Battig - Montague Categorized Word Norms
Battig.Rd
This dataset comprises a ranked list of 5231 words listed in 56 taxonomic categories by people who were asked to list as many exemplars of a given category ("a precious stone", "a unit of time", "a fruit", "a color", etc.). Participants had 30s to generate as many responses to each category as possible, after which time the next category name was presented.
Included in this dataset are all words from the Battig and Montague (1969)
norms listed with freq > 1
.
Usage
data(Battig)
Format
A data frame with 5231 observations on the following 9 variables.
word
a character vector
catnum
category number, a factor
catname
category name, a factor
syl
number of syllables
letters
number of letters
freq
Frequency of response
frequency
Kucera-Francis word frequency
rank
rank of
freq
within the categoryrfreq
rated frequency
Source
Battig, W.F. & Montague, W.E. (1968). Category norms for verbal items in 56 categories: A replication and extension of the Connecticut norms using University of Maryland and Illinois students (Tech. Rep.) University of Colorado, Boulder, CO (1968)
Battig, W.F. & Montague, W.E. (1969). Category norms for verbal items in 56 categories: A replication and extension of the Connecticut norms. Journal of Experimental Psychology, 80 (1969), pp. 1-46
References
Joelson, J. M. & Hermann, D. J., Properties of categories in semantic | memory, Amer Journal of Psychology, 1978, 91, 101-114.
Examples
data(Battig)
## maybe str(Battig) ; plot(Battig) ...
# select items from several categories
cats <- c("fish", "bird", "flower", "tree")
for (c in cats) {
cat("\nCategory:", c, "\n")
print(pickList(subset(Battig, catname==c), nitems=5))
}
#>
#> Category: fish
#> list word catnum catname syl letters freq frequency rank rfreq
#> 4645 1 sardine 52 fish 2 7 18 2 38 4.85
#> 4609 1 bass 52 fish 1 4 195 16 2 3.81
#> 4646 1 blowfish 52 fish 2 8 17 1 39 4.88
#> 4626 1 guppy 52 fish 2 5 53 0 19 4.38
#> 4653 1 dolphin 52 fish 2 7 11 1 46 6.70
#>
#> Category: bird
#> list word catnum catname syl letters freq frequency rank rfreq
#> 2992 1 dove 37 bird 1 4 36 4 22 4.32
#> 3012 1 swan 37 bird 1 4 14 3 42 5.63
#> 3005 1 flamingo 37 bird 3 8 16 0 35 5.00
#> 3000 1 pheasant 37 bird 2 8 22 1 30 5.10
#> 2994 1 owl 37 bird 1 3 36 2 24 5.57
#>
#> Category: flower
#> list word catnum catname syl letters freq frequency rank rfreq
#> 4252 1 snapdragon 48 flower 3 10 26 1 22 5.19
#> 4232 1 tulip 48 flower 2 5 209 4 2 3.46
#> 4254 1 black-eyed susan 48 flower 4 14 21 0 24 4.33
#> 4247 1 peony 48 flower 2 5 38 3 17 4.33
#> 4239 1 pansy 48 flower 2 5 108 6 9 3.70
#>
#> Category: tree
#> list word catnum catname syl letters freq frequency rank rfreq
#> 4422 1 poplar 50 tree 2 6 45 1 19 3.96
#> 4412 1 spruce 50 tree 1 6 74 5 9 4.61
#> 4419 1 pear 50 tree 1 4 49 6 16 5.47
#> 4411 1 dogwood 50 tree 2 7 84 1 8 4.89
#> 4407 1 elm 50 tree 1 3 210 13 4 2.64
# or, using sapply():
sapply(cats, function(c) pickList(subset(Battig, catname==c), nitems=5), simplify=FALSE)
#> $fish
#> list word catnum catname syl letters freq frequency rank rfreq
#> 4621 1 cod 52 fish 1 3 69 6 14 2.74
#> 4649 1 walleye 52 fish 2 7 16 0 42 5.00
#> 4611 1 herring 52 fish 2 7 161 2 4 2.99
#> 4628 1 marlin 52 fish 2 6 33 2 21 5.40
#> 4631 1 bluefish 52 fish 2 8 30 1 24 5.11
#>
#> $bird
#> list word catnum catname syl letters freq frequency rank rfreq
#> 2979 1 parrakeet 37 bird 3 9 115 1 9 4.61
#> 2972 1 sparrow 37 bird 2 7 237 1 2 4.53
#> 2999 1 jay 37 bird 1 3 24 15 29 4.00
#> 2986 1 hummingbird 37 bird 3 11 50 0 16 4.69
#> 2977 1 bluebird 37 bird 2 8 138 1 7 3.36
#>
#> $flower
#> list word catnum catname syl letters freq frequency rank rfreq
#> 4238 1 lily 48 flower 2 4 108 1 8 4.17
#> 4261 1 magnolia 48 flower 4 8 13 1 31 7.00
#> 4264 1 camellia 48 flower 3 8 10 1 34 2.88
#> 4258 1 marigold 48 flower 3 8 17 0 28 5.00
#> 4240 1 petunia 48 flower 3 7 101 0 10 2.93
#>
#> $tree
#> list word catnum catname syl letters freq frequency rank rfreq
#> 4419 1 pear 50 tree 1 4 49 6 16 5.47
#> 4417 1 fir 50 tree 1 3 60 2 14 5.38
#> 4434 1 cottonwood 50 tree 3 10 14 0 31 3.50
#> 4407 1 elm 50 tree 1 3 210 13 4 2.64
#> 4428 1 beech 50 tree 1 5 29 6 25 5.05
#>