The functions cooks.distance.mlm
and hatvalues.mlm
are
designed as extractor functions for regression deletion diagnostics for
multivariate linear models following Barrett & Ling (1992). These are close
analogs of methods for univariate and generalized linear models handled by
the influence.measures
in the stats
package.
Usage
# S3 method for mlm
hatvalues(model, m = 1, infl, ...)
Arguments
- model
An object of class
mlm
, as returned bylm
- m
The size of subsets to be considered
- infl
An
inflmlm
object, as returned bymlm.influence
- ...
Other arguments, for compatibility with the generic; ignored.
Details
Hat values are a component of influence diagnostics, measuring the leverage or outlyingness of observations in the space of the predictor variables.
The usual
case considers observations one at a time (m=1
), where the hatvalue is
proportional to the squared Mahalanobis distance, \(D^2\) of each observation
from the centroid of all observations. This function extends that definition
to calculate a comparable quantity for subsets of size m>1
.
References
Barrett, B. E. and Ling, R. F. (1992). General Classes of Influence Measures for Multivariate Regression. Journal of the American Statistical Association, 87(417), 184-191.
Examples
data(Rohwer, package="heplots")
Rohwer2 <- subset(Rohwer, subset=group==2)
rownames(Rohwer2)<- 1:nrow(Rohwer2)
Rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ n+s+ns+na+ss, data=Rohwer2)
options(digits=3)
hatvalues(Rohwer.mod)
#> 1 2 3 4 5 6 7 8 9 10 11
#> 0.1670 0.2185 0.1417 0.0731 0.5682 0.1543 0.0453 0.1766 0.0513 0.4516 0.1454
#> 12 13 14 15 16 17 18 19 20 21 22
#> 0.1705 0.1037 0.1265 0.3325 0.3318 0.1732 0.2635 0.2984 0.0788 0.1402 0.1938
#> 23 24 25 26 27 28 29 30 31 32
#> 0.0446 0.2064 0.1571 0.1533 0.3673 0.1119 0.3043 0.0866 0.0892 0.0732
cooks.distance(Rohwer.mod)
#> 1 2 3 4 5 6 7 8 9 10
#> 0.11067 0.03576 0.07411 0.00645 0.84672 0.01458 0.02530 0.14768 0.04040 0.06339
#> 11 12 13 14 15 16 17 18 19 20
#> 0.04568 0.11629 0.04267 0.16427 0.01519 0.11832 0.14448 0.05671 0.17321 0.03733
#> 21 22 23 24 25 26 27 28 29 30
#> 0.15164 0.04025 0.03036 0.07294 0.26008 0.04261 0.33866 0.03422 0.30260 0.04505
#> 31 32
#> 0.09758 0.05503