Skip to contents

Fit a multivariate linear model by robust regression using a simple M estimator that down-weights observations with large residuals

Fitting is done by iterated re-weighted least squares (IWLS), using weights based on the Mahalanobis squared distances of the current residuals from the origin, and a scaling (covariance) matrix calculated by cov.trob. The design of these methods were loosely modeled on rlm.

These S3 methods are designed to provide a specification of a class of robust methods which extend mlms, and are therefore compatible with other mlm extensions, including Anova and heplot.

An internal vcov.mlm function is an extension of the standard vcov method providing for the use of observation weights.

Usage

robmlm(X, ...)

# Default S3 method
robmlm(
  X,
  Y,
  w,
  P = 2 * pnorm(4.685, lower.tail = FALSE),
  tune,
  max.iter = 100,
  psi = psi.bisquare,
  tol = 1e-06,
  initialize,
  verbose = FALSE,
  ...
)

# S3 method for class 'formula'
robmlm(
  formula,
  data,
  subset,
  weights,
  na.action,
  model = TRUE,
  contrasts = NULL,
  ...
)

# S3 method for class 'robmlm'
print(x, ...)

# S3 method for class 'robmlm'
summary(object, ...)

# S3 method for class 'summary.robmlm'
print(x, ...)

Arguments

X

for the default method, a model matrix, including the constant (if present)

...

other arguments, passed down. In particular relevant control arguments can be passed to the to the robmlm.default method.

Y

for the default method, a response matrix

w

prior weights

P

two-tail probability, to find cutoff quantile for chisq (tuning constant); default is set for bisquare weight function

tune

tuning constant (if given directly)

max.iter

maximum number of iterations

psi

robustness weight function; psi.bisquare is the default

tol

convergence tolerance, maximum relative change in coefficients

initialize

modeling function to find start values for coefficients, equation-by-equation; if absent WLS (lm.wfit) is used

verbose

show iteration history? (TRUE or FALSE)

formula

a formula of the form cbind(y1, y2, ...) ~ x1 + x2 + ....

data

a data frame from which variables specified in formula are preferentially to be taken.

subset

An index vector specifying the cases to be used in fitting.

weights

a vector of prior weights for each case.

na.action

A function to specify the action to be taken if NAs are found. The 'factory-fresh' default action in R is na.omit, and can be changed by options(na.action=).

model

should the model frame be returned in the object?

contrasts

optional contrast specifications; see lm for details.

x

a robmlm object

object

a robmlm object

Value

An object of class "robmlm" inheriting from c("mlm", "lm").

This means that the returned "robmlm" contains all the components of "mlm" objects described for lm, plus the following:

weights

final observation weights

iterations

number of iterations

converged

logical: did the IWLS process converge?

The generic accessor functions coefficients, effects, fitted.values and residuals extract various useful features of the value returned by robmlm.

Details

Weighted least squares provides a method for correcting a variety of problems in linear models by estimating parameters that minimize the weighted sum of squares of residuals \(\Sigma w_i e_i^2\) for specified weights \(w_i, i = 1, 2, \dots n\).

M-estimation generalizes this by minimizing the sum of a symmetric function \(\rho(e_i)\) of the residuals, where the function is designed to reduce the influence of outliers or badly fit observations. The function \(\rho(e_i) = | e_i |\) minimizes the least absolute values, while the bisquare function uses an upper bound on influence. For multivariate problems, a simple method is to use Mahalanobis \(D^2 (\mathbf{e}_i)\) to calculate the weights.

Because the weights and the estimated coefficients depend on each other, this is done iteratively, computing weights and then re-estimating the model with those weights until convergence.

References

A. Marazzi (1993) Algorithms, Routines and S Functions for Robust Statistics. Wadsworth & Brooks/Cole.

See also

Author

John Fox; packaged by Michael Friendly

Examples


##############
# Skulls data

# make shorter labels for epochs and nicer variable labels in heplots
Skulls$epoch <- factor(Skulls$epoch, labels=sub("c","",levels(Skulls$epoch)))
# variable labels
vlab <- c("maxBreadth", "basibHeight", "basialLength", "nasalHeight")

# fit manova model, classically and robustly
sk.mod <- lm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)
sk.rmod <- robmlm(cbind(mb, bh, bl, nh) ~ epoch, data=Skulls)

# standard mlm methods apply here
coefficients(sk.rmod)
#>                      mb          bh          bl         nh
#> (Intercept) 133.9539529 132.6656599 96.50561801 50.8900600
#> epoch.L       4.1659721  -2.1793681 -4.84240950  1.1168866
#> epoch.Q      -0.3671411  -1.3069085 -0.04276618  0.2817763
#> epoch.C      -0.5833713  -0.7912067  1.03002114 -0.8379419
#> epoch^4       0.6350148   0.8787857 -0.55919989 -0.6233314

# index plot of weights
plot(sk.rmod$weights, type="h", xlab="Case Index", ylab="Robust mlm weight", col="gray")
points(sk.rmod$weights, pch=16, col=Skulls$epoch)
axis(side=1, at=15+seq(0,120,30), labels=levels(Skulls$epoch), tick=FALSE, cex.axis=1)


# heplots to see effect of robmlm vs. mlm
heplot(sk.mod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"), 
    xlab=vlab[1], ylab=vlab[2], cex=1.25, lty=1)
heplot(sk.rmod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"), 
    add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2), 
    term.labels=FALSE, hyp.labels=FALSE, err.label="")


##############
# Pottery data

data(Pottery, package = "carData")
pottery.mod <- lm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)
car::Anova(pottery.mod)
#> 
#> Type II MANOVA Tests: Pillai test statistic
#>      Df test stat approx F num Df den Df    Pr(>F)    
#> Site  3    1.5539   4.2984     15     60 2.413e-05 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(pottery.rmod)
#> 
#> Type II MANOVA Tests: Pillai test statistic
#>      Df test stat approx F num Df den Df    Pr(>F)    
#> Site  3     1.975   6.5516     15     51 1.722e-07 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# index plot of weights
plot(pottery.rmod$weights, type="h")
points(pottery.rmod$weights, pch=16, col=Pottery$Site)


# heplots to see effect of robmlm vs. mlm
heplot(pottery.mod, cex=1.3, lty=1)
heplot(pottery.rmod, add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2), 
    term.labels=FALSE, err.label="")


###############
# Prestige data
data(Prestige, package = "carData")

# treat women and prestige as response variables for this example
prestige.mod <- lm(cbind(women, prestige) ~ income + education + type, data=Prestige)
prestige.rmod <- robmlm(cbind(women, prestige) ~ income + education + type, data=Prestige)

coef(prestige.mod)
#>                    women     prestige
#> (Intercept) 29.638865042 -0.622929165
#> income      -0.004594789  0.001013193
#> education    1.677749298  3.673166052
#> typeprof    20.761455686  6.038970651
#> typewc      27.911084356 -2.737230718
coef(prestige.rmod)
#>                    women     prestige
#> (Intercept) 24.696906731  0.019651597
#> income      -0.004902077  0.001082214
#> education    2.352283991  3.549614674
#> typeprof    18.737098949  6.394466644
#> typewc      26.762870920 -2.570933052
# how much do coefficients change?
round(coef(prestige.mod) - coef(prestige.rmod),3)
#>              women prestige
#> (Intercept)  4.942   -0.643
#> income       0.000    0.000
#> education   -0.675    0.124
#> typeprof     2.024   -0.355
#> typewc       1.148   -0.166

# pretty plot of case weights
plot(prestige.rmod$weights, type="h", xlab="Case Index", ylab="Robust mlm weight", col="gray")
points(prestige.rmod$weights, pch=16, col=Prestige$type)
legend(0, 0.7, levels(Prestige$type), pch=16, col=palette()[1:3], bg="white")


heplot(prestige.mod, cex=1.4, lty=1)
heplot(prestige.rmod, add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2), 
    term.labels=FALSE, err.label="")