4. Matrix inversion by elementary row operations
Michael Friendly
2024-11-19
Source:vignettes/a4-inv-ex2.Rmd
a4-inv-ex2.Rmd
The following examples illustrate the steps in finding the inverse of a matrix using elementary row operations (EROs):
- Add a multiple of one row to another (
rowadd()
) - Multiply one row by a constant (
rowmult()
) - Interchange two rows (
rowswap()
)
These have the properties that they do not change the inverse. The method used here is sometimes called the Gauss-Jordan method, a form of Gaussian elimination. Another term is (row-reduced) echelon form.
Steps:
- Adjoin the identity matrix to the right side of A, to give the matrix
- Apply row operations to this matrix until the left () side is reduced to
- The inverse matrix appears in the right () side
Why this works: The series of row operations transforms
If the matrix is does not have an inverse (is singular) a row of all zeros will appear in the left () side.
Join an identity matrix to A
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 2 3 1 0 0
## [2,] 2 3 0 0 1 0
## [3,] 0 1 -2 0 0 1
Apply elementary row operations to reduce A to an identity matrix.
The right three cols will then contain inv(A). We will do this three ways:
- first, just using R arithmetic on the rows of
AI
- using the ERO functions in the
matlib
package - using the
echelon()
function
1. Using R arithmetic
(AI[2,] <- AI[2,] - 2*AI[1,]) # row 2 <- row 2 - 2 * row 1
## [1] 0 -1 -6 -2 1 0
(AI[3,] <- AI[3,] + AI[2,]) # row 3 <- row 3 + row 2
## [1] 0 0 -8 -2 1 1
(AI[2,] <- -1 * AI[2,]) # row 2 <- -1 * row 2
## [1] 0 1 6 2 -1 0
(AI[3,] <- -(1/8) * AI[3,]) # row 3 <- -.25 * row 3
## [1] 0.000 0.000 1.000 0.250 -0.125 -0.125
Now, all elements below the diagonal are zero
AI
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 2 3 1.00 0.000 0.000
## [2,] 0 1 6 2.00 -1.000 0.000
## [3,] 0 0 1 0.25 -0.125 -0.125
#--continue, making above diagonal == 0
AI[2,] <- AI[2,] - 6 * AI[3,] # row 2 <- row 2 - 6 * row 3
AI[1,] <- AI[1,] - 3 * AI[3,] # row 1 <- row 1 - 3 * row 3
AI[1,] <- AI[1,] - 2 * AI[2,] # row 1 <- row 1 - 2 * row 2
AI
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 -0.75 0.875 -1.125
## [2,] 0 1 0 0.50 -0.250 0.750
## [3,] 0 0 1 0.25 -0.125 -0.125
#-- last three cols are the inverse
(AInv <- AI[,-(1:3)])
## [,1] [,2] [,3]
## [1,] -0.75 0.875 -1.125
## [2,] 0.50 -0.250 0.750
## [3,] 0.25 -0.125 -0.125
#-- compare with inv()
inv(A)
## [,1] [,2] [,3]
## [1,] -0.75 0.875 -1.125
## [2,] 0.50 -0.250 0.750
## [3,] 0.25 -0.125 -0.125
2. Do the same, using matlib functions rowadd()
,
rowmult()
and rowswap()
AI <- cbind(A, diag(3))
AI <- rowadd(AI, 1, 2, -2) # row 2 <- row 2 - 2 * row 1
AI <- rowadd(AI, 2, 3, 1) # row 3 <- row 3 + row 2
AI <- rowmult(AI, 2, -1) # row 1 <- -1 * row 2
AI <- rowmult(AI, 3, -1/8) # row 3 <- -.25 * row 3
# show result so far
AI
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 2 3 1.00 0.000 0.000
## [2,] 0 1 6 2.00 -1.000 0.000
## [3,] 0 0 1 0.25 -0.125 -0.125
#--continue, making above-diagonal == 0
AI <- rowadd(AI, 3, 2, -6) # row 2 <- row 2 - 6 * row 3
AI <- rowadd(AI, 2, 1, -2) # row 1 <- row 1 - 2 * row 2
AI <- rowadd(AI, 3, 1, -3) # row 1 <- row 1 - 3 * row 3
AI
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 -0.75 0.875 -1.125
## [2,] 0 1 0 0.50 -0.250 0.750
## [3,] 0 0 1 0.25 -0.125 -0.125
3. Using echelon()
echelon()
does all these steps row by row, and
returns the result
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 -0.75 0.875 -1.125
## [2,] 0 1 0 0.50 -0.250 0.750
## [3,] 0 0 1 0.25 -0.125 -0.125
It is more interesting to see the steps, using the argument
verbose=TRUE
. In many cases, it is informative to see the
numbers printed as fractions.
##
## Initial matrix:
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 2 3 1 0 0
## [2,] 2 3 0 0 1 0
## [3,] 0 1 -2 0 0 1
##
## row: 1
##
## exchange rows 1 and 2
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 2 3 0 0 1 0
## [2,] 1 2 3 1 0 0
## [3,] 0 1 -2 0 0 1
##
## multiply row 1 by 1/2
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 3/2 0 0 1/2 0
## [2,] 1 2 3 1 0 0
## [3,] 0 1 -2 0 0 1
##
## subtract row 1 from row 2
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 3/2 0 0 1/2 0
## [2,] 0 1/2 3 1 -1/2 0
## [3,] 0 1 -2 0 0 1
##
## row: 2
##
## exchange rows 2 and 3
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 3/2 0 0 1/2 0
## [2,] 0 1 -2 0 0 1
## [3,] 0 1/2 3 1 -1/2 0
##
## multiply row 2 by 3/2 and subtract from row 1
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 3 0 1/2 -3/2
## [2,] 0 1 -2 0 0 1
## [3,] 0 1/2 3 1 -1/2 0
##
## multiply row 2 by 1/2 and subtract from row 3
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 3 0 1/2 -3/2
## [2,] 0 1 -2 0 0 1
## [3,] 0 0 4 1 -1/2 -1/2
##
## row: 3
##
## multiply row 3 by 1/4
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 3 0 1/2 -3/2
## [2,] 0 1 -2 0 0 1
## [3,] 0 0 1 1/4 -1/8 -1/8
##
## multiply row 3 by 3 and subtract from row 1
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 -3/4 7/8 -9/8
## [2,] 0 1 -2 0 0 1
## [3,] 0 0 1 1/4 -1/8 -1/8
##
## multiply row 3 by 2 and add to row 2
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 -3/4 7/8 -9/8
## [2,] 0 1 0 1/2 -1/4 3/4
## [3,] 0 0 1 1/4 -1/8 -1/8