This function is a convenience wrapper to mahalanobis
offering also the possibility to calculate robust Mahalanobis squared
distances using MCD and MVE estimators of center and covariance (from
cov.rob
)
Usage
Mahalanobis(
x,
center,
cov,
method = c("classical", "mcd", "mve"),
nsamp = "best",
...
)
Arguments
- x
a numeric matrix or data frame with, say, \(p\) columns
- center
mean vector of the data; if this and
cov
are both supplied, the function simply callsmahalanobis
to calculate the result- cov
covariance matrix (p x p) of the data
- method
estimation method used for center and covariance, one of:
"classical"
(product-moment),"mcd"
(minimum covariance determinant), or"mve"
(minimum volume ellipsoid).- nsamp
passed to
cov.rob
- ...
other arguments passed to
cov.rob
Examples
summary(Mahalanobis(iris[, 1:4]))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.3195 2.1871 3.0628 3.9733 4.8053 13.1011
summary(Mahalanobis(iris[, 1:4], method="mve"))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.4461 2.5331 4.0110 5.5585 6.8295 25.7951
summary(Mahalanobis(iris[, 1:4], method="mcd"))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.4352 2.7301 5.7160 19.2207 36.7121 98.0335