential family wed with generaliced linear models
and their camonical link and varance funclions

Family Moo Canonical link  Range of y Warisnce fanction, Vi | 5)
CGuamssian N, identity: i [ =iz, 4=3)

Poisson TPois [ Mg | i kl,...,x M

Megative-Binomial  NHin(p,#) 7 i} . o P+ [

Binoaial Reimlee, ) e Dot o1 nj i 1 5]

Crpmema o, b i 0, 400)

Irverse -Gaussian T, i) i 0, 4o

Choose a basic family:
+ (et a default, canonical link, g{w)
+  Alsp get a variance function for free!

be a free parameter, estimates with other
coefficients

* The conditional variance is allowed to be a multiple
of the mean

Var(y; | mi) = ¢

" The estimated coefficients ,{’i’-are unchanged
® The standard errors are multiplied by ¢*

" Peace, order & good government is restored!

First, look at rootograms:

(Ph articl a3), xlab =
1 (PhdPubsjarticles, type = ~ e
! " main = " =y
Poisson

Negative bincmial

T gy

1 —

@12 342870 FUTIIMISNITIE @12 3432870 PR NNHIERITHN

Hamis ol Ariches Humat of Sricies

One reason the Poisson doesn't fit: excess 0s (some never published?)

2 What might some other reasons be?
Think back to assumptions: independent obs; constant probs; unmadelled vars

Models for excess zeros

Two types of models, with different mechanisms for zero counts

@ Zero-inflated models: The responses with y; = 0 arise from a mixture of

structural, always 0 values, with Pr(y; = 0) = =; and the rest, which are
random Os, with Pr(y; =0) =1 - =

@ hurdie models: One process determines whether y; = 0 with
Pr(y; = 0) = ;. A second process determines the distribution of values
of positive counts, Priyi | ¥ = @)

Zero-inflated Hurdle



10: Models for log odds & LORs

* Logit models for a binary response generalize readily
to a polytomous response

= —>Models for log odds, familiar interpretation
®" Handles 3+ way table, ordinal variables
= Simple plots for interpretation

* Generalized odds ratios handle bivariate responses
= Simple linear models for LOR

" Easy to model log odds for each response and the LOR
simultaneously

= Easy to visualize results
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Your turn: Feedback?



What did you like/dislike about 61367

* Topics: what were the:

" most interesting?
" most boring?
" Most challenging?

* What did you learn most from?
°* What gave you the most difficulty?
°* How does this relate to your own work?

24



Tips for next time ...

°* What should | try to differently the next time?
= More of X?
= Lessof Y?
= Aspects of how the course is structured?
= Evaluation?

25
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