Skip to contents

Hauser (1979) presented this two-way frequency table, cross-classifying occupational categories of sons and fathers in the United States.

It is a good example for exploring a variety of models for square tables: quasi-independence, quasi-symmetry, row/column effects, uniform association, etc., using the facilities of the gnm.

Usage

data(Hauser79)

Format

A frequency data frame with 25 observations on the following 3 variables, representing the cross-classification of 19912 individuals by father's occupation and son's first occupation.

Son

a factor with levels UpNM LoNM UpM LoM Farm

Father

a factor with levels UpNM LoNM UpM LoM Farm

Freq

a numeric vector

Details

Hauser's data was first presented in 1979, and then published in 1980. The name of the dataset reflects the earliest use.

It reflects the "frequencies in a classification of son's first full-time civilian occupation by father's (or other family head's) occupation at son's sixteenth birthday among American men who were aged 20 to 64 in 1973 and were not currently enrolled in school".

As noted in Hauser's Table 1, "Counts are based on observations weighted to estimate population counts and compensate for departures of the sampling design from simple random sampling. Broad occupation groups are upper nonmanual: professional and kindred workers, managers and officials, and non-retail sales workers; lower nonmanual: proprietors, clerical and kindred workers, and retail sales workers; upper manual: craftsmen, foremen, and kindred workers; lower manual: service workers, operatives and kindred workers, and laborers (except farm); farm: farmers and farm managers, farm laborers, and foremen. density of mobility or immobility in the cells to which they refer."

The table levels for Son and Father have been arranged in order of decreasing status as is common for mobility tables.

Source

R.M. Hauser (1979), Some exploratory methods for modeling mobility tables and other cross-classified data. In: K.F. Schuessler (Ed.), Sociological Methodology, 1980, Jossey-Bass, San Francisco, pp. 413-458. Table 1.

References

Powers, D.A. and Xie, Y. (2008). Statistical Methods for Categorical Data Analysis, Bingley, UK: Emerald.

Examples

data(Hauser79)
str(Hauser79)
#> 'data.frame':	25 obs. of  3 variables:
#>  $ Son   : Factor w/ 5 levels "UpNM","LoNM",..: 1 2 3 4 5 1 2 3 4 5 ...
#>  $ Father: Factor w/ 5 levels "UpNM","LoNM",..: 1 1 1 1 1 2 2 2 2 2 ...
#>  $ Freq  : num  1414 521 302 643 40 ...

# display table
structable(~Father+Son, data=Hauser79)
#>        Son UpNM LoNM  UpM  LoM Farm
#> Father                             
#> UpNM       1414  521  302  643   40
#> LoNM        724  524  254  703   48
#> UpM         798  648  856 1676  108
#> LoM         756  914  771 3325  237
#> Farm        409  357  441 1611 1832

#Examples from Powers & Xie, Table 4.15
# independence model
mosaic(Freq ~ Father + Son, data=Hauser79, shade=TRUE)


hauser.indep <- gnm(Freq ~ Father + Son, 
  data=Hauser79, 
  family=poisson)

mosaic(hauser.indep, ~Father+Son, 
       main="Independence model", 
       gp=shading_Friendly)


# Quasi-independence
hauser.quasi <-  update(hauser.indep, 
                        ~ . + Diag(Father,Son))
mosaic(hauser.quasi, ~Father+Son, 
       main="Quasi-independence model", 
       gp=shading_Friendly)


# Quasi-symmetry
hauser.qsymm <-  update(hauser.indep, 
                        ~ . + Diag(Father,Son) + Symm(Father,Son))

mosaic(hauser.qsymm, ~Father+Son, 
       main="Quasi-symmetry model", 
       gp=shading_Friendly)



# numeric scores for row/column effects
Sscore <- as.numeric(Hauser79$Son)
Fscore <- as.numeric(Hauser79$Father)

# row effects model
hauser.roweff <- update(hauser.indep, ~ . + Father*Sscore)
LRstats(hauser.roweff)
#> Likelihood summary table:
#>                  AIC    BIC LR Chisq Df Pr(>Chisq)    
#> hauser.roweff 2308.9 2324.7   2080.2 12  < 2.2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# uniform association
hauser.UA <- update(hauser.indep, ~ . + Fscore*Sscore)
LRstats(hauser.UA)
#> Likelihood summary table:
#>              AIC    BIC LR Chisq Df Pr(>Chisq)    
#> hauser.UA 2503.4 2515.6   2280.7 15  < 2.2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# uniform association, omitting diagonals
hauser.UAdiag <- update(hauser.indep, ~ . + Fscore*Sscore + Diag(Father,Son))
LRstats(hauser.UAdiag)
#> Likelihood summary table:
#>                  AIC BIC LR Chisq Df Pr(>Chisq)    
#> hauser.UAdiag 305.72 324   73.007 10  1.161e-11 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Levels for Hauser 5-level model
levels <- matrix(c(
  2,  4,  5,  5,  5,
  3,  4,  5,  5,  5,
  5,  5,  5,  5,  5,
  5,  5,  5,  4,  4,
  5,  5,  5,  4,  1
  ), 5, 5, byrow=TRUE)

hauser.topo <- update(hauser.indep, 
                      ~ . + Topo(Father, Son, spec=levels))

mosaic(hauser.topo, ~Father+Son, 
       main="Topological model", gp=shading_Friendly)


# RC model
hauser.RC <- update(hauser.indep, ~ . + Mult(Father, Son), verbose=FALSE)
mosaic(hauser.RC, ~Father+Son, main="RC model", gp=shading_Friendly)

LRstats(hauser.RC)
#> Likelihood summary table:
#>              AIC    BIC LR Chisq Df Pr(>Chisq)    
#> hauser.RC 920.16 939.66   685.45  9  < 2.2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# crossings models 
hauser.CR <- update(hauser.indep, ~ . + Crossings(Father,Son))
mosaic(hauser.topo, ~Father+Son, main="Crossings model", gp=shading_Friendly)

LRstats(hauser.CR)
#> Likelihood summary table:
#>              AIC    BIC LR Chisq Df Pr(>Chisq)    
#> hauser.CR 318.63 334.47   89.914 12  5.131e-14 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

hauser.CRdiag <- update(hauser.indep, ~ . + Crossings(Father,Son) + Diag(Father,Son))
LRstats(hauser.CRdiag)
#> Likelihood summary table:
#>                  AIC    BIC LR Chisq Df Pr(>Chisq)    
#> hauser.CRdiag 298.95 318.45   64.237  9   2.03e-10 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


# compare model fit statistics
modlist <- glmlist(hauser.indep, hauser.roweff, hauser.UA, hauser.UAdiag, 
                   hauser.quasi, hauser.qsymm,  hauser.topo, 
                   hauser.RC, hauser.CR, hauser.CRdiag)
sumry <- LRstats(modlist)
sumry[order(sumry$AIC, decreasing=TRUE),]
#> Likelihood summary table:
#>                  AIC    BIC LR Chisq Df Pr(>Chisq)    
#> hauser.indep  6390.8 6401.8   6170.1 16  < 2.2e-16 ***
#> hauser.UA     2503.4 2515.6   2280.7 15  < 2.2e-16 ***
#> hauser.roweff 2308.9 2324.7   2080.2 12  < 2.2e-16 ***
#> hauser.RC      920.2  939.7    685.4  9  < 2.2e-16 ***
#> hauser.quasi   914.1  931.1    683.3 11  < 2.2e-16 ***
#> hauser.CR      318.6  334.5     89.9 12  5.131e-14 ***
#> hauser.UAdiag  305.7  324.0     73.0 10  1.161e-11 ***
#> hauser.CRdiag  298.9  318.5     64.2  9  2.030e-10 ***
#> hauser.topo    295.3  311.1     66.6 12  1.397e-09 ***
#> hauser.qsymm   268.2  291.3     27.4  6  0.0001193 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# or, more simply
LRstats(modlist, sortby="AIC")
#> Likelihood summary table:
#>                  AIC    BIC LR Chisq Df Pr(>Chisq)    
#> hauser.indep  6390.8 6401.8   6170.1 16  < 2.2e-16 ***
#> hauser.UA     2503.4 2515.6   2280.7 15  < 2.2e-16 ***
#> hauser.roweff 2308.9 2324.7   2080.2 12  < 2.2e-16 ***
#> hauser.RC      920.2  939.7    685.4  9  < 2.2e-16 ***
#> hauser.quasi   914.1  931.1    683.3 11  < 2.2e-16 ***
#> hauser.CR      318.6  334.5     89.9 12  5.131e-14 ***
#> hauser.UAdiag  305.7  324.0     73.0 10  1.161e-11 ***
#> hauser.CRdiag  298.9  318.5     64.2  9  2.030e-10 ***
#> hauser.topo    295.3  311.1     66.6 12  1.397e-09 ***
#> hauser.qsymm   268.2  291.3     27.4  6  0.0001193 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

mods <- substring(rownames(sumry),8)
with(sumry,
  {plot(Df, AIC, cex=1.3, pch=19, xlab='Degrees of freedom', ylab='AIC')
  text(Df, AIC, mods, adj=c(0.5,-.5), col='red', xpd=TRUE)
  })