The Eqn
function is designed to produce LaTeX expressions of mathematical
equations for writing.
The output can be copied/pasted into documents or
used directly in chunks in .Rmd
, .Rnw
, or .qmd
documents to compile to equations.
It wraps the equations generated by its arguments
in either a \begin{equation} ...\end{equation}
or
\begin{align} ...\end{align}
LaTeX environment. See also
ref
for consistent inline referencing of numbered equations.
In a code chunk, use the chunk options results='asis', echo=FALSE
to show only
the result of compiling the LaTeX expressions.
Eqn_newline()
emits a newline (\
) in an equation, with
an optional increase to the padding following the newline.
Eqn_text()
inserts a literal string to be rendered in a text font in an equation.
Eqn_hspace()
is used to create (symmetric) equation spaces, most typically around
=
signs
Input to lhs
, rhs
can be a
numeric to increase the size of the space or a
character vector to be passed to the LaTeX macro \hspace{}
.
Eqn_vspace()
inserts vertical space between lines in an equation.
Typically used for aligned, multiline equations.
Eqn_size()
is used to increase or decrease the size of LaTeX text and equations. Can be applied
to a specific string or applied to all subsequent text until overwritten.
ref{}
provides inline references to equations in R
markdown and Quarto documents.
Depending on the output type this function will provide the correct
inline wrapper for MathJax or LaTeX equations. This provides more
consistent referencing when switching between HTML and PDF outputs as
well as documentation types (e.g., .Rmd
vs .qmd
).
Usage
Eqn(
...,
label = NULL,
align = FALSE,
preview = getOption("previewEqn"),
html_output = knitr::is_html_output(),
quarto = getOption("quartoEqn"),
mat_args = list(),
preview.pdf = FALSE,
preview.packages = NULL
)
Eqn_newline(space = 0)
Eqn_text(text)
Eqn_hspace(lhs = 5, mid = "", rhs = NULL, times = 1)
Eqn_vspace(space)
Eqn_size(string, size = 0)
ref(
label,
parentheses = TRUE,
html_output = knitr::is_html_output(),
quarto = getOption("quartoEqn")
)
Arguments
- ...
comma separated LaTeX expressions that are either a) a
character
vector, which will be automatically wrapped the expression inside a call tocat
, b) amatrix
object containing character or numeric information, which will be passedlatexMatrix
, along with the information inmat_args
, or c) an object that was explicitly created vialatexMatrix
, which provides greater specificity.Note that user defined functions that use
cat
within their body should return an empty character vector to avoid printing the returned object- label
character vector specifying the label to use (e.g.,
eq:myeqn
), which for LaTeX can be reference via\ref{eq:myeqn}
or via the inline functionref
. Including a label will also include an equation number automatically.For compiled documents if an HTML output is detected (see
html_output
) then the equations will be labelled via(\#eq:myeqn)
and references via\@ref(eq:myeqn)
, or again viaref
for convenience. For Quarto documents the label must be of the formeq-LABEL
- align
logical; use the
align
environment with explicit&
representing alignment points. Default:FALSE
- preview
logical; render an HTML version of the equation and display? This is intended for testing purposes and is only applicable to interactive R sessions, though for code testing purposes can be set globally via
options
(e.g.,options('previewEqn' = FALSE)
). Disabled wheneverquarto
orhtml_output
areTRUE
- html_output
logical; use labels for HTML outputs instead of the LaTeX? Automatically changed for compiled documents that support
knitr
. Generally not required or recommended for the user to modify, except to view the generated syntax- quarto
logical; use Quarto referencing syntax? When
TRUE
thehtml_output
will be irrelevant. Generally not recommended for the user to modify, except to view the generated syntax- mat_args
list of arguments to be passed to
latexMatrix
to change the properties of thematrix
input object(s). Note that these inputs are used globally, and apply to eachmatrix
object supplied. If further specificity is required createlatexMatrix
objects directly.- preview.pdf
logical; build a PDF of the preview equation? Generally not require unless additional LaTeX packages are required that are not supported by MathJax
- preview.packages
character vector for adding additional LaTeX package information to the equation preview. Only used when
preview.pdf = TRUE
- space
includes extra vertical space. Metric of the vertical space must be 'ex', 'pt', 'mm', 'cm', 'em', 'bp', 'dd', 'pc', or 'in'
- text
argument to be used within
\text{}
- lhs
spacing size. Can be a number between -1 and 6. -1 provides negative spaces and 0 gives no spacing. Input can also be a character vector, which will be passed to
\hspace{}
(e.g.,'1cm'
; seespace
argument for supported metrics). Default is 5, resulting in a\quad
space.- mid
character vector to place in the middle of the space specification. Most commonly this will be operators like
'='
- rhs
see lhs for details. If left as
NULL
andmid
is specified the this will be set torhs
to create symmetric spaces aroundmid
- times
number of times to repeat the spacings
- string
a string that should have its text size modified. If missing the size modifier is returned, which applies the size modifier to the remainder of the text until reset with
Eqn_size()
- size
numeric size of LaTeX text modifier, ranging from -3 (
\tiny
) to 5 (\HUGE
), with 0 defining the normal test size (\normalsize
; default)- parentheses
logical; include parentheses around the referenced equation?
See also
latexMatrix
, matrix2latex
, ref
Examples
# character input
Eqn('e=mc^2')
#>
#> \begin{equation*}
#> e=mc^2\end{equation*}
# show only the LaTeX code
Eqn('e=mc^2', preview=FALSE)
#>
#> \begin{equation*}
#> e=mc^2\end{equation*}
# Equation numbers & labels
Eqn('e=mc^2', label = 'eq:einstein')
#>
#> \begin{equation}
#> \label{eq:einstein}
#> e=mc^2\end{equation}
Eqn("X=U \\lambda V", label='eq:svd')
#>
#> \begin{equation}
#> \label{eq:svd}
#> X=U \lambda V\end{equation}
# html_output and quarto outputs only show code
# (both auto detected in compiled documents)
Eqn('e=mc^2', label = 'eq:einstein', html_output = TRUE)
#>
#> \begin{equation}
#> (\#eq:einstein)
#> e=mc^2\end{equation}
# Quarto output
Eqn('e=mc^2', label = 'eq-einstein', quarto = TRUE)
#>
#> \begin{equation}
#> \label{eq-einstein}
#> e=mc^2\end{equation}
if (FALSE) { # \dontrun{
# The following requires LaTeX compilers to be pre-installed
# View PDF instead of HTML
Eqn('e=mc^2', preview.pdf=TRUE)
# Add extra LaTeX dependencies for PDF build
Eqn('\\bm{e}=mc^2', preview.pdf=TRUE,
preview.packages=c('amsmath', 'bm'))
} # }
# Multiple expressions
Eqn("e=mc^2",
Eqn_newline(),
"X=U \\lambda V", label='eq:svd')
#>
#> \begin{equation}
#> \label{eq:svd}
#> e=mc^2 \\
#> X=U \lambda V\end{equation}
# expressions that use cat() within their calls
Eqn('SVD = ',
latexMatrix("u", "n", "k"),
latexMatrix("\\lambda", "k", "k", diag=TRUE),
latexMatrix("v", "k", "p", transpose = TRUE),
label='eq:svd')
#>
#> \begin{equation}
#> \label{eq:svd}
#> SVD = \begin{pmatrix}
#> u_{11} & u_{12} & \cdots & u_{1k} \\
#> u_{21} & u_{22} & \cdots & u_{2k} \\
#> \vdots & \vdots & & \vdots \\
#> u_{n1} & u_{n2} & \cdots & u_{nk} \\
#> \end{pmatrix}
#> \begin{pmatrix}
#> \lambda_{1} & 0 & \cdots & 0 \\
#> 0 & \lambda_{2} & \cdots & 0 \\
#> \vdots & \vdots & \ddots & \vdots \\
#> 0 & 0 & \cdots & \lambda_{k} \\
#> \end{pmatrix}
#> \begin{pmatrix}
#> v_{11} & v_{12} & \cdots & v_{1p} \\
#> v_{21} & v_{22} & \cdots & v_{2p} \\
#> \vdots & \vdots & & \vdots \\
#> v_{k1} & v_{k2} & \cdots & v_{kp} \\
#> \end{pmatrix}^\top
#> \end{equation}
# align equations using & operator
Eqn("X &= U \\lambda V", Eqn_newline(),
"& = ", latexMatrix("u", "n", "k"),
latexMatrix("\\lambda", "k", "k", diag=TRUE),
latexMatrix("v", "k", "p", transpose = TRUE),
align=TRUE)
#>
#> \begin{align*}
#> X &= U \lambda V \\
#> & = \begin{pmatrix}
#> u_{11} & u_{12} & \cdots & u_{1k} \\
#> u_{21} & u_{22} & \cdots & u_{2k} \\
#> \vdots & \vdots & & \vdots \\
#> u_{n1} & u_{n2} & \cdots & u_{nk} \\
#> \end{pmatrix}
#> \begin{pmatrix}
#> \lambda_{1} & 0 & \cdots & 0 \\
#> 0 & \lambda_{2} & \cdots & 0 \\
#> \vdots & \vdots & \ddots & \vdots \\
#> 0 & 0 & \cdots & \lambda_{k} \\
#> \end{pmatrix}
#> \begin{pmatrix}
#> v_{11} & v_{12} & \cdots & v_{1p} \\
#> v_{21} & v_{22} & \cdots & v_{2p} \\
#> \vdots & \vdots & & \vdots \\
#> v_{k1} & v_{k2} & \cdots & v_{kp} \\
#> \end{pmatrix}^\top
#> \end{align*}
# numeric/character matrix example
A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)
b <- matrix(c(8, -11, -3))
# numeric matrix wrapped internally
cbind(A,b) |> Eqn()
#>
#> \begin{equation*}
#> \begin{pmatrix}
#> 2 & 1 & -1 & 8 \\
#> -3 & -1 & 2 & -11 \\
#> -2 & 1 & 2 & -3 \\
#> \end{pmatrix}
#> \end{equation*}
cbind(A,b) |> latexMatrix() |> Eqn()
#>
#> \begin{equation*}
#> \begin{pmatrix}
#> 2 & 1 & -1 & 8 \\
#> -3 & -1 & 2 & -11 \\
#> -2 & 1 & 2 & -3 \\
#> \end{pmatrix}
#> \end{equation*}
# change numeric matrix brackets globally
cbind(A,b) |> Eqn(mat_args=list(matrix='bmatrix'))
#>
#> \begin{equation*}
#> \begin{bmatrix}
#> 2 & 1 & -1 & 8 \\
#> -3 & -1 & 2 & -11 \\
#> -2 & 1 & 2 & -3 \\
#> \end{bmatrix}
#> \end{equation*}
# greater flexibility when using latexMatrix()
cbind(A, b) |> latexMatrix() |> partition(columns=3) |> Eqn()
#>
#> \begin{equation*}
#> \begin{pmatrix}
#> \begin{array}{c c c | c}
#> 2 & 1 & -1 & 8\\
#> -3 & -1 & 2 & -11\\
#> -2 & 1 & 2 & -3\\
#> \end{array}
#> \end{pmatrix}\end{equation*}
# with showEqn()
showEqn(A, b, latex=TRUE) |> Eqn()
#>
#> \begin{equation*}
#> \begin{array}{lllllll}
#> 2 \cdot x_1 &+& 1 \cdot x_2 &-& 1 \cdot x_3 &=& 8 \\
#> -3 \cdot x_1 &-& 1 \cdot x_2 &+& 2 \cdot x_3 &=& -11 \\
#> -2 \cdot x_1 &+& 1 \cdot x_2 &+& 2 \cdot x_3 &=& -3 \\
#> \end{array}\end{equation*}
Eqn_newline()
#> [1] " \\\\ \n"
Eqn_newline('10ex')
#> [1] " \\\\[10ex] \n"
Eqn_hspace()
#> [1] "\\quad"
Eqn_hspace(3) # smaller
#> [1] "\\;"
Eqn_hspace(3, times=2)
#> [1] "\\;\\;"
Eqn_hspace('1cm')
#> [1] "\\hspace{1cm}"
# symmetric spacing around mid
Eqn_hspace(mid='=')
#> [1] "\\quad=\\quad"
Eqn_hspace(mid='=', times=2)
#> [1] "\\quad\\quad=\\quad\\quad"
Eqn_vspace('1.5ex')
#> [1] " \\vspace{1.5ex} \n"
Eqn_vspace('1cm')
#> [1] " \\vspace{1cm} \n"
# set size globally
Eqn_size(size=3)
#> [1] "\\LARGE"
Eqn_size() # reset
#> [1] "\\normalsize"
# locally for defined string
string <- 'e = mc^2'
Eqn_size(string, size=1)
#> [1] "{\\large e = mc^2}"
# used inside of Eqn() or manually defined labels in the document
Eqn('e = mc^2', label='eq:einstein')
#>
#> \begin{equation}
#> \label{eq:einstein}
#> e = mc^2\end{equation}
# use within inline block via `r ref()`
ref('eq:einstein')
#> [1] "(\\ref{eq:einstein})"
ref('eq:einstein', parentheses=FALSE)
#> [1] "\\ref{eq:einstein}"
ref('eq:einstein', html_output=TRUE)
#> [1] "\\@ref(eq:einstein)"
# With Quarto
Eqn('e = mc^2', label='eq-einstein', quarto=TRUE)
#>
#> \begin{equation}
#> \label{eq-einstein}
#> e = mc^2\end{equation}
ref('eq:einstein', quarto=TRUE)
#> [1] "(\\ref{eq:einstein})"
ref('eq:einstein', quarto=TRUE, parentheses=FALSE)
#> [1] "\\ref{eq:einstein}"