A researcher collected data on three psychological variables, four academic variables (standardized test scores) and gender for 600 college freshman. She is interested in how the set of psychological variables relates to the academic variables and gender. In particular, the researcher is interested in how many dimensions (canonical variables) are necessary to understand the association between the two sets of variables.
Usage
data("PsyAcad")
Format
A data frame with 600 observations on the following 8 variables.
LocControl
locus of control, a numeric vector
SelfConcept
self concept, a numeric vector
Motivation
motivation, a numeric vector
Read
reading score, a numeric vector
Write
writing score, a numeric vector
Math
mathematics score, a numeric vector
Science
science score, a numeric vector
Sex
a factor with levels
M
,F
Source
Taken from http://www.stats.idre.ucla.edu/r/dae/canonical-correlation-analysis
Examples
data(PsyAcad)
PsyAcad$Sex <- as.numeric(PsyAcad$Sex)
PsyAcad.can <- cancor(cbind(LocControl, SelfConcept, Motivation) ~
Read + Write + Math + Science + Sex, data = PsyAcad)
#> Warning: non-list contrasts argument ignored
PsyAcad.can
#>
#> Canonical correlation analysis of:
#> 5 X variables: Read, Write, Math, Science, Sex
#> with 3 Y variables: LocControl, SelfConcept, Motivation
#>
#> CanR CanRSQ Eigen percent cum scree
#> 1 0.4641 0.21538 0.27450 87.336 87.34 ******************************
#> 2 0.1675 0.02806 0.02887 9.185 96.52 ***
#> 3 0.1040 0.01081 0.01093 3.478 100.00 *
#>
#> Test of H0: The canonical correlations in the
#> current row and all that follow are zero
#>
#> CanR LR test stat approx F numDF denDF Pr(> F)
#> 1 0.46409 0.75436 11.7157 15 1634.7 < 2.2e-16 ***
#> 2 0.16751 0.96143 2.9445 8 1186.0 0.002905 **
#> 3 0.10399 0.98919 2.1646 3 594.0 0.091092 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1