Plot observation weights from a robust multivariate linear models
Source:R/plot.robmlm.R
plot.robmlm.Rd
Creates an index plot of the observation weights assigned in the last
iteration of robmlm
. Observations with low weights have large
residual squared distances and are potential multivariate outliers with
respect to the fitted model.
Arguments
- x
A
"robmlm"
object- labels
Observation labels; if not specified, uses rownames from the original data
- id.weight
Threshold for identifying observations with small weights
- id.pos
Position of observation label relative to the point
- pch
Point symbol(s); can be a vector of length equal to the number of observations in the data frame
- col
Point color(s)
- cex
Point character size(s)
- segments
logical; if
TRUE
, draw line segments from 1.o down to the point- xlab
x axis label
- ylab
y axis label
- ...
other arguments passed to
plot
Examples
data(Skulls)
sk.rmod <- robmlm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)
plot(sk.rmod, col=Skulls$epoch)
axis(side=3, at=15+seq(0,120,30), labels=levels(Skulls$epoch), cex.axis=1)
# Pottery data
data(Pottery, package = "carData")
pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
plot(pottery.rmod, col=Pottery$Site, segments=TRUE)
# SocialCog data
data(SocialCog)
SC.rmod <- robmlm(cbind( MgeEmotions, ToM, ExtBias, PersBias) ~ Dx,
data=SocialCog)
plot(SC.rmod, col=SocialCog$Dx, segments=TRUE)