Skip to contents

The Paivio, Yuille & Madigan (1968) word pool contains 925 nouns, together with average ratings of these words on imagery, concreteness and meaningfulness, along with other variables.

Usage

data(Paivio)

Format

A data frame with 925 observations on the following 9 variables.

itmno

item number

word

the word

imagery

imagery rating

concreteness

concreteness rating

meaningfulness

meaningfulness rating

frequency

word frequency, from the Kucera-Francis norms

syl

number of syllables

letters

number of letters

freerecall

Free recall proportion, added from Christian et al (1978)

Details

The freerecall variable has 27 NAs.

Source

Paivio, A., Yuille, J.C. & Madigan S. Concreteness, imagery and meaningfulness for 925 nouns. Journal of Experimental Psychology, Monograph Supplement, 1968, 76, No.1, pt.2.

Christian, J., Bickley, W., Tarka, M., & Clayton, K. (1978). Measures of free recall of 900 English nouns: Correlations with imagery, concreteness, meaningfulness, and frequency. Memory & Cognition, 6, 379-390.

References

Kucera and Francis, W.N. (1967). Computational Analysis of Present-Day American English. Providence: Brown University Press.

Rubin, D. C. & Friendly, M. (1986). Predicting which words get recalled: Measures of free recall, availability, goodness, emotionality, and pronunciability for 925 nouns. Memory and Cognition, 14, 79-94.

Examples

data(Paivio)
summary(Paivio)
#>      itmno         word              imagery       concreteness  
#>  Min.   :  1   Length:925         Min.   :1.630   Min.   :1.180  
#>  1st Qu.:232   Class :character   1st Qu.:3.800   1st Qu.:3.110  
#>  Median :463   Mode  :character   Median :5.170   Median :5.720  
#>  Mean   :463                      Mean   :4.968   Mean   :4.956  
#>  3rd Qu.:694                      3rd Qu.:6.270   3rd Qu.:6.690  
#>  Max.   :925                      Max.   :6.900   Max.   :7.700  
#>                                                                  
#>  meaningfulness    frequency           syl           letters     
#>  Min.   :1.920   Min.   :  0.00   Min.   :1.000   Min.   : 3.00  
#>  1st Qu.:5.220   1st Qu.:  4.00   1st Qu.:2.000   1st Qu.: 5.00  
#>  Median :5.920   Median : 21.00   Median :2.000   Median : 7.00  
#>  Mean   :5.892   Mean   : 31.89   Mean   :2.278   Mean   : 6.91  
#>  3rd Qu.:6.640   3rd Qu.: 50.00   3rd Qu.:3.000   3rd Qu.: 8.00  
#>  Max.   :9.220   Max.   :100.00   Max.   :5.000   Max.   :14.00  
#>                                                                  
#>    freerecall    
#>  Min.   :0.0620  
#>  1st Qu.:0.2810  
#>  Median :0.4060  
#>  Mean   :0.3979  
#>  3rd Qu.:0.5000  
#>  Max.   :0.8440  
#>  NA's   :27      
plot(Paivio[,c(3:5,9)])


# density plots

plotDensity(Paivio, "imagery")

plotDensity(Paivio, "concreteness")

plotDensity(Paivio, "meaningfulness")

plotDensity(Paivio, "frequency")

plotDensity(Paivio, "syl")

plotDensity(Paivio, "letters")

plotDensity(Paivio, "freerecall")




# find ranges & 5 num summaries
ranges <- as.data.frame(apply(Paivio[,-(1:2)], 2, function(x) range(na.omit(x))))
rownames(ranges) <- c("min", "max")
ranges
#>     imagery concreteness meaningfulness frequency syl letters freerecall
#> min    1.63         1.18           1.92         0   1       3      0.062
#> max    6.90         7.70           9.22       100   5      14      0.844

P5num <- as.data.frame(apply(Paivio[,3:5], 2, fivenum))
rownames(P5num) <- c("min", "Q1", "med", "Q3", "max")
P5num
#>     imagery concreteness meaningfulness
#> min    1.63         1.18           1.92
#> Q1     3.80         3.11           5.22
#> med    5.17         5.72           5.92
#> Q3     6.27         6.69           6.64
#> max    6.90         7.70           9.22