Skip to contents

Properties of the 56 taxonomic categories from the Battig-Montague category norms published by Joelson and Hermann (1978).

Usage

data(CatProp)

Format

A data frame with 56 observations on the following 24 variables.

catnum

Category number, a numeric variable

catname

Category name, a character variable

rnatrl

Rated naturalness 1..7, a numeric variable

rfamil

Rated familiarity 1..7, a numeric variable

rmeang

Rated meaningfulness 1..7 (Hunt & Hodge, 1971), a numeric variable

rfreq

Rated frequency 1..7 B&M, a numeric variable

genfreq

Generated category label frequency, a numeric variable

rageoaq

Rated age of acquisition 1..10, a numeric variable

rsize

Estimated category size, a numeric variable

ts_30

Mean # types produced in 30 seconds, a numeric variable

rclasm

Recall asymptote, a numeric variable

rclrate

Recall rate parameter, a numeric variable

tas

Types across subjects, a numeric variable

cortas

Corrected types across subjects, a numeric variable

ntf

# of types produced first, a numeric variable

nmngox

# of dictionary meanings (Oxford), a numeric variable

nmngam

# of dictionary meanings (Am. Heritage), a numeric variable

catfreqp

category label K-F frequency, a numeric variable

rabcon

Rated abstract-concreteness 1..7, a numeric variable

rvagprc

Rated vague-precise 1..7, a numeric variable

exfreqp

Avg exemplar log K-F frequency, a numeric variable

intsam

Intersample correlation, a numeric variable

maxfreq

Maximum response frequency, a numeric variable

pagmt

Percent agreement on category membership, a numeric variable

Details

Includes data for all 56 of the Battig-Montague categories from a preprint of the Joelson-Hermann paper Values for catfreqp were added for categories 3, 4, 8, 15, 24, 27, 32, 46, 47 & 56 from the Kucera-Francis norms, ignoring "part of", "unit of", and taking max of labels connected by "or".

Source

Joelson, J. M. & Hermann, D. J. , Properties of categories in semantic memory, American Journal of Psychology, 1978, 91, 101-114.

Examples

data(CatProp)
summary(CatProp)
#>      catnum                        catname       rnatrl          rfamil     
#>  1      : 1   alcoholic beverage       : 1   Min.   :3.090   Min.   :3.890  
#>  2      : 1   article of clothing      : 1   1st Qu.:4.088   1st Qu.:4.640  
#>  3      : 1   article of furniture     : 1   Median :4.875   Median :5.265  
#>  4      : 1   bird                     : 1   Mean   :4.809   Mean   :5.224  
#>  5      : 1   bldg for religious servic: 1   3rd Qu.:5.505   3rd Qu.:5.885  
#>  6      : 1   carpenters tool          : 1   Max.   :6.250   Max.   :6.510  
#>  (Other):50   (Other)                  :50                                  
#>      rmeang          rfreq          genfreq          rageoaq     
#>  Min.   :3.100   Min.   :3.530   Min.   :  0.00   Min.   :2.020  
#>  1st Qu.:3.560   1st Qu.:4.312   1st Qu.:  1.00   1st Qu.:4.450  
#>  Median :3.920   Median :4.765   Median :  9.50   Median :5.405  
#>  Mean   :3.912   Mean   :4.846   Mean   : 19.54   Mean   :5.243  
#>  3rd Qu.:4.205   3rd Qu.:5.447   3rd Qu.: 30.25   3rd Qu.:6.077  
#>  Max.   :4.550   Max.   :6.110   Max.   :150.00   Max.   :8.060  
#>  NA's   :25                                                      
#>      rsize           ts_30            rclasm         rclrate        
#>  Min.   : 6.98   Min.   : 4.400   Min.   : 9.80   Min.   :0.005140  
#>  1st Qu.:11.34   1st Qu.: 5.957   1st Qu.:19.05   1st Qu.:0.009155  
#>  Median :16.81   Median : 6.780   Median :22.30   Median :0.013315  
#>  Mean   :22.19   Mean   : 6.993   Mean   :28.75   Mean   :0.013471  
#>  3rd Qu.:22.23   3rd Qu.: 7.388   3rd Qu.:32.33   3rd Qu.:0.016228  
#>  Max.   :73.97   Max.   :11.340   Max.   :62.30   Max.   :0.032430  
#>                                   NA's   :28      NA's   :28        
#>       tas            cortas            ntf             nmngox     
#>  Min.   : 61.0   Min.   : 20.00   Min.   : 10.00   Min.   : 0.00  
#>  1st Qu.:114.5   1st Qu.: 58.25   1st Qu.: 23.50   1st Qu.: 6.00  
#>  Median :161.0   Median : 98.50   Median : 30.50   Median :12.00  
#>  Mean   :172.4   Mean   :112.20   Mean   : 35.77   Mean   :13.50  
#>  3rd Qu.:184.2   3rd Qu.:125.50   3rd Qu.: 47.25   3rd Qu.:17.75  
#>  Max.   :486.0   Max.   :400.00   Max.   :104.00   Max.   :49.00  
#>                                                    NA's   :26     
#>      nmngam        catfreqp         rabcon         rvagprc         exfreqp     
#>  Min.   : 1.0   Min.   :  0.0   Min.   :3.260   Min.   :3.550   Min.   :0.420  
#>  1st Qu.: 4.0   1st Qu.: 43.0   1st Qu.:4.765   1st Qu.:4.428   1st Qu.:1.260  
#>  Median : 7.0   Median : 88.0   Median :5.595   Median :5.030   Median :1.910  
#>  Mean   : 7.2   Mean   :150.1   Mean   :5.366   Mean   :4.938   Mean   :1.928  
#>  3rd Qu.:10.0   3rd Qu.:192.0   3rd Qu.:6.058   3rd Qu.:5.412   3rd Qu.:2.542  
#>  Max.   :27.0   Max.   :808.0   Max.   :6.630   Max.   :6.000   Max.   :3.900  
#>  NA's   :26     NA's   :15                                                     
#>      intsam          maxfreq          pagmt       
#>  Min.   :0.0970   Min.   : 40.0   Min.   : 59.00  
#>  1st Qu.:0.9477   1st Qu.:127.8   1st Qu.: 80.75  
#>  Median :0.9665   Median :189.5   Median : 86.00  
#>  Mean   :0.9265   Mean   :193.1   Mean   : 85.70  
#>  3rd Qu.:0.9842   3rd Qu.:242.0   3rd Qu.: 92.25  
#>  Max.   :0.9970   Max.   :387.0   Max.   :100.00  
#>                                                   
plot(CatProp[,3:10])


# try a biplot
CP <- CatProp
rownames(CP) <- CP$catname
biplot(prcomp(na.omit(CP[,3:12]), scale=TRUE))


# select some categories where the rated age of acquisition is between 2-4
cats <- pickList(CatProp, list(rageoaq=c(2,4)))
cats[,2:9]
#>    catnum            catname rnatrl rfamil rmeang rfreq genfreq rageoaq
#> 52     52               fish   4.70   4.62   3.55  4.25      23    3.98
#> 43     43          vegetable   5.90   6.05     NA  5.41      31    3.89
#> 37     37               bird   5.21   4.90   3.56  4.65      23    3.57
#> 50     50               tree   5.67   5.21   3.85  4.41      78    3.54
#> 16     16              fruit   6.03   5.74   3.92  5.39      37    3.63
#> 41     41                toy   4.84   5.67     NA  5.10       7    2.02
#> 48     48             flower   5.61   5.17   3.95  4.36      34    3.44
#> 8       8 four-footed animal   5.10   5.31     NA  5.75       7    3.94
#> 47     47   males first name   5.21   6.43   4.33  6.07      12    3.66
#> 46     46   girls first name   5.00   6.35     NA  6.05      32    2.99

# pick some fruit
pickList(subset(Battig, catname=="fruit"))
#>      list        word catnum catname syl letters freq frequency rank rfreq
#> 1045    1        lime     16   fruit   1       4   69        13   14  6.81
#> 1041    1       lemon     16   fruit   2       5  134        18   10  5.72
#> 1057    1      raisin     16   fruit   2       6   16         1   26  6.83
#> 1035    1      banana     16   fruit   3       6  283         4    4  4.38
#> 1042    1   tangerine     16   fruit   3      10  110         0   11  6.17
#> 1055    1     avocado     16   fruit   2       7   17        11   24  5.60
#> 1052    1 pomegranate     16   fruit   4      11   23         0   21  5.50
#> 1059    1   nectarine     16   fruit   3       9   12         0   28  9.17
#> 1050    1   cantalope     16   fruit   3       9   31         0   19  7.26
#> 1040    1  grapefruit     16   fruit   2      10  154         3    9  6.25