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Abstract. Classification is a fundamental task in machine learning,
and the principled design and evaluation of classifiers is vital to cre-
ate effective classification systems and to characterise their strengths
and limitations in different contexts. Binary classifiers have a range of
well-known measures to summarise performance, but characterising the
performance of multinomial classifiers (systems that classify instances
into one of many classes) is an open problem. While confusion matrices
can summarise the empirical performance of multinomial classifiers, they
are challenging to interpret at a glance—challenges compounded when
classes are imbalanced.

We present a way to decompose multinomial confusion matrices into
components that represent the prior and posterior probabilities of cor-
rectly classifying each class, and the intrinsic ability of the classifier to
discriminate each class: the Bayes factor or likelihood ratio of a posi-
tive (or negative) outcome. This approach uses the odds formulation of
Bayes’ rule and leads to compact, informative visualisations of confusion
matrices, able to accommodate far more classes than existing methods.
We call this method confusR and demonstrate its utility on 2-, 17-, and
379-class confusion matrices. We describe how confusR could be used in
the formative assessment of classification systems, investigation of algo-
rithmic fairness, and algorithmic auditing.

Keywords: Classification · Multiclass · Visualisation · Performance ·
Fairness · Auditing

1 Introduction

Binary classification systems have a range of performance measures derived from
the 2×2 confusion matrix produced when a classifier makes predictions about a
set of examples whose actual classes are known (Table 1). One dimension of the
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confusion matrix (in this paper, the rows) relates to the predicted class of each
example; the other relates to an example’s actual class. Some performance mea-
sures (e.g., accuracy, precision, F-score) depend on the prior abundance of the
classes; others—such as the true and false positive rates from which Receiver
Operating Characteristic (ROC) curves are derived—do not [9]. Performance
measures that depend on the prior abundance of the classes are especially prob-
lematic when classes are imbalanced or skewed. A trivial example of this is in
obtaining an apparent accuracy of 99% from a classifier that always predicts
negative, when only 1% of the cases are positive.

Performance measures for binary classifiers are well established in statistics,
machine learning and medical decision-making. Not so for multinomial classifiers,
i.e., systems which classify examples into one of many classes. As organisations
seek to develop and deploy these more complex classification systems, there is
a growing need for understanding and transparency in model development, as
well as a requirement to better understand how the models are operating. This
motivates the work that we present here.

Similar to assessment of students’ work in educational settings, we can think
about performance assessment of classification systems with two ends in mind:

1. Summative, in which we wish to have a single measure of performance that
we can use to compare and rank different classifiers

2. Formative, in which we wish to gain insight into the strengths and limitations
of a classification system so we can improve its performance.

We are interested in the latter, noting that in some contexts, understanding and
interpretability can trump summative performance: supremely performing mod-
els may be blocked from production if they cannot be sufficiently understood.
With this in mind, we aim to understand the empirical confusion matrix of a
classifier by separating it into components that represent

1. the effect of the prior abundance of different classes in a set of samples pre-
sented to the classifier

2. the effect of classifier, i.e., its innate ability to discriminate different classes.

This paper focuses on the visualisation and interpretation of confusion matri-
ces rather than the classification systems that generate them. The design and
implementation of multinomial classification systems involves issues such as how
to combine the outputs of base classifiers [33], how to set decision thresholds and
incorporate misclassification costs [34]. Our hope is that the methods we present
here will inform this design and implementation process.

2 Prior Work on Making Sense of Confusion Matrices

We propose a way to visualise the empirical performance of multinomial classifi-
cation systems using odds ratios to interpret their confusion matrices. Here, we
briefly review relevant prior work on these topics.
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Table 1. A binary confusion matrix contains the counts of a classifier’s predictions in
response to a set of examples whose actual classes are known. These counts (TP, FP,
FN, TN) are divided by their respective column totals to form the rates TPR, FPR,
TNR, FNR. The ratio of true positive rate (TPR) and false positive rate (FPR) is
known as the likelihood ratio (or Bayes factor) for a positive outcome LR+), and LR−
is defined similarly. The ratio of LR+ and LR− is known as the diagnostic odds ratio
(DOR) [11].

predicted actual class

class positive negative

positive
TP
True

Positives

FP
False

Positives

negative
FN
False

Negatives

TN
True

Negatives

Pos Neg
(a) Binary confusion matrix elements

Pos = TP + FN

Neg = FP + TN

TPR = TP/Pos

FPR = FP/Neg

LR+ = TPR/FPR (1)

TNR = TN/Pos

FNR = FN/Neg

LR− = TNR/FNR

DOR = LR+/LR− (2)

(b) Binary confusion matrix statistics

“The definition of performance measures in the context of multiclass classifi-
cation is still an open research topic” remarked Jurman et al. [15], citing (then)
recent reviews [26], empirical comparisons [10] and visualisation strategies [4]
before discussing confusion entropy [30] and a multiclass extension of Matthews
correlation coefficient [12] as performance measures. That was in 2012. A more
recent investigation suggests the topic remains important and unresolved, and
highlights issues with performance indices where classes are imbalanced [20] (see
also [18]).

In the machine learning domain, single, summative measures for compari-
son or ranking of multinomial classification systems prevail, with micro- and
macro-averaging used to combine performance indices for each class versus all
others [26,32]. Cohen’s Kappa is also used widely, even though it was not orig-
inally intended for classification performance measurement, and has a range of
problems when used for that purpose [3]. This extensive use of summative classi-
fier performance metrics may reflect the popularity of competitive evaluation in
machine learning, with recognition and reward for those whose algorithms out-
perform all others—noting that such rankings should be interpreted with care
[19]. It also probably reflects the inclusion of these metrics in popular machine
learning software frameworks (e.g., [16,21]).

Less common are formative approaches that seek to understand, and thereby
improve the performance of multinomial classification systems. Ren et al. [24]
tackle this with their carefully designed and evaluated Squares performance visu-
alization system, providing also a comprehensive review of related visualization
efforts such as the Confusion Wheel [1]. Squares is designed to be agnostic to per-
formance metrics and focuses on enabling users to explore calibrated probability
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scores produced by a classification system in response to test data. Hinterreiter
et al. [14] propose an interactive system called ConfusionFlow to compare the
performances of multinomial classifiers (e.g., during training). In terms of scal-
ability, both Squares and ConfusionFlow were reported to work well with 15–20
classes. Neither approach pays particular attention to class imbalance.

While performance measures like precision, recall, F-score and Area Under
the ROC curve (AUC) are popular in machine learning, measures like LR+

(Eq. 1) and DOR (Eq. 1) are not seen so often, even though they are prominent
in medical decision-making and diagnosis [5,11,13]. Next, we show how LR+

plays a fundamental role in Bayes’ rule that cam be applied to interpreting
confusion matrices.

3 Factoring the Confusion Matrix Using Class Odds

Sanderson suggests that we can better understand the discriminative perfor-
mance of a classification model by expressing Bayes’ rule in terms of prior odds
and Bayes factors [25]. To illustrate this concept, suppose we have a hypothesis
(D) that a person actually has a disease, and some evidence (T) about that in
the form of a positive test result for that disease. Often we want to know“if I
have a positive test result, what’s the chance that I actually have the disease”;
this is known as the positive predictive value, or precision of the test. In terms
of probabilities, this is written:

P(D|T) =
P(T|D)P(D)

P(T|D)P(D) + P(T|D)P(D)

where T is the event that the test is positive; D is the event that you actually
do have the disease, and D is the event that you do not. Sanderson extols the
merits of writing this using odds:

O(D|T) = O(D)
P(T|D)
P(T|D)

= O(D)
True positive rate
False positive rate

where the ratio is the Bayes factor of the test for a positive result, also known as
the likelihood ratio of a positive outcome, or LR+ for short (Eq. 1). This factor
represents how our prior odds of having the disease (O(D)) are updated as a
result of the test outcome. In other words

posterior odds = prior odds × LR+

= prior odds × True positive rate
False positive rate

In this paper we utilise the realisation that we can visualise these terms on a
logarithmic scale, and can exploit the fact that

log(posterior odds) = log(prior odds) + log(LR+) (3)
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to achieve a graphical presentation in which these odds and LR+ (the Bayes
factor) appear additively. This is appealing because these values can be presented
in ways that make the most of the human visual system’s pre-attentive processing
mechanisms [29]. Furthermore, and as we will demonstrate, this strategy can be
much more space efficient than the display of 2-dimensional confusion matrices.
In reviewing the literature for related work, we learned of Fagan’s nomogram
[8,13] which is based on similar principles but, as far as we know, has not been
used in the interpretation of multinomial confusion matrices.

Since the diagnostic odds ratio (Eq. 2) has a multiplicative relationship with
LR+ and LR−, we can visualise that additively on a logarithmic scale using the
relationship

log(DOR) = log(LR+) + log(1/LR−)
= log(LR+) − log(LR−). (4)

So far, we have used binary classification to illustrate the odds formulation
of Bayes’ rule. We can extend this to multinomial classification by summarising
a C × C confusion matrix as C binary one-versus-all confusion matrices and
presenting the prior and posterior odds and Bayes factor of each class against
all others. We will demonstrate this approach in the next section, but begin by
visualising a well known binary classification scenario that has proven challenging
to interpret

4 Application and Demonstration

We have named our confusion matrix visualisation approach confusR because
we have implemented it in R [22], benefiting greatly from the tidyverse suite of
packages [31]. To highlight the value of our approach We apply confusR to three
increasingly challenging confusion matrices.

4.1 Eddy’s Probabilistic Reasoning Challenge (2 Classes)

Eddy [6] gives an example of a binary diagnostic test for breast cancer where the
test had a TPR of 79.2%, an FPR of 9.6% and the prior probability of breast
cancer was assumed to be 1%. Eddy found that most physicians (approximately
95 out of 100 in his informal sample) estimated around a 75% probability of
someone actually having cancer given that the test predicted that they had.
(What is your estimate?)

Figure 1 shows the confusion matrix we would expect if this test was applied
to a sample of 1000 people where the prior probability of cancer was 1% and,
for comparison, the confusion matrix expected if the same test was applied to a
group in whom the prior probability of cancer was much higher (50%). We then
use confusR to visualise Eq. 1, the relationship between the prior and posterior
odds and LR+ (the Bayes factor), for both classes of outcome, cancer or benign.
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(a) The confusion matrix (and associated statistics) expected when Eddy’s diagnostic
test [6] is applied to a sample of 1000 people who have a 1% the prior probability of
cancer (the red bar at 0.01 in the top row, middle plot). In this scenario, the probability
that someone from this group actually has cancer given that the test predicts that they
do is just under 10% (the turquoise bar at 0.096 in the top row, middle plot).
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(b) The same test applied to a group of people whose prior probability of cancer is
50% (the red bar at 0.5 in the top row, middle plot). Now the probability that someone
from this group actually has cancer given that the test jumps to just under 90% (the
turquoise bar at 0.89 in the top row, middle plot).

Fig. 1. Plots of the confusion matrices (left), prior and posterior odds (middle) and
likelihood ratios (right) in two different scenarios inspired by the cancer diagnostic
test presented by Eddy [6]. Each “row” relates to the predicted classes in this binary
decision: cancer or benign. The x-axes of the middle and right plots show the odds and
likelihood ratios on a logarithmic scale. (Ticks on the middle plots refer to probabilities
for ease of interpretation.) The arrows emphasise that log(posterior) = log(prior) +
log(LR+). Crucially, in both scenarios, the discriminative ability of the test is the
same: the right plots of log(LR+) are identical. What differs between the two scenarios
is the prior probability of each class (the red bars). On the logarithmic scale used in the
middle and right plots, the discriminative ability of the test (LR+) adds to the prior
class odds (red bars) to yield the odds of each class in light of the test’s predictions
(turquoise bars). (Color figure online)
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Table 2. Confusion matrix from Lu et al. [17] (Supplementary Information, Source
Data Extended Data Fig. 2.)

actual
pred Lung Brea Colo Panc Skin Ovar Rena Pros Head Esop Thyr Blad Germ Endo Live Adre Cerv
Lung 180 11 0 3 6 2 3 4 3 3 2 3 0 0 2 0 3
Brea 10 194 1 1 3 4 1 0 0 1 2 0 0 1 1 3 3
Colo 3 4 164 1 1 0 0 0 0 2 0 1 0 1 3 1 0
Panc 21 6 6 114 1 2 0 1 2 6 0 2 1 0 0 1 1
Skin 1 4 0 0 90 0 0 1 1 2 0 0 0 0 0 0 0
Ovar 13 5 0 0 2 92 0 0 0 2 0 0 0 5 0 0 0
Rena 0 1 0 0 0 0 70 0 0 0 1 0 2 0 0 0 0
Pros 3 0 0 0 3 0 0 54 0 2 0 0 0 0 0 0 0
Head 1 0 0 0 1 0 2 1 47 0 0 0 0 0 0 0 0
Esop 0 3 2 1 1 0 1 1 3 32 0 1 2 0 0 0 0
Thyr 0 0 0 0 0 0 0 0 0 0 38 0 0 0 0 0 0
Blad 3 2 0 0 3 1 1 2 0 0 0 35 1 0 0 0 0
Germ 0 0 0 0 0 0 0 0 0 1 0 0 26 0 0 0 0
Endo 1 1 0 1 0 1 0 0 0 0 0 0 0 14 7 0 0
Live 0 0 0 1 0 0 1 0 1 0 0 0 0 0 5 0 0
Adre 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0
Cerv 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 4

(a) Full 17-class confusion matrix showing the distribution of predicted against actual
origins of cancers for 1408 examples.

lautca...lautcalautca
pred Lung n.Lung pred Brea n.Brea ... pred Cerv n.Cerv
Lung 180 45 Brea 194 31 ... Cerv 4 3
n.Lung 56 1127 n.Brea 37 1146 ... n.Cerv 7 1394

(b) Three of the 17 binary one-versus-all confusion matrices derived from the full
confusion matrix. Each of these tabulates the count of predicted versus actual for a
specific class (e.g., Lung) against all other classes (denoted by n.Lung meaning “not
Lung”).

The middle and right panels of Fig. 1 clearly delineate the contribution of
the prior probability of each class, the contribution of the classifier’s ability to
discriminate each class, and the posterior probability of an case actually being
from a given class, given that the test’s prediction.

Now let us consider a situation with more than two classes.

4.2 Cancer of Unknown Primary—CUP (17 Classes)

Lu et al. recently developed and evaluated a deep-learning-based system to clas-
sify the origin of a cancer primary tumour from histopathology images [17].
Table 2a shows a 17-class confusion matrix from this study and Table 2b shows
three of the 17 binary one-versus-all confusion matrices we can derive from it.
This number of classes is towards the upper range of what Squares [24] and
ConfusionFlow [14] are designed to represent.

Figure 2a shows a confusR visualisation of the CUP confusion matrix, sorted,
by the LR+, prior and posterior values of the classes. Classes Thyr and Adre
stand out with infinite LR+ and posterior probabilities, signified by bars at the
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(a) Classes sorted by LR+ (black, right), with prior (red) and posterior (turquoise)
probabilities on the left.
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(b) Likelihood ratios of a negative result for each class, with classes sorted by LR−
(black, right) and prior (red) and posterior (turquoise) probabilities on the left.
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(c) Classes sorted by diagnostic odds ratios (blue) using the relationship in Equation 4.
The arrows emphasise that − log(LR−) is added to log(LR+) to get log(DOR).

Fig. 2. confusR plots of CUP class prior and posterior probabilities, Bayes factors
(LR+, LR−) and diagnostic odds ratios. (Color figure online)
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extreme right of the panels. These two classes had no false positives in the CUP
confusion matrix, so their apparent false positive rate and hence denominator
of Eq. 1, is 0. This prompts us to look more closely at Table 2a where we can
see that there were 12 instances of Adre in the data (the Adre column total),
and none of the 1396 examples from other classes were mistaken for that class.
This is a similar outcome for Thyr (43 instances) but, in terms of the likelihood
ratio of a negative outcome and overall diagnostic odds ratio, we can see that
the classification system performs better in discriminating Thyr than Adre. We
will return to the issue of zeros in binary confusion matrices in the next section.

In terms of prior probability, Lung is the most abundant class in this dataset
(236 instances). (This is more obvious when we sort Fig. 2a by LR−, which we
omit to stay within page limits.) However, it is poorly discriminated by the
classification system, having the lowest LR+ and DOR. This suggests to us
that this class merits more attention than other classes in efforts to improve
performance.

While it is hard to succinctly describe the multidimensional information
encapsulated by an empirical confusion matrix, the confusR visualisations pro-
vide a meaningful and accessible visual summary for further consideration. Next
we show how this strategy can be extended to much larger numbers of classes,
where currently no adequate techniques are available.

4.3 HAndwritten SYmbols—HASY (379 Classes)

Martin Thoma’s HASYv2 [27] consists of 32 × 32 pixel images of HAndwritten
SYmbols including “the Latin uppercase and lowercase characters (A-Z, a-z),
the Arabic numerals (0–9), 32 different types of arrows, fractal and calligraphic
Latin characters, brackets and more”, collected from https://detexify.kirelabs.
org/classify.html and http://write-math.com/. Thoma has also developed clas-
sifiers and published confusion matrices for this 369 class problem available from
https://github.com/MartinThoma/algorithms.

Table 3 shows a small section of the training set confusion matrix in numeric
form. One way to see all 369 classes is to use a grey scale image or heat map as
in Fig. 3a. But with so many classes, it is hard to get a sense of how well the
classifier is doing or what the prior abundance of the classes are. Furthermore,
humans have difficulty in accurately relating grey scale or colour intensity to
quantity [29, p. 168].

In contrast, the confusR visualisation of Fig. 3b makes the most of our visual
system’s ability to compare point positions pre-attentively, especially when
ordering is used to reduce uninformative variation. In this Figure, classes are
ordered from bottom to top by LR+ then prior probability, allowing us to dis-
cern some interesting relationships on this training data. As LR+ increases (from
classes \sum up to \n) we see a rough but noticeable decrease in the prior abun-
dance of classes (red dots). This indicates to us that many of these relatively

https://detexify.kirelabs.org/classify.html
https://detexify.kirelabs.org/classify.html
http://write-math.com/
https://github.com/MartinThoma/algorithms


Taking the Confusion Out of Multinomial Confusion Matrices 25

Table 3. Section of HASYv2 training set confusion matrix.

actual

predict \\nu \\xi \\Xi \\Pi \\rho \\varrho \\tau \\phi \\Phi \\varphi

\\nu 344 0 0 0 0 0 0 0 0 0

\\xi 0 2309 0 0 0 0 0 0 0 0

\\Xi 0 0 350 0 0 0 0 0 0 0

\\Pi 0 0 0 451 0 0 0 0 0 0

\\rho 0 0 0 0 622 1 0 0 0 0

\\varrho 0 0 0 0 0 198 0 0 0 0

\\tau 0 0 0 0 0 0 369 0 0 0

\\phi 0 0 0 0 0 0 0 561 13 2

\\Phi 0 0 0 0 0 0 0 25 532 0

\\varphi 0 0 0 0 0 0 0 2 0 1366

infrequent classes are distinctive to the classifier. There is also a band of classes
from \multmap to \n in which we can clearly see the impact of prior abundance
on posterior probabilities while the classifier’s ability to discriminate these classes
(LR+) stays steady.

This is a good point to stress that we see these confusR visualisations as
complementary to the traditional confusion matrix representation rather than a
replacement for it. The confusR representation does not show what classes are
being confused, but it does give rapid insight into the extent to which classes
are being confused, as well as meaningfully factoring apart the role of prior
abundance from the classifier’s intrinsic ability to discriminate a particular class.
We think that this has potential to help developers focus in on more manageable
subsets of the confusion matrix or data for further attention, perhaps using
interactive strategies like Squares [24] or ConfusionFlow [14].

We also see potential for confusR visualisations to compare the empirical per-
formance of a classifier on different datasets, as shown in Fig. 4a which compares
confusion matrices from HASYv2 training and test data. The test set confusion
matrix has a number of classes for that show zero true positives and/or zero
false positives (Fig. 4b), in which case LR+ is off the scale of Fig. 4a or unde-
fined (when both TP and FP are zero). Figure 4a visualises confusion matrices
on two different data sets; this approach could easily be extended to show the
distribution of LR+ values observed across many data sets, e.g., as would occur
in cross-validation of classifier performance.
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Fig. 3. Two ways of visualising HASYv2 training set confusion matrix from https://
github.com/MartinThoma/algorithms. For legibility, only every tenth class label is
printed on the y-axes. Classes sorted by LR+ (black, right), then prior (red) probability
with posterior probability in turquoise. (Color figure online)

https://github.com/MartinThoma/algorithms
https://github.com/MartinThoma/algorithms
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TP == 0 TP > 0

FP == 0 3
LR+ = NaN

34
LR+ = ∞

FP > 0 12
LR+ = 0

320

(b) Confusion matrices may contain classes for which no true positives (TP) or false
positives (FP) are observed, giving rise to LR+ values that are zero, infinite, or not
defined (NaN: Not a Number). This table shows the number of classes where these
LR+ values occurred in the confusion matrix derived from the HASYv2 test set.

Fig. 4. confusR visualisations can be used to compare a classifier’s performance on
different datasets.

5 Discussion and Conclusions

The odds formulation of Bayes’ rule has been around for long time [7], but it
does not seem to have been used in visualising the relationship between prior and
posterior odds as we have described here with our confusR approach. By putting
prior and posterior class odds and Bayes factors onto a logarithmic scale, we
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provide a 1-dimensional, compact and readily interpretable representation of a
2-dimensional confusion matrix which allows us to separate the innate ability
of the classifier to discriminate different classes from the prior abundance of
imbalanced classes. This allows us to deal with much larger confusion matrices
than existing visualisation methods [14,24] which are effective with up to 15–20
classes; confusR could serve as a practical way to identify subsets of classes that
could be further explored with these approaches.

In addition to enabling greater insight into multinomial classifier perfor-
mance, we believe confusR may have useful application in the evaluation of
algorithmic fairness. In their survey of fairness definitions, Verma and Rubin
[28] describe equalized odds as the situation in which two different groups have
the same true positive rates, and the same false positive rates with respect to
a predicted outcome, i.e., the same LR+ (Eq. 1). Equalised odds has been dis-
cussed in relation to a binary classifier; the confusR approach could extend this
measure of fairness to scenarios where there are more than two classes at play.
We see the potential to use confusR in the analysis of classifier performance on
different subgroups (e.g., the performance of a medical diagnostic for classifying
skin lesions across different skin tones [35]) and as part of algorithmic auditing
processes [23].

In terms of future work, we see opportunities to investigate the incorporation
of uncertainty (e.g., through simulation or theoretical approaches [2]) into the
confusR visualisation approach. Incorporation of decision costs [34] would be
a valuable advance, but we suspect this would require more information (i.e.,
calibrated class probability estimates) than empirical confusion matrices alone
could provide.

We are developing an R package that implements the methods presented
here, however, the underlying computations are simple and we hope that this
paper will provide sufficient information for others to use the confusR concept
in making sense of confusion matrices and imbalanced classes.
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