Skip to contents

This function finds the unique tags of items in the quotes database and returns them as vector or a one-way table giving their frequencies.

Usage

quote_tags(table = FALSE)

Arguments

table

Logical. If table=TRUE, return a one-way frequency table of quotes for each tag; otherwise return the sorted vector of unique tags.

Value

Returns either a vector of tags in the quotes database or a one-way frequency table of the number of quotes for each tag.

Examples

quote_tags()
#>  [1] "Box quotes"          "Ockham's razor"      "anova"              
#>  [4] "assumptions"         "averages"            "bayesian"           
#>  [7] "biometry"            "clustering"          "computing"          
#> [10] "correlation"         "counts"              "data"               
#> [13] "data analysis"       "data visualization"  "design"             
#> [16] "eda"                 "ellipses"            "ethics"             
#> [19] "experimental design" "expt design"         "generalizations"    
#> [22] "geometry"            "history"             "knowledge"          
#> [25] "lsmeans"             "milestones"          "modeling"           
#> [28] "models"              "nhst"                "normality"          
#> [31] "numeracy"            "outliers"            "p-values"           
#> [34] "pictures"            "power"               "prediction"         
#> [37] "probability"         "programming"         "random numbers"     
#> [40] "research"            "reviews"             "sample size"        
#> [43] "sampling"            "science"             "significance"       
#> [46] "skewness"            "space"               "statistician"       
#> [49] "statisticians"       "statistics"          "tables"             
#> [52] "teaching"            "tidy data"           "time"               
#> [55] "time series"         "uncertainty"         "vision"             
quote_tags(table=TRUE)
#> tags
#>          Box quotes      Ockham's razor               anova         assumptions 
#>                   5                   1                   3                   1 
#>            averages            bayesian            biometry          clustering 
#>                   7                  19                   2                   1 
#>           computing         correlation              counts                data 
#>                  38                   1                   5                 105 
#>       data analysis  data visualization              design                 eda 
#>                  29                 105                   3                   8 
#>            ellipses              ethics experimental design         expt design 
#>                   2                   4                   8                   2 
#>     generalizations            geometry             history           knowledge 
#>                   8                   9                  42                   8 
#>             lsmeans          milestones            modeling              models 
#>                   3                   3                   1                  21 
#>                nhst           normality            numeracy            outliers 
#>                 124                  10                   9                  13 
#>            p-values            pictures               power          prediction 
#>                   1                  31                   5                   2 
#>         probability         programming      random numbers            research 
#>                  16                   2                  10                   1 
#>             reviews         sample size            sampling             science 
#>                   4                   1                  10                  86 
#>        significance            skewness               space        statistician 
#>                  48                   1                   2                   7 
#>       statisticians          statistics              tables            teaching 
#>                   2                 158                   9                   1 
#>           tidy data                time         time series         uncertainty 
#>                   4                  24                   2                   7 
#>              vision 
#>                  18 

library(ggplot2)
qt <- quote_tags(table=TRUE)
qtdf <-as.data.frame(qt)
# bar plot of frequencies
ggplot2::ggplot(data=qtdf, aes(x=Freq, y=tags)) +
    geom_bar(stat = "identity")


# Sort tags by frequency
qtdf |>
  dplyr::mutate(tags = forcats::fct_reorder(tags, Freq)) |>
  ggplot2::ggplot(aes(x=Freq, y=tags)) +
  geom_bar(stat = "identity")