# Calculate Goodman-Kruskal Gamma for ordered tables

`GKgamma.Rd`

The Goodman-Kruskal \(\gamma\) statistic is a measure of association for ordinal factors in a two-way table proposed by Goodman and Kruskal (1954).

## Arguments

- x
A two-way frequency table, in matrix or table form. The rows and columns are considered to be ordinal factors

- level
Confidence level for a significance test of \(\gamma \ne =\)

## Value

Returns an object of class `"GKgamma"`

with 6 components, as follows

- gamma
The gamma statistic

- C
Total number of concordant pairs in the table

- D
Total number of discordant pairs in the table

- sigma
Standard error of gamma

- CIlevel
Confidence level

- CI
Confidence interval

## References

Agresti, A. *Categorical Data Analysis*. John Wiley & Sons, 2002,
pp. 57--59.

Goodman, L. A., & Kruskal, W. H. (1954). Measures of
association for cross classifications. *Journal of the
American Statistical Association*, 49, 732-764.

Goodman, L. A., & Kruskal, W. H. (1963). Measures of
association for cross classifications III: Approximate
sampling theory. *Journal of the American Statistical
Association*, 58, 310-364.

## Examples

```
data(JobSat)
GKgamma(JobSat)
#> gamma : 0.221
#> std. error : 0.117
#> CI : -0.009 0.451
```