Skip to contents

A data set on measures of post-operative recovery of 32 patients undergoing an elective herniorrhaphy operation, in relation to pre-operative measures.

Format

A data frame with 32 observations on the following 9 variables.

age

patient age

sex

patient sex, a factor with levels f m

pstat

physical status (ignoring that associated with the operation). A 1-5 scale, with 1=perfect health, 5=very poor health.

build

body build, a 1-5 scale, with 1=emaciated, 2=thin, 3=average, 4=fat, 5=obese.

cardiac

preoperative complications with heart, 1-4 scale, with 1=none, 2=mild, 3=moderate, 4=severe.

resp

preoperative complications with respiration, 1-4 scale, with 1=none, 2=mild, 3=moderate, 4=severe.

leave

condition upon leaving the recovery room, a 1-4 scale, with 1=routine recovery, 2=intensive care for observation overnight, 3=intensive care, with moderate care required, 4=intensive care, with moderate care required.

los

length of stay in hospital after operation (days)

nurse

level of nursing required one week after operation, a 1-5 scale, with 1=intense, 2=heavy, 3=moderate, 4=light, 5=none (?); see Details

Source

Mosteller, F. and Tukey, J. W. (1977), Data analysis and regression, Reading, MA: Addison-Wesley. Data Exhibit 8, 567-568. Their source: A study by B. McPeek and J. P. Gilbert of the Harvard Anesthesia Center.

Details

leave, nurse and los are outcome measures; the remaining variables are potential predictors of recovery status.

The variable nurse is recorded as 1-4, with remaining (20) entries entered as "-" in both sources. It is not clear whether this means "none" or NA. The former interpretation was used in constructing the R data frame, so nurse==5 for these observations. Using Hernior$nurse[Hernior$nurse==5] <- NA would change to the other interpretation, but render nurse useless in a multivariate analysis.

The ordinal predictors could instead be treated as factors, and there are also potential interactions to be explored.

References

Hand, D. J., Daly, F., Lunn, A. D., McConway, K. J. and Ostrowski, E. (1994), A Handbook of Small Data Sets, Number 484, 390-391.

Examples


library(car)
data(Hernior)
str(Hernior)
#> 'data.frame':	32 obs. of  9 variables:
#>  $ age    : int  78 60 68 62 76 76 64 74 68 79 ...
#>  $ sex    : Factor w/ 2 levels "f","m": 2 2 2 2 2 2 2 1 2 1 ...
#>  $ pstat  : int  2 2 2 3 3 1 1 2 3 2 ...
#>  $ build  : int  3 3 3 5 4 3 2 3 4 2 ...
#>  $ cardiac: int  1 2 1 3 3 1 1 2 2 1 ...
#>  $ resp   : int  1 2 1 1 2 1 2 2 1 1 ...
#>  $ leave  : int  2 2 1 1 2 1 1 1 1 2 ...
#>  $ los    : int  9 4 7 35 9 7 5 16 7 11 ...
#>  $ nurse  : num  3 5 4 3 4 5 5 3 5 3 ...
Hern.mod <- lm(cbind(leave, nurse, los) ~ 
               age + sex +  pstat +  build + cardiac + resp, data=Hernior)
car::Anova(Hern.mod, test="Roy") # actually, all tests are identical
#> 
#> Type II MANOVA Tests: Roy test statistic
#>         Df test stat approx F num Df den Df  Pr(>F)  
#> age      1   0.16620   1.2742      3     23 0.30668  
#> sex      1   0.02681   0.2055      3     23 0.89150  
#> pstat    1   0.50028   3.8355      3     23 0.02309 *
#> build    1   0.34506   2.6455      3     23 0.07318 .
#> cardiac  1   0.29507   2.2622      3     23 0.10820  
#> resp     1   0.32969   2.5277      3     23 0.08245 .
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# test overall regression
print(linearHypothesis(Hern.mod, c("age", "sexm", "pstat", "build", "cardiac", "resp")), SSP=FALSE)
#> 
#> Multivariate Tests: 
#>                  Df test stat approx F num Df   den Df     Pr(>F)    
#> Pillai            6 1.1019849 2.419161     18 75.00000 0.00413563 ** 
#> Wilks             6 0.2173439 2.604648     18 65.53911 0.00252395 ** 
#> Hotelling-Lawley  6 2.2679660 2.729959     18 65.00000 0.00162850 ** 
#> Roy               6 1.5543375 6.476406      6 25.00000 0.00032318 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# joint test of age, sex & caridac
print(linearHypothesis(Hern.mod, c("age", "sexm", "cardiac")), SSP=FALSE)
#> 
#> Multivariate Tests: 
#>                  Df test stat approx F num Df   den Df   Pr(>F)  
#> Pillai            3 0.3826974 1.218485      9 75.00000 0.296709  
#> Wilks             3 0.6305421 1.301115      9 56.12656 0.257126  
#> Hotelling-Lawley  3 0.5649409 1.360043      9 65.00000 0.224709  
#> Roy               3 0.5249507 4.374589      3 25.00000 0.013162 *
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# HE plots
clr <- c("red", "darkgray", "blue", "darkgreen", "magenta", "brown", "black")
heplot(Hern.mod, col=clr)

pairs(Hern.mod, col=clr)


## Enhancing the pairs plot ...
# create better variable labels
vlab <- c("LeaveCondition\n(leave)", 
          "NursingCare\n(nurse)", 
          "LengthOfStay\n(los)")
# Add ellipse to test all 5 regressors simultaneously
hyp <- list("Regr" = c("age", "sexm", "pstat", "build", "cardiac", "resp"))
pairs(Hern.mod, hypotheses=hyp, col=clr, var.labels=vlab)


## Views in canonical space for the various predictors
if (require(candisc)) {
  Hern.canL <- candiscList(Hern.mod)
  plot(Hern.canL, term="age")
  plot(Hern.canL, term="sex")
  plot(Hern.canL, term="pstat")  # physical status
}